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Summary 

In this study, an investigation on the hull roughness measurement of a new ship, a 160m 

class car ferry, was performed. The hull roughness measurement was conducted in the ferry’s 

pre-coated state before launching. For measurement, the TQC manual and ITTC 

recommendations were considered, and measurements were made in a total of 230 zones below 

waterline of the ship. Accordingly, the average hull roughness of the car ferry was 81𝜇𝑚, which 

is relatively low compared to 150𝜇𝑚, the hull roughness of a new ship proposed by the ITTC. 

In addition, the measurement uncertainty was calculated using the ISO guidelines, and the 

effect of the number of zones on the hull roughness measurement was examined. Using the 

measured average hull roughness, we estimated the resistance performance at the design speed 

of the ship. Accordingly, it was confirmed that the total resistance of the new ship was reduced 

by approximately 2% owing to a decrease in its frictional resistance increase. 

Key words: Hull roughness; Measurement; New ship; Resistance; Uncertainty 

1. Introduction 

According to the International Maritime Organization (IMO) report, as presented in Table 

1, between 2007–2012, the average carbon dioxide (CO2) emission from shipping and 

international shipping of vessels accounts for 3.1%, and 2.6% of the global emission ([1]). 

IMO implements environmental regulations such as the energy efficiency design index 

(EEDI) and energy efficiency Operational Indicator (EEOI) on ships to reduce carbon dioxide 

emissions, one of the causes of global warming. In particular, the EEDI is mandatory for new 

vessels carrying more than 400 gross tonnage and is gradually increasing its restriction until 

2025.  
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Table 1  Amount of CO2 emission from shipping  

 

Shipyard and ship owners are applying various methods in the building and operating 

stages to satisfy the above environmental regulations.  

The performance of a ship is improved by optimizing its linearity or installing an 

appendage in the construction stage of the ship to reduce its resistance. In addition, the oil 

consumption is reduced by optimizing the seaway of a ship during its operation stage, and a 

periodic hull cleaning minimizes the increase in the hull roughness during sailing to reduce the 

frictional resistance. 

The hull roughness of a new ship is defined as 150𝜇𝑚([2]) if no separate measurement 

data are available, and it increases over time. However, the amount of increase depends on the 

type of paint ([3]). In general, the hull roughness is increased owing to the occurrence of fouling 

phenomena such as barnacles or slime over time. 

To suppress such fouling, efforts are being made to reduce the amount generated by using 

anti-fouling paints or silicone foul release paints, but these do not provide complete prevention. 

Therefore, a ship-owner monitors the condition of the ship and decides its cleaning plan to keep 

the ship clean through periodic hull cleaning.  

As such, studies in relation to hull roughness have been performed using various 

approaches. Experimental approaches are mainly based on basin experiments using a plate ([4]-

[5]). In recent years, there have been an increasing number of studies on ships using numerical 

simulation methods ([6]-[15]). 

However, the research on hull roughness measurement is relatively insignificant, and the 

hull roughness is partly measured according to the methods presented by the ship paint or 

instrument company. This is because the measurement of the hull roughness of a ship is not an 

essential requirement for the construction of a ship and the focus is on the paint thickness, which 

can affect the corrosion of the ship rather than the hull roughness due to the coating. 

So in this paper, a study on the measurement of hull roughness is performed that has not 

been studied extensively to evaluate effect of roughness for frictional resistance. 
 

Year 

Global CO2 

(million 

tonnes) 

Shipping 

(million 

tonnes) 

Portion of 

shipping  

(%) 

International 

shipping 

(million 

tonnes) 

Portion of 

International 

shipping  

(%) 

2007 31,409 1,100 3.5 885 2.8 

2008 32,204 1,135 3.5 921 2.9 

2009 32,047 978 3.1 855 2.7 

2010 33,612 915 2.7 771 2.3 

2011 34,723 1,022 2.9 850 2.4 

2012 35,640 938 2.6 796 2.2 

Average 33,273 1,015 3.1 846 2.6 
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2. Hull roughness measurement 

2.1 Hull roughness measuring instrument 

The instrument used to measure the hull roughness is the Hull Roughness Analyzer DC-

9000 model manufactured by the TQC company as shown in Fig. 1. This model can measure 

the surface roughness (𝑅𝑡) based on the measurement length using a physical measurement 

sensor, and its specifications are listed in Table 2 (TQC [16]).  

The measurement value 𝑅𝑡 is the peak-to-valley value, which is the difference between 

the maximum value and minimum value in the measurement interval, and for the ship, the value 

measured in a 50-mm-interval is used, which is denoted as 𝑅𝑡(50). 

