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Summary 

The infinite depth free surface Green function (GF) and its high order derivatives for 

diffraction and radiation of water waves are considered. Especially second order derivatives are 

essential requirements in high-order panel method. In this paper, concerning the classical 

representation, composed of a semi-infinite integral involving a Bessel function and a Cauchy 

singularity, not only the GF and its first order derivatives but also second order derivatives are 

derived from four kinds of analytical series expansion and refined division of whole calculation 

domain. The approximations of special functions, particularly the hypergeometric function and 

the algorithmic applicability with different subdomains are implemented. As a result, the 

computation accuracy can reach 10-9 in whole domain compared with conventional methods 

based on direct numerical integration. Furthermore, numerical efficiency is almost equivalent 

to that with the classical method. 

Key words: Green function; high-order derivatives; refined subdomains; series expansion 

1. Introduction 

The wave loads on fixed structures and the oscillatory motions of vessels free to response 

to the waves are common problems to be solved in ocean engineering. For ideal flow-field and 

based on sufficiently small motion assumption, the free surface GF is of remarkable 

significance in solving those problems with boundary element method. 

As to frequency domain, there are generally different categories of Green function 

according to whether or not the harmonically time dependent unit source beneath a free surface 

is translating, and whether the water depth is finite or infinite. It should be noted that one 

concentrates on only the frequency domain infinite depth GF without translating. The 

evaluation of free surface GF and its derivatives is a complicated mathematical issue, especially 

the second order derivatives, which are very necessary in high-order panel method. 

Free surface GF was known to us because of the work of John [1]. There are several 

different style of mathematical representations [2] for GF. Noblesse [3] advocated the two parts 

of the GF, which were the so-called near-field and far-field representations. On the basis of that, 

linear table interpolation fast method was proposed by Ponizy et al. [4], which gave a precision 

of 10-5. In 2017, Wu et al. [5] further proposed simple approximations to the local flow 

components of GF and its first order derivatives without discussion about the calculation error. 
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As to a representation which was in terms of a semi-infinite integral involving a Bessel function 

and a Cauchy singularity, Newman [6] developed the classical fast combined method with 

analytical series expansions and multi-dimensional polynomial approximations, which was 

applied in the notable hydrodynamic analysis code-WAMIT finally. Consequently, Wang [7] 

outlined a refined method with refined forty eight subdomains and Chebyshev polynomial 

giving the 10-5 precision, Zhou et al. [8] implemented a method which minimized the number 

of the above subdomains to twenty five. Method with Gaussian integral proposed by Yao et al. 

[9] reached 10-6. In 2016, new series expansions for different subdomains are proposed by Duan 

et al. [14], therefore, a method with five subdomains was proposed to evaluate the second order 

derivatives of GF. However, their studies may be more reasonable if they had considered better 

divisions of the domain, and the calculation of special functions, which would affect the 

computational accuracy and efficiency finally. As to the other representations of GF, in 2004, 

Peter et al. [10] proposed the eigenfunction expansion method in which the truncation terms 

number should reach not less than 60 in order to obtain 10-6 precision. In 2011, Elia et al. [11] 

advocated a semi-analytical method that divided the integral into two terms, an adaptive 

quadrature was used for the regular term, and the singular term was completed by an 

approximation function. Clement [12] introduced the pioneering method using classical fourth-

order Runge–Kutta method to solve a second-order ordinary differential equation of frequency-

domain GF. Similarly, in 2015, Shen et al. [13] proposed another method combing Numerov 

type method with Power-series method to solve this second-order ordinary differential equation. 

To the best of the authors’ knowledge, however, most of the above methods can give the 

accuracy of 10-5 to 10-6, and few investigations have been done on the second order derivatives 

of GF, which are the prerequisite of high-order panel method. 

