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Vectorization assumes the conversion of constraints into objective functions. It turns a single-
objective, or scalar, optimization into a search for a Pareto optimal set, which will enhance the 
search for the optimum. Vectorization is studied here within a structural optimization of fast ferry’s 
midship section for the minimum of steel weight. Optimization applies a simple genetic algorithm 
(GA), whose performance is observed over both scalar and vectorized problem formulations. 
The obtained results show that the applied GA can improve the referenced design, and that the 
improvement can be signifi cantly better if vectorization is applied.
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Vektorizacija u strukturalnoj optimizaciji brzoga trajekta
 

Izvorni znanstveni rad

Vektorizacija podrazumijeva promjenu ograničenja u funkcije cilja. Time se jednokriterijalna, ili 
skalarna, optimizacija generalizira u potragu za Pareto optimalnim skupom što poboljšava potragu 
za optimumom. Ovaj rad proučava vektorizaciju na primjeru strukturalne optimizacije glavnog 
rebra brzoga trajekta. Optimizacija je izvršena pomoću jednostavnoga genetskog algoritma, čije 
su značajke promotrene za skalarnu i vektoriziranu formulaciju problema. Rezultati optimizacije 
pokazuju poboljšanja u odnosu na prototip, osobito pri uporabi vektorizacije. 
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1 Introduction

Design optimization is an important part of modern shipbuild-
ing. Its mathematical formalization of the design process helps a 
designer to determine the best combination of design parameter 
values in order to fulfi l the design objectives using an appropriate 
search algorithm. In this paper we elaborate on the possibility to 
improve this process within the aspect of structural design of an 
88 m long fast passenger/car ferry.

Problems involving the optimization of ship structures are 
often spanned in highly nonlinear design spaces. Strength and 
stiffness formulations are polynomials of higher order, while the 
objective function is rarely linear. This can then result in a forma-
tion of a non-convex feasible space that cannot be readily handled 
using the classical gradient-based methods as the concavities can 
end the search prematurely. Yet, these methods are effi cient in 
their search for the local minima, so if considering the optimiza-
tion in the phase of preliminary design these problematic features 
disappear. The amount of applied constraints drastically limit the 
feasible space, so that it can be either sequentially linearized and 
solved with linear programming, see [1] and [2], or separated 
into a series of convex problems and solved accordingly with 
the non-linear gradient based method [3]. Zanic et al. [4] and 
Rigo [5] show on different practical cases, including thousands 
of constraints and hundreds of design variables, that these ap-
proaches result in signifi cant improvements within an acceptable 
computational time period.

However, as indicated in the ISSC report on design principles 
and criteria [6, p.588], optimization often becomes a computa-
tional “nightmare” when considering constraints such as vibra-
tions, which cause infeasibility holes within the feasible space, 
or when variables are non-continuous as in the considered case 
study. The aid can be found then in the application of genetic 
algorithms (GA). Gas can deal with such problems as they work 
solely with the objectives functions and not with their derivatives 
or with constraints. Gas based on the binary coding of variables 
can also deal with integer or discrete values, but they can expe-
rience problems of local minima [7]. If within a population of 
designs a suffi cient diversity is not maintained, the Gas will have 
diffi culty to map the entire design space, and can therefore gener-
ate designs in the close neighbourhood of local minima. These 
problems often occur when the problem needs to be solved in as 
few generations as possible and with small population size, thus 
forcing the algorithm to strictly follow the fi ttest design within a 
population. In the design of ship structures this is often demanded 
as the computation of structural response is costly. Within this 
study we will explore the possibilities to enhance the performance 
of Gas for structural optimization. We will concentrate on the 
approach addressed as vectorization, by which all the constraints 
are converted into additional objectives and a single-objective 
optimization problem is solved as a multi-objective problem.

These theoretical concepts and their implementation to a GA 
are further elaborated within the next two chapters. In chapter 
four, the postulated approach is applied to the structural design 
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of a fast ferry, the results of which are further discussed in the 
fi fth chapter.

2 Vectorization

Let a constrained single-objective, or scalar problem (SO), 
over a set of design variables x

 
 (1)

be understood as a multi-objective, or vector optimization prob-
lem (VO)

 
(2)

in which the constraints g
j
 are relaxed and represented as addi-

tional objectives f
j
, j Œ1...l. Let us address this as vectorization. 