The measured 𝑅𝑡 value can be expressed as the mean hull roughness (𝑀𝐻𝑅) of a zone, as 

given in eq. (1), and the instrument generally uses the average of twelve 𝑅𝑡(50) values. The 

average hull roughness (𝐴𝐻𝑅), which represents the hull roughness of a ship, is the mean value 

of the 𝑀𝐻𝑅, as given in eq. (2), and can be weighted.  
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Here, n is the number of measurements, m is the number of measurement points, and 𝑤 

is a weight function, typically 1. 

 

Table 2  Specifications of DC-9000 

Item Data 

Memory capacity 4000 series of measurements 

Sensor depth 205 mm 

Sensor width 80 mm 

Sensor height 40 mm 

Sensor weight approx. 630 g 

Accuracy ±5 microns or < 2%, whichever is greater 
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Fig. 1  Hull roughness gauge (DC-9000) 

 

2.2 Hull roughness measuring method 

The target vessel for measuring the hull roughness is a 160m class car ferry, as shown in 

Fig. 2, and its specifications are listed in Table 3.  

 

Table 3  Principal particular of 160m class car ferry  

Item Dimensions 

Length Over All 160.0 m 

Length Between 

Perpendiculars 
148.0 m 

Breadth 24.8 m 

Design Draft 5.5 m 

 

 
Fig. 2  Three-dimensional model of the ship 

 

Measuring process of hull roughness is divided into three step as shown in Fig. 3.  

In the first step, it is necessary to arrange the zones before the measurement to measure 

the hull roughness. For the measurement zones, it is recommended to measure more than 100 

zones in the side area (Port & Starboard) and bottom area under the draft, and to measure at 

least thrice at the measurement points ([16]-[17]). In this study, as shown in Fig. 4, the 
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measurement is performed in a total of 230 zones, with 51 zones in the port and starboard area 

each and 128 zones in the bottom area.  

In the next step, measuring instrument should be calibrated using calibration plate as 

shown in Fig. 5 just before measurement. Also set the measuring length of 𝑅𝑡 . After 

measurement, send the measuring data to PC and calculating the 𝑀𝐻𝑅 and 𝐴𝐻𝑅.  

 

 
Fig. 3  Measurement process of hull roughness 

 

 

(a) Side (Port and Starboard) 

 
(b) Bottom 

Fig. 4  Measurement zones for the hull roughness 

 

 
Fig. 5  Calibration plate of hull roughness gauge(DC-9000) 
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3. Measurement result 

As shown in Fig. 6, the measurement of the ship was performed on the floating dock, with 

the final painting completed before launching, using a mobile crane in the side area. The 

calibration of measurement instrument was performed according to the manual before 

measurement. The measurement was performed by two personnel for measuring the bottom 

area and side area and took approximately 4 hours.  

 

  

Fig. 6  Measurement of hull roughness 

The measurement results are shown in Fig. 7 and summarized in Table 4. 

The minimum value of the 𝑅𝑡(50) measured in the port area is 23𝜇𝑚 and maximum value 

is 386𝜇𝑚. Using the results of ten 𝑅𝑡(50) values, excluding the maximum and minimum values 

in each zone, the minimum 𝑀𝐻𝑅 is 51𝜇𝑚 and maximum 𝑀𝐻𝑅 is 241𝜇𝑚. In this case, the 

zones where the maximum and minimum values are measured are shown in Fig. 8 (a).  

The minimum value of the 𝑅𝑡(50) measured in the starboard area is 19𝜇𝑚 and maximum 

value is 384𝜇𝑚. Based on the measured results, the minimum and maximum 𝑀𝐻𝑅 is 51𝜇𝑚 

and 241𝜇𝑚, respectively, when calculating the 𝑀𝐻𝑅 for the port area. In this case, each zone 

where the maximum and minimum values are measured is shown in Fig. 8 (b).  

The minimum value of the 𝑅𝑡(50) measured in the bottom area is 16𝜇𝑚 and maximum 

value is 317𝜇𝑚, which are relatively small compared to the results of the side areas (port and 

starboard). The minimum 𝑀𝐻𝑅 is 38𝜇𝑚, and the maximum 𝑀𝐻𝑅 is 214𝜇𝑚. This is because 

the bottom area is relatively flat compared to the side areas. At this time, each zone where the 

maximum and minimum values are measured is shown in Fig. 8 (c). 

The 𝐴𝐻𝑅  using the 𝑀𝐻𝑅 of each zone is 101𝜇𝑚 for the port area and 81𝜇𝑚 for the 

starboard area, showing that that the latter is approximately 20% lower than that of the former. 