In this paper, one focuses on investigating the classical representation of free surface GF, 

composed of a semi-infinite integral involving a Bessel function and a Cauchy singularity. One 

outlines four kinds of representations of series expansion and furthermore acquires the refined 

subdomains of the whole calculation domain of physical importance. Compared with 

conventional direct methods based on numerical integration, which are implemented with 

Romberg integral method to achieve double precision result, the new method for the calculation 

of GF and its high order derivatives can give the precision of 10-9 in every single point of 

calculation domain. Furthermore, the numerical efficiency is almost equivalent to that derived 

from the classical method [6]. All the functional parts, including all the special function, are 

coded in Intel visual Fortran 2013 version, which is portable on many machines. 

2. Green function and its derivatives 

Firstly one considers a pulsing source point ( , , )q    , an image point ( , , )q    of the 

source point relative to the free surface, and a field point ( , , )p x y z  as Fig. 1 showing. The 

source point and the field point both are lying in the negative half-plane. Z  is the vertical 

distance between field point and image source point. r  is the horizontal distance between these 

two points, pqR is the distance between them, pq
R is the distance between field point and image 

source point. 

Where Z z   ,    
2 2

r x y     .  
22

pqR r z    , 
2 2

pq
R r Z   

The following expression [1] is the complex GF of infinite depth water in frequency 

domain  

   00
0 0 0 0

0
0

1
( , ) P.V. 2

k ZkZ

pq

k k
G p q e J kr dk i k e J k r

R k k







 

  (1) 
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Where
2

0k g is wave number,   is wave frequency, g  is the gravitational 

acceleration, 0J is zero-order Bessel function of the first kind, P.V. means principal value of 

the integral.  0

0 0 02
k Z

i k e J k r is related to time exponential item i te  ,  0

0 0 02
k Z

i k e J k r is 

related to time exponential item i te  . 

 
Fig. 1 Layout and notations of field and source point 

Substituting the identity  0
2 2 0

1 1 kZ

pq

e J kr dk
R r Z



 


  into Equation (1), yields, 

   00
0 0 0 0

0
0

1 1
( , ) 2 2

k ZkZ

pq pq

k
G p q e J kr dk i k e J k r

R R k k




   
  (2) 

Defining
0X k r ,

0Y k Z  ,
0/t k k . 

Then these two coordinates of X and Y may take on all positive values, one quadrant of a two-

dimensional plane should be considered. The equation (2) may be written in the form 

   0 0 0

1 1
( , ) , 2 Y

pq pq

G p q k F X Y i k e J X
R R

 

     (3) 

Where 

 0
0

1
( , ) 2

1

YtF X Y e J Xt dt
t




  (4) 

The elementary singularity 1 1pq pq
R R and imaginary part  0 02 Yik e J X 

can be 

implemented maturely with numerical or analytic method. So the issue has been translated from 

the evaluation of ( , )G p q  and its derivatives to those of ( , )F X Y . 

Taking further treatment to infinite integration [6, 8] of equation, yields, 

   
1 2

2 2

0 0
0

( , ) 2 ( ) ( )
Y

t Y YF X Y X t e dt e H X Y X


       (5) 

From equation (5), one can derive the following first and second order partial derivatives of 

function ( , )F X Y with respect to independent variable X andY : 



Penghao Shan, Jiemeng Wu Highly Precise Approximation of Free Surface Green 

Function and Its High Order Derivatives Based on Refined Subdomains 

56 

   
3 2

2 2

1 1
0

( , )
2 ( ) ( ) 2

Y
Y Y t YF X Y

e e H X Y X X X t e dt
X




  
     

   (6) 

( , ) 2
( , )

F X Y
F X Y

Y R


  


 (7) 

 

2

0 2 0 22

5 2
2 2 2 2

0

( , ) 2
( ) ( ) ( ) ( )

2 3

2 ( 2 )

Y

Y
t Y

F X Y X
e Y X Y X H X H X

X

X t t X e dt










  
       

  

 (8) 

2

2 3

( , ) 2 2
( , )

F X Y Y
F X Y

Y R R


  


 (9) 

2

3

( , ) 2 ( , )F X Y X F X Y

X Y R X

 
 

  
 (10) 

Where 2 2 2R X Y  , ( )nH X  is the n-th order Struve function, n ( )J X  is the n-th order Bessel 

function of the first type, n ( )Y X  is the n-th order Bessel function of the second type. 