Constraint representation in (2) needs to enable minimization 
towards a desirable value, which is taken at zero, following the 
feasibility condition of (1). Therefore, Deb [9] and Osyczka et 
al. [10] choose to represent the constraints using the heavy side 
function, as

 

(3)
 

Even though the constraints are relaxed, this representation 
differentiates between feasible and infeasible designs. Yet it 
does not preserve the information on the constraint magnitude 
for the feasible designs. Hence, the relative distances between 
the points in the feasible design space are lost, and the designs 
become ranked solely on f

0
. To avoid this drawback, an alterna-

tive “absolute” representation can be proposed:
 

(4)
 
All the information on the position of feasible designs is now 

preserved, but the information on the feasibility is dropped. By 
adopting these two constraint representations, two types of vector 
problem of (2) are formed, the VO-1, which applies representa-
tion in (4), and the VO-2 applying the constraint representation 
of (3).

According to Steuer [11], by solving the VO for a Pareto 
front it is possible to solve the SO for a scalar optimum x*, so that 
each optimum in SO is at least weakly Pareto optimal solution 
in VO, while one scalar optimum is effi cient, or strongly Pareto 
optimal. Generally, any alternative x belonging to Pareto front  
X̂ is weakly Pareto optimal, where X̂ is defi ned as

 
(5)

and some alternatives are strongly Pareto optimal if
 

(6)
 
Here f stands for a vector of objectives defi ned in (2), and the 

applied inequalities “<” and “£” are vector inequalities.
The validity of this statement is easy to prove for VO-1 and -2 as 

x* by defi nition possess the least value of f
0
. During the optimization 

there might exist infeasible designs which possess lower values of f
0
 

than x*, hence these might dominate over it. In the case of VO-2, this 
is avoided by assigning                                     for every feasible 
design, but in the case of VO-1, x* will be guaranteed Pareto op-
timality only if it lies on any constraint boundary, where f

j 
(x*)=0, 

j Œ1...l. Thus, the solution of VO-1 will from the set of feasible 
designs prefer those which are on the boundaries, as well as those 
which are in their neighbourhood as the constraint representation 
will maintain the information on the relative position of designs. 
This is particularly signifi cant for the studied problem of weight 
minimization as x* in such problems is regularly found on the 
boundary of the feasible space.

VO-2 will, on the other hand, give the advantage to any fea-
sible design over infeasible, but without specifi c classifi cation 
among them. Hence, the VO-2 could lead towards more incon-
sistent search in which no specifi c advantages will be given to a 
design on the feasible boundary, where x* might be expected. It is 
also easy to see that for VO-2 any feasible design xk will always 
be contained in the axis of f

0
, and if xk = x*, x*,  will be effi cient, 

due to the constraint representation of (3).

3 Implementation to a genetic algorithm

Within this paper we apply a single GA to perform optimiza-
tion in both vectorized and scalar form. The concept of solution 
is applied through fi tness j calculation. If dealing with the SO, 
it is possible to apply the following simple formula:

 
(7)

which is a simplifi ed piecewise form of the Penalty function 
approach, see [12] for more, in which now all the infeasible 
solutions are equally, but also maximally penalized to a value 
of zero. Big is a large enough constant used to assign higher 
fi tness to designs having smaller objective function, since SO 
involves minimization. This simplifi ed formulation of a penalty 
function is benefi cial as it preserves the nature of the objective 
function and avoids possible non-linearities due to the exclusion 
of constraints, but it also neglects the information on the rate of 
infeasibility, as all infeasible designs receive the same fi tness of 
zero. All the information on designs which are close to optimum, 
but are infeasible, cannot be then used to further improve the 
feasible designs.