Additionally, the bottom area has an 𝐴𝐻𝑅 of 73𝜇𝑚, which is approximately 20% lower than 

the average of 91𝜇𝑚 for the side area. Finally, the 𝐴𝐻𝑅 of the 160m class car ferry, obtained 

by combining the results of the side area and bottom area, is 81𝜇𝑚. Although this value is 

approximately 46% lower than the ISO-based 150𝜇𝑚 hull roughness of a new ship, it is still 

within the range of 80-150𝜇𝑚 as suggested by Hudson et al. [18] for the hull roughness of a 

new ship. 

 

Table 4  Summary of the hull roughness measurement  

Area Roughness (𝜇𝑚) 
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Minimum 

𝑅𝑡(50) 

Maximum 

𝑅𝑡(50) 
Minimum 

𝑀𝐻𝑅 

Maximum 

𝑀𝐻𝑅 
𝐴𝐻𝑅 

Port 
23 

(P-49) 

386 

(P-46) 

51 

(P-18) 

241 

(P-47) 
101 

Starboard 
19 

(S-44) 

384 

(S-21) 

34 

(S-41) 

212 

(S-21) 
81 

Bottom 
16 

(B-85) 

317 

(B-122) 

38 

(B-54) 

214 

(B-122) 
73 

Total - - - - 81 

 

 

(a) 𝑅𝑡                                            (b) 𝑀𝐻𝑅 

Fig. 7  Results of the hull roughness measurement 

 

 
(a) Port 
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(b) Starboard 

 
(c) Bottom 

Fig. 8  Location of the maximum and minimum  

 

To confirm the reliability of the measurement results, a measurement uncertainty analysis 

was performed according to ISO guidelines ([19]).  

The measurement uncertainty was calculated by applying two evaluation methods. The 

A-type evaluation method calculates the standard uncertainty by statistically processing the 

measurement results using the data from repeated measurements. The B-type evaluation 

method calculates the standard uncertainty by using specifications of the measurement 

equipment. Here, the accuracy of the instrument used in calculating the B-type standard 

uncertainty was ± 5𝜇𝑚 as specified in Table 2 and the standard uncertainty was calculated 

assuming a rectangular distribution. 

For each calculation, the A-type standard uncertainty is 2.356𝜇𝑚 and B-type standard 

uncertainty is 2.887𝜇𝑚. The standard uncertainty of each is obtained using the root sum square 

method (RSSM), and the combined standard uncertainty(𝐶. 𝑆. 𝑈) is also calculated by eq. (3).  

The expanded uncertainty is calculated assuming a 95% confidence level (k =2) for the 

final obtained standard uncertainty, and the result is 7.453𝜇𝑚. Therefore, the 𝐴𝐻𝑅 of the 160m 

class car ferry, which is measured in this study, is 81±8𝜇𝑚  considering the measurement 

uncertainty. 

2 2. .C S U a b= +  (3) 

In addition, to determine the effect of the number of zones, 𝐴𝐻𝑅 was calculated using 

arbitrary 50, 100, 150, and 200 zones out of 230 𝑀𝐻𝑅 data. For this, a random function was 

used for the data extraction, and data was extracted 100 times in each case. 

As shown in Table 5, the minimum 𝐴𝐻𝑅 increases and maximum 𝐴𝐻𝑅 decreases as the 

number of 𝑀𝐻𝑅 increases from 50 to 100. However, when the number of zones is more than 

100, the variation is not significant, and tends to converge. Therefore, to ensure the accuracy of 

the measurement results, 50 zones are not sufficient, instead at least 100 zones should be 

measured. 

 

Table 5  Evaluation results with MHR number 

Number of 𝑀𝐻𝑅 Minimum 𝐴𝐻𝑅 

(𝜇𝑚) 

Maximum 𝐴𝐻𝑅 

(𝜇𝑚) 

Average 

(𝜇𝑚) 

50 70 92 80 



   

A Fundamental Study on Measurement of Hull Roughness Jun Seok, Jong-Chun Park. 

 

67 

 

100 75 90 81 

150 76 88 81 

200 75 88 81 

 

The measured hull roughness results were used to estimate the resistance performance at 

the designed speed. For the resistance estimation, a frictional resistance estimation method 

considering the hull roughness of the ITTC-57 method and Townsin [20] is used as expressed 

in eq. (4), and each coefficient is calculated according to eq. (5)-(7). 