Here one can find that ( , )F X Y Y   and 2 2( , )F X Y Y  , 2 ( , )F X Y X Y    are related 

to ( , )F X Y , ( , )F X Y X   respectively. So if the calculation of GF and its derivatives are 

based on Equation (5), the calculation emphasis is the evaluation of ( , )F X Y , ( , )F X Y X  , 
2 2( , )F X Y X  . 

Besides, the special function of Struve function, Bessel function of first order and Bessel 

function of second order have the following identity [15] which will be implemented in the 

latter manipulation. 

1
2 0

2 ( )
( ) ( )

Y X
Y X Y X

X
  ; 

(1)

0 1( ) ( )Y X Y X  ；  (1)

1 0 2

1
( ) ( ) ( )

2
Y X Y X Y X   

1
2 0

2 ( )
( ) ( )

J X
J X J X

X
  ; 

(1)

0 1( ) ( )J X J X  ；  (1)

1 0 2

1
( ) ( ) ( )

2
J X J X J X   

1
2 0

2 ( )2
( ) ( )

3

H XX
H X H X

X
   ;

(1)

0 1

2
( ) ( )H X H X


  ；

(1)

1 0 2

1 2
( ) ( ) ( )

2 3

X
H X H X H X



 
   

 
 

( ) ( )m

nY X  is the m-th order derivatives of Bessel function of the second type. 
( ) ( )m

nH X  is the 

m-th order derivatives of Struve function. 
( ) ( )m

nJ X  is the m-th order derivatives of Bessel 

function of the first type. 

Furthermore, without loss of generality and ambiguity, here one assumes that the ( , )F X Y  

represents the GF in the latter discussion. 

3. Series Expansion Method 

The division of the whole domain of physical importance is the important precondition 

of numerical evaluation of GF, in this paper which is derived from different kinds of Series 

Expansion Method (SEM). In this part, considering the different location of X and Y in the XY 
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two-dimensional plane, one primarily outlines four different kinds of SEM. On the basis of 

these kinds of SEM, the refined boundary of the whole domain is discussed in the latter part. 

3.1 SEM1 

When X is relatively small beside Y axis,  0J Xt can be expanded as the following 

identity in even powers of Xt : 

 

 

2

0 2
0

1
( )

2!

n n

n

Xt
J Xt

n





  
  

 
  

Substituting the above equation into equation (4), and after successive partial integration, yields, 

 

 

 
 

 

 
 

2 2

2 0
0

2 2

2
1 1

1
( , ) 2

2 1!

1 1 !
2 2

2!

n n n
Yt

n

n n n
Y Y

m
n m

X t
F X Y e dt

tn

mX
e Ei Y e Ei Y

Yn

 





 

 

  
  

 

   
    

   

 

 

 (11) 

 Ei Y  is the exponential integral function. From equation (11), one can obtain the 

following partial derivatives of function ( , )F X Y with respect to X and Y . 

 
 

 
 

2 2

2
1 1

1 !1
( , ) 2 2

4!

n
n

Y Y

m
n m

mX
F X Y e Ei Y e Ei Y

Yn


 

 

  
      

   
   (12) 

 

 
 

1
2 2

2
1 1

1 !( , )

4!

n
n

Y

m
n m

mF X Y n X
X e Ei Y

X Yn






 

  
      

    
   (13) 

 
 

 
2 2

1 1

2 1
1 1

( , ) 1 !
2

4!

n
n

Y Y

m
n m

F X Y X m
e Ei Y Y Y e Ei Y

Y Yn


   


 

   
             

 

 (14) 

 

 

 
 

1
2 2 2

22
1 1

2 1 1 !( , )

4!

n
n

Y

m
n m

n n mF X Y X
e Ei Y

X Yn






 

    
     

    
   (15) 

  

 

 
 

2
1 2

2

2 2
1 2

2 2
1 1

( , )
2

1 !1
2

4!