If solving the vectorized problem, the formulation of the fi t-
ness function should account for the performance of the designs 
over multiple objectives, which in this case are the original ob-
jective function and the constraints. The convenient measure of 
merit is then the Pareto optimality. Yet, in this case, where we 
desire to obtain the scalar optimum, this criterion is insuffi cient. 
Therefore, the following fi tness function is proposed:

 
(8)

which ranks designs on the basis of the obtained Pareto optimality 
within a population and the distance d to the reference point I 
in an objective space                                    . In this case, I is the 
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point containing the minimum values of every objective within 
a population. As the problem deals with objectives of different 
physical meaning, such as weight, thickness, stress, etc., the 
objective space needs to be normalized to avoid pitfalls caused 
by large differences in the magnitudes of functions in (2). The 
normalization is performed by bounding this space within a unit 
interval, where 0 now presents the minimum of the objective for 
the current population, and 1 its maximum. Hence, I={0}, and 
if, similarly to [10], we apply the weighted Euclidean function 
as measure, the distance to I is found as

 
(9)

where f´ stands for a normalized value of an objective.
The choice of the weighting coeffi cient w enables now a 

biased search for the part of the Pareto front assumed to contain 
the scalar optimum. It is dependent, however, on the choice of the 
problem and constraint representation. For VO-2, the weighting 
coeffi cient w

0
 of the objective function should be taken as w

0
 ≤ w

j
, 

Vj Œ 1...l, depending also on the number of constraints, in order 
to concentrate the search within a neighbourhood of points with 
g

j
 ≅ 0. For VO-1, the choice of the w

j
 is more diffi cult and several 

options might have to be tried before obtaining the acceptable 
result. A possible strategy is to fi rst approach the points bearing 
minimal values of f

0
, using  w

0
 >> w

j
, Vj Œ 1...l and then, if the 

amount of obtained feasible designs is low, gradually reduce 

the values of w
0
 to allow for fi nding more feasible designs. Ad-

ditionally we modify the fi tness function in (8) by penalizing the 
infeasible designs, see (10), and preventing them to enter into 
next generation to force generations consisting of mostly Pareto 
optimal points, out of which one would be x*.

 
(10)

4 Optimization of a fast ferry

The presented vectorization concepts are shown on a practical 
example of the minimum weight design of a fast ferry’s midship 
section; see Figure 1. The results are compared with the classical 
scalar approach of (1) with the fi tness function of (7).

4.1 The structural design model

The ship is designed under the rule requirements of DNV 
for a high speed, light craft and a naval surface craft [13]. It 
is considered in fully loaded condition, for both crest and hol-
low landing, with the amplitudes of M

CREST
 = 143778 kNm and 

M
HOLLOW

 = 157572 kNm.
The axle load of 1.0 t/axle for the car deck, at 4600 mm 

from the keel, is applied on the tyre print areas of 115 x 88 
mm. The load on the passenger deck is taken as for the weather 
deck following the assumption that the superstructure does not 
contribute to the global strength of the ship. Other local loads, 
such as water pressure, are applied according to the Rules. The 
applied aluminium alloys 5083 and 6082 are used respectively 
for plating and stiffeners, with the yield strength of 106 MPa and 
84 MPa and the material factor f

1
 of 0.44 and 0.35. The Young 

modulus of 70 GPa and the Poisson coeffi cient of 0.28 are the 
same for both alloys.

Design variables include the scantlings of all the longitudinal 
elements except girders, as well as the spacing of the longitudinal 
stiffeners. Table 3 lists all the design variables with minimal and 
maximal bounds. Generally, the minimum plate thickness of 5 
mm was chosen due to a possible severe increase in deformations 
during the welding of thinner plates. Same wise, the minimum 
longitudinal spacing is selected at 200 mm.

The objective function f
0
 is defi ned trough the total area of 

all longitudinal elements in one half of the midship section, in-
cluding girders. Applied minimal requirements for the thickness 
and the size of longitudinals are given through Pt.3 Ch.3 Sec.5 
of [13], namely paragraphs B100 and C100 and Tables B1 and 
C1. Additionally, all the structural elements are checked for the 
buckling due to the longitudinal global hull girder loads, see 
Pt.3 Ch.3 Sec.10 [13, p.27]. The distribution of global hull shear 
loads is not specifi cally studied, but it is accounted for through 
the requirement for minimal thickness of plates.