𝐶𝑇 = 𝐶𝐹 + 𝐶𝑅 + 𝐶𝐴 + ∆𝐶𝐹        (4) 

2
10

0.075

(log 2)
F

e

C
R

=
−

         (5) 

3(5.86 0.6log 10A eC R −= − )         (6) 

∆𝐶𝐹 = {[44 (
𝐴𝐻𝑅

𝐿𝑃𝑃
)

1
3⁄

− 10 × 𝑅𝑒

1
3⁄

] + 0.125} × 10−3    (7) 

Above, 𝐶𝑇  is the total resistance coefficient, 𝐶𝐹  is the frictional resistance coefficient, 

which is calculated using the Reynolds number by eq. (5), and 𝐶𝑅 is the residual resistance 

coefficient, which is used to refer to the model test results. 𝐶𝐴 is the model-ship correlation 

factor and ∆𝐶𝐹  is the frictional resistance increase due to the surface roughness. 𝑅𝑒  is the 

Reynolds number and 𝐿𝑃𝑃 is the length between perpendiculars.  

The calculation results are listed in Table 6. The residual resistance coefficient is 

determined from towing tank test. ∆𝐶𝐹 is approximately 15% smaller than the 150𝜇𝑚 value 

considered as the hull roughness of a new ship. Also 𝐶𝑇 decreases by approximately 2%. 

 

Table 6  Total resistance calculation result depending on hull roughness 

Velocity 

(knots) 

𝐴𝐻𝑅 

(μm) 

𝐶𝐹 

(E-03) 

𝐶𝑅 

(E-03) 

𝐶𝐴 

(E-03) 

∆𝐶𝐹 

(E-03) 

𝐶𝑇 

(E-03) 

21 
81 

2.640 1.157 0.193 
0.476 4.806 

150 0.558 4.888 

 

4. Conclusion 

In this study, the hull roughness measurement was performed on the 160m class car ferry 

using the hull roughness gauge of the TQC company, and the painting of the ship was completed 

before launching. For measurement, the entire area was divided into a total of 230 zones 

consisting of 102 zones on the sides (Port 51, Starboard 51) and 128 zones on the bottom area.  

Consequently, the maximum and minimum 𝑅𝑡(50) of the port and starboard areas were 

found to be measured similarly, but the 𝐴𝐻𝑅 showed approximately 20% difference. This was 

because the zones of the port area and starboard area were similar but could not perfectly match 

the measurement area. For the bottom area, the 𝑅𝑡(50) and 𝐴𝐻𝑅 were relatively low compared 

to the values for the side areas (port and starboard), with the 𝐴𝐻𝑅  of the former being 
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approximately 20% lower than the average of the side area. This was considered to be because 

the bottom area was relatively flat compared to the side areas. 

The uncertainty of the measurement was analyzed according to ISO guidelines. The 

uncertainty of the measurement was analyzed by considering the standard uncertainty of the 

measurement values and equipment specification. Also these were combined using RSSM 

method and assuming a 95% confidence level. Finally, the 𝐴𝐻𝑅 of the ship by considering the 

uncertainty of the measurement was 81±8𝜇𝑚, which was smaller than the hull roughness 

(150𝜇𝑚) proposed by the ISO guidelines [2]. However, it was in the roughness range from 80 

to 150𝜇𝑚 as suggested by Hudson et al. [18]. Using the measured 𝐴𝐻𝑅, 81𝜇𝑚, the resistance 

performance at the design speed of the ship was estimated, which showed that the total 

resistance was reduced by approximately 2% compared with the 𝐴𝐻𝑅 of 150𝜇𝑚 owing to the 

decrease in ∆𝐶𝐹. 

As mentioned above, the measurement of the hull roughness of a ship is not an essential 

requirement. However, it should be performed to accurately estimate ship performance. This is 

because decreasing the hull roughness of a ship could reduce the ship's total resistance as this 

study shows. Also it is the one of best ways to reduce fuel oil consumption and carbon dioxide 

emission from vessel. However, once the ship is launched, there is no way to directly measure 

the hull roughness without dry-docking, so the measurement should be carried out before 

launch. 

It is expected that the hull roughness of a new ship is lowered compared to that of past 

ships owing to the improvement in painting and painting skills. However, in this study, this 

makes it difficult to compare the hull roughness of this one ship with that proposed by the ISO 

considering various factors such as paint type and vessel type. Moreover, it is difficult to 

generalize the roughness of all ships using the roughness measurement of the ship performed 

in this study, and further measurement and related studies on various ship types and ships are 

required. However, in the future, we could expect that various studies will be performed based 

on the results of this measurement. 
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