Y

n
n

Y

m
n m

F X Y
e Ei Y Y Y

Y

mX
Y Y e Ei Y

Yn

  


  


 


    



  
     
   

 
 (16) 

 
 

1
2 2 2

1

2 1
1 1

( , ) !

4!

n
n

Y

m
n m

F X Y n X m
X Y e Ei Y

X Y Yn




 


 

   
      

    
   (17) 

Here, all these equations are consist of a double infinite series with positive powers of X
and negative powers of Y , one can implement equations (12)~ (17) to approximate the GF 

( , )F X Y and its derivatives. 
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3.2 SEM2 

To some extent, this SEM works when X  and Y  is moderate value, relative to the other 

3 SEM. The following identity exists [14]: 

   
1 2 1 2

2 2 2 2

0 0

1
=

Y Y
t tX t e dt X t e dt

X X

 
    (18) 

So the evaluation will be very convenient if one can makes the integral part of equation 

(5)~(10) to be expressed with  
1 2

2 2X t or  
1 2

2 2X t


 . So (6) and (8) can be transformed as 

follows. 

As to the integral part of equation (6), Making twice trigonometric substitutions 

( tant X  ) and partial integration, after some tedious manipulations, yields, 

   
3 2 1 2

2 2 2 2

0 0

1Y Y
t Y Y t YY R

X X t e dt e X t e dt
XR X X


          

Substituting the above equation into equation (6), thus,  

   
1 2

2 2

1 1
0

( , ) 2 2 2
( ) ( )

Y
Y t YF X Y Y R

e H X Y X X t e dt
X XR X X

  
     

   (19) 

The same careful manipulations can be taken with equation (8), it becomes 

 

   

   

5 2
2 2 2 2

0

3
3 2 1 2

2 2 2 2 2

2 3 2 2 0 0

3 2
1 2 1 2

2 2 2 2 2

2 3 2 2 2 0 0

2 ( 2 )

2 2
2

2 2 2
2

Y
t Y

Y Y
t Y t Y

Y
Y Y

t t

X t t X e dt

Y Y
tX X t e dt t X t e dt

X R X R X

Y Y Y e
X X t e dt X t e dt

X R X R X R X




 
 




 

             

              



 

 

 

Substituting the above equation into equation (8), thus, 

   

2

0 2 0 22

3 2
1 2 1 2

2 2 2 2 2

2 3 2 2 2 0 0

( , ) 2
( ) ( ) ( ) ( )

2 3

2 2 2
2

Y

Y
Y Y

t t

F X Y X
e Y X Y X H X H X

X

Y Y Y e
X X t e dt X t e dt

X R X R X R X










  
       

              
 

 (20) 

So one arrives at the required expression about ( , )F X Y , ( , )F X Y X  , and

2 2( , )F X Y X   containing  
1 2

2 2X t


 or  
1 2

2 2X t . In this SEM, kernel of the issue is the 

evaluation of the equation (5), (19) and (20).  

Furthermore, one introduces the following identity: 

 
1 2

2 2

2 20

X u
X t du t

u t
  


  

Then after some manipulations, yields, 

 
1 2

2 2

2 20 0 0
+ 1

Y Y X
t t Y Yu

X t e dt e dt du Ye e
u t

   


    



Highly Precise Approximation of Free Surface Green Penghao Shan, Jiemeng Wu 

Function and Its High Order Derivatives Based on Refined Subdomains 

59 

 

 
Fig. 2 Four integral parts of u-t two-dimensional plane 

For the convenient evaluation of the above equation, One introduces the coordinate 

substitution cosu r  , sint r  , the integral range about X and Y that is divided into the 

following four parts [14], is illustrated as fig. 2. 