4.2 The GA model

Variables are binary coded with 4 bit long strings, based on 
their integer representation, with the step of 0.5 mm for the plate 
thickness, 0.7 cm2 for the size of longitudinals and 10 mm for 
their spacing. A population of 50 design alternatives, or individu-

d f
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Figure 1 A half of the ferry’s midship section with marked design 
variables x

Slika 1 Prikaz oznaka projektnih varijabli x na polovini glavnog 
rebra trajekta
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als, is created within each generation following the randomly 
generated initial population. Based on the computed fi tness of 
an individual, the GA uses a weighted roulette wheel to select 
designs for the mating pool. Individuals’ chromosomes, or a 
binary string of variable values, are mated with a probability of 
0.8 using the randomly selected single point cross-over between 
two consecutive individuals in the mating pool. Subsequently, 
the individuals’ chromosomes are mutated bit-wise with a prob-
ability of 0.03.

Following the conclusions of chapter 3, VO-1 uses high 
weighting coeffi cient w

0
 of 0.5 for f

0
, while w

j
’s equally share 

the difference to 1, so that the biased search of Pareto optimal 
designs in Y will concentrate on the lowest attainable values of 
f

0
. VO-2 uses the weighting coeffi cient w

0
 of 0.05 to bring the 

search closer to the axes of f
0
 with w

j
’s equally sharing the dif-

ference to 1.

4.3 The results

We analyze 10 optimization runs of each of the applied ap-
proaches. The following 13 measures are applied to capture the 
particular performance:

- The minimum of the objective function f
0
(x**) and its genera-

tion G
x**

 for the best run,
- The difference between the f

0
(x**) and f

0
(xref) in per cent,

- The mean m
x*

 and the dispersion s
x*

 of the fi ttest designs x* 
for the best run,

- Generation of the fi rst crossing of the x* below the m
x*

, 
G

f0(x*)<mx
,

- The objective function value f
0
(x*

1%
) of the top 1% designs 

x*
1%

, and their generations of obtainment Gx*1%
,

- The objective function value f
0
(x**

1%
) of the fi ttest designs  x**

1% 
within 1% of the f

0
(x**), and their generations of obtainment 

Gx**
1%

,

- The mean 10
1
mmx*

 and the dispersion 10
1
smx*

 of the m
x*

 for all 10 
runs,

- The mean 10
1
m

f0(x**) and the dispersion 10
1
s

f0(x**) of the  f
0
(x**) for 

all 10 runs,

- The mean 10
1
mGx**

1%
 and the dispersion 10

1
SGx**

1%
 of the Gx**

1%
 for 

all 10 runs.

Table 1 and Table 2 present these measures for the best run, 
and for all 10 runs respectively. Furthermore, Figures 2 to 4 il-
lustrate the optimization history for the best runs.

Table 1  Optimization results for the best runs
Tablica 1 Rezultati optimizacije za najbolje prolaze

VO-1 VO-2 SO

 f
0
(x**) [m2] 0.3905 0.3922 0.4129

G
x**

99 278 34

 f
0
(xref)-f

0
(x**) [%] 7.5 7.1 2.2

 µx* [m
2] 0.4123 0.4154 0.4457

σx* in per cent of µx* 3.3 2.7 2.2

G
f0(x*)<mx

16 32 8

 f
0
(x*

1%
) [m2]

0.3905
0.3905
0.3915
0.3930
0.3954

0.3922
0.3942
0.3949
0.3964
0.3965

0.4129
0.4130
0.4191
0.4195
0.4207

Gx*1%

99
100
101
103
308

278
279
405
296
382

34
35
320
60
160

 f
0
(x**

1%
) [m2]

0.3905
0.3905
0.3915
0.3930

0.3922
0.3942
0.3949

0.4129
0.4130

Gx**
1%

99
100
101
103

278
279
405

34
35
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Table 2  Optimization results for all the computed runs
Tablica 2 Rezultati optimizacije za sve izvedene prolaze

VO-1 VO-2 SO
10

1
mmx*

 [m2] 0.4153 0.4184 0.4465

 10
1
smx*

 in per cent of 10
1
µµx* 0.57 0.64 0.43

 10
1
m

f0(x**) [m
2] 0.3940 0.3950 0.4175

 10
1
s

f0(x**) in per cent of 10
1
m

f0(x**) 0.7 0.6 0.9
10

1
mGx**

1%
282.40 296.70 250.60

 10
1
SGx**

1%
 in per cent of 10

1
mGx**

1%
 56.3 35.6 62.3

Figure 2 Optimization history for the VO-1 best 
run with marked minimum weight 
designs per generation x* and its 
mean, global minimum x**, top 1 per 
cent best performing designs x*_1%, 
and designs within 1 per cent of the 
obtained minimum weight x**_1%

Slika 2 Povijest optimizacija za VO-1 najbolji 
prolaz s označenim projektima naj-
manje težine po generaciji x* i njihovi 
srednji, globalni minimum x**, gornjih 
1 % najboljih projekata x*_1%, i pro-
jekata unutar 1 % t x**_1% dobivenih 
najmanjih težina.

Figure 3  Optimization history for the VO-2 best 
run with marked minimum weight 
designs per generation x* and its 
mean, global minimum x**, top 1 per 
cent best performing designs x*_1%, 
and designs within 1 per cent of the 
obtained minimum weight x**_1%

Slika 3 Povijest optimizacija za VO-2 najbolji 
prolaz s označenim projektima naj-
manje težine po generaciji x* i njihovi 
srednji, globalni minimum x**, gornjih 
1 % najboljih projekata x*_1%, i pro-
jekata unutar 1 % t x**_1% dobivenih 
najmanjih težina.
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Figure 4  Optimization history for the SO best run with marked 
minimum weight designs per generation x* and its mean, 
global minimum x**, top 1 per cent best performing 
designs x*_1%, and designs within 1 per cent of the 
obtained minimum weight x**_1%

Slika 4  Povijest optimizacija za SO najbolji prolaz s označenim 
projektima najmanje težine po generaciji x* i njihovi  
srednji, globalni minimum x**, gornjih 1 % najboljih pro-
jekata x*_1%, i projekata unutar 1 % t x**_1% dobivenih 
najmanjih težina.

5 Discussion

Clearly, the results show that GA managed to improve on the 
referenced design using all the presented approaches. The VO-1 
has performed the best by reducing the cross sectional area of the 
midship section by 7.5 per cent. It is closely followed by the VO-2 
with a 7.1 per cent improvement, while the SO failed to perform 
better than 2.2 per cent. The obtained improvements are therefore 
in line with the typical improvements in literature, as e.g. in [4].

Solving the vectorized problems obtains better results than 
solving the problem in the original representation of SO. The 
VOs fi nd the smaller minimums of the objective function, but 
also generally fi tter designs throughout generations, see f

0
(x**) in 

Table 1 and 10
1
m

f0(x**) and 10
1
mmx*

 in Table 1. See also Figures 2 to 
4 for the illustration of the differences. The dispersion of these 
values is small for all the approaches, hence the signifi cance of 
means is high, see 10

1
s

f0(x**) and 10
1
s

mx
. In Table 1 and Figure 2 we 

can see that for the best run of VO-1, a series of four designs 
within 1 per cent of the minimum are obtained already around 
the 100th generation, see f

0
(x**

1%
) and Gx**

1%
.

Table 3 provides a comparison between the obtained mini-
mum weight design, now taken to be the minimum of VO-1 x**

VO-1
, 

its standardized version x**
stand

 and the referenced design xref. In 
comparison with the reference, the optimization reduced the spac-
ing of longitudinals, which then generally caused the reduction of 
plate thicknesses and size of longitudinals. Due to the application 

Design variable Min Max xref x**
VO-1

x**
stand

Thickness of passenger deck – strake 1, x
1
 [mm] 5 12.5 8 5.5 7

Thickness of passenger deck – strake 2, x
2
 [mm] 5 12.5 8 9.5 8

Thickness of passenger deck – strake 3, x
3
 [mm] 5 12.5 8 9 9

Thickness of passenger deck – strake 4, x
4
 [mm] 5 12.5 8 9 9

Thickness of shear strake 1, x
5
 [mm] 5 12.5 9 5 7.5

Thickness of side shell – strake 1, x
6
 [mm] 5 12.5 8 5.5 5.5

Thickness of side shell – strake 2, x
7
 [mm] 5 12.5 8 7.5 5.5

Bilge strake, x
8
 [mm] 6 13.5 9 6.5 6.5

Thickness of bottom shell – strake 1, x
9
 [mm] 7 14.5 10 8 8

Thickness of bottom shell – strake 2, x
10

 [mm] 7 14.5 11 9 9
Thickness of bottom shell – strake 3, x

11
 [mm] 7 14.5 12 13 13

Keel plate, x
12

 [mm] 8 15.5 12 14 14
Thickness of car deck – strake 1, x

13
 [mm] 5 12.5 8 6 6

Thickness of car deck – strake 2, x
14

 [mm] 5 12.5 8 6.5 6
Thickness of car deck – strake 3, x

15
 [mm] 5 12.5 8 6 6

Thickness of car deck – strake 4, x
16

 [mm] 5 12.5 8 6 6
Size of passenger deck longitudinals, x

17
 [cm2] 5.4 15.9 9.31 6.80 6.75

Spacing of passenger deck long’s, x
18

 [mm] 200 350 300 210 210
Size of upper side shell longitudinals, x

19
 [cm2] 5.4 15.9 6.20 5.40 5.40

Spacing of upper side shell long’s, x
20

 [mm] 200 350 400 230 230
Size of lower side shell longitudinals, x

21
 [cm2] 5.4 15.9 6.20 8.20 5.40

Spacing of lower side shell long’s, x
22

 [mm] 200 350 350 230 230
Size of bilge longitudinals, x

23
 [cm2] 5.4 15.9 6.20 7.50 7.74

Spacing of bilge longitudinals, x
24

 [mm] 200 350 350 230 230
Size of bottom shell longitudinals, x

25
 [cm2] 5.4 15.9 12.40 13.10 13.83

Spacing of bottom shell longitudinals, x
26

 [mm] 200 350 300 280 280
Size of car deck longitudinals, x

27
 [cm2] 5.4 15.9 12.4 5.4 5.4

Spacing of car deck longitudinals, x
28

 [mm] 200 350 300 200 200
Total area of a half of the midship section [m2] 0.4221 0.3905 0.3885

Table 3  Design variables with min – max bounds and values for the reference xref, computed optimum x**
VO-1 and its standardized ver-

sion x**
stand 

Tablica 3 Projektne varijable sa min-maks graničnim vrijednostima za odnosne xref, proračunati optimumi x**
VO-1 i njihove standardizirane 

vrijednosti x**
stand
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of different classifi cation rules within this study, the reference 
breaks the constraints of longitudinal strength as well as the mini-
mal requirements for the side shell and bilge plate thickness and 
their stiffener size. Following that, the obtained minimum weight 
design is actively constrained by the longitudinal strength, thus 
some of the passenger deck strakes, as well as the lowest parts of 
the bottom shell, including the keel, are thickened in comparison to 
the reference, while the spacing of their stiffeners is reduced with 
additional increase in the size of the bottom stiffeners.

After the optimization was completed we reduced some of 
the obtained variable values from x**

VO-1
, namely the size of the 

lower side longitudinals and the thickness of the 2nd car deck 
strake. Within this process we additionally standardized the size 
of longitudinals, interchanged the thicknesses of the shear strake 
and the 2nd side shell strake to obtain a rational distribution of the 
plate thickness over the side, and reduced the difference between 
the neighbouring strakes in the passenger deck. We attained a 
lower value of f

0
 by the additional 0.5 per cent. Obviously, x**

VO-1
 

is not then the global minimum, but it has approached active 
constraints the most, which is typical for GAs as convergence 
to the global minimum cannot be guaranteed for some fi nite 
number of generations.

6  Conclusion

Within this paper we presented an alternative approach to sin-
gle-objective optimization problems, addressed as vectorization. 
Using the large-scale problem as an example, we have shown that 
the consideration of constraints as additional objectives alongside 
the original objective function can provide benefi ts regarding the 
achieved minimum weight design.

Two approaches to vectorization have been compared, one 
considering the formulating of constraints with a heavy side 
function, in which feasible designs receive the minimum value 
of a constraint function, and the other with the constraint func-
tion values represented as their absolutes. These were then im-
plemented into a simple genetic algorithm and confronted in the 
case study with the single-objective conventional approach. The 
obtained results seem to encourage vectorization as both of the 
vectorization approaches outmatched the conventional approach. 
The compared minimum weight design is 8 per cent better than 
the referenced design.

Vectorization, as presented in this study, might however face 
diffi culties if e.g. the ship structural design problem expands over 
the overall ship structure, in which case the number of constraints 
explodes into thousands. Thus, vectorization should be further 
studied and improved in order to tackle such problems. But, fol-
lowing on the results presented here, vectorization can already 
fi nd its use and offer effi cient design optimization.
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