 

 

 

 

 

 

 

 

1 2

0 0

3 4

0 0

0, ,
: :

0, arccos ,

0, ,
: :

, 2 ,arcsin

r X r X R

X r

r Y r Y R

Y r

   

    

   
 

   

   
 

   

 

 

 
Where 0 arcsinY X  . 

After some manipulations of integration on the four parts, one obtains  

 

 

1 2 3 4

2 2

1 2
2 2

2 20

1

t
Y

Y t Y

R
Y Y Y Y Y r X

X

ue
e X t e dt e dudt

u t

e Ye e R Xe e e dr

 

   

 
      

     

    

    



 (21) 

One makes substitution t r X to the integral part of the above equation, and implements 

the Taylor expansion to 
2 1te   in 2 1 0t   , thus  

 
2 2

1
2

2

1
0

1
!

n
R R X n

Y r X Y

X
n

X
e e dr e t dt

n


  



    (22) 

Then utilizing the definition of Gauss hypergeometric function  2 1 , , ,F a b c z [15], one finds 

 
2

2
2

2 1 21

1
2 1 32

1 Re , , ,
32 2 2 2

2

n
R X n

n

i R n R
t dt F

n X X



   
             

          

  (23) 

Where  z is the Gamma function. Meanwhile, one introduces the following two identities. 
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1 1
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i X
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





 
  
   

 
 
 

  (24) 
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   1 1

2
H X H X


    (25) 

Substituting equation (23) (22) (24) (25) into (21), one has  
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1
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Y
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  
   
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
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 (26) 

Considering equations (18) (26) and the following identity 
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After some careful manipulations, one has  
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 (27) 

Substituting equation (26) into (19), (27) into (5), (26) (27) into )(20) respectively and 

using the relation of special functions presented earlier, one gets  
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
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  
   

   


 (30) 

Finally, one arrives at the required expressions (28) (29) (30) (7) (9) (10) with which the 

evaluation can be implemented. 

3.3 SEM3 

When X is not very small and X/Y is less than 2, one implements the Taylor expansion 

to  
1 2

2 2X t


 in 2 0t  , thus 
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   1 2
2 2 2

2 1
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1 2 1 !!1

2 !
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X t t

X n X





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 
       

Substituting the above equation into the integral part of (5), and exchanging the order of 

integration and summation, yields 
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 (31) 

Where   2

0
C

Y
n t Y

n Y t e dv   

Successive partial integration of the right integrals of  Cn Y  yields the recursion formula 

     2 2 1

1C 2 2 2 1 Cn n

n nY Y nY n n Y

     

Where  0C 1 YY e  . 

Substituting equation (31) into (5), one has 
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From equation (32), one can achieves the derivatives of function ( , )F X Y with respect to 

X andY , and simplifies those equations with the former special function identity, thus 
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 (34) 

Finally, the evaluation can be implemented with the required expressions (32) (33) (34) 

(7) )(9) (10). 

3.4 SEM4 

When X and Y are all not very small, One makes substitutions , 1u t Y v u    to the 

integral part of (5), thus 
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2 2 2

20 1
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Y
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 
   (35) 
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Then implementing the Taylor expansion to  
1 2
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2
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R
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Substituting the above equation into (35), and exchanging the order of integration and 

summation, yields 
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Where    
0
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Successive partial integration of the right integrals of  n Y  yields the recursion formula 
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Substituting equation (36) into (5), yields 
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Similar to the subdomain 3, one has 
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Finally, one obtains the required expressions (37) (38) (39) (7) (9) (10) with which the 

evaluation can be implemented. 
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4. Numerical Results and Discussion 

From final identities of all the above four kinds of SEM, one concludes that there are two 

evaluating emphases to be accomplished. One is accurate and efficient approximations of those 

special functions, which are 0 ( )Y X , 1( )Y X , 0 ( )J X , 1( )J X , 0 ( )H X , 1( )H X ,  Ei Y ,

 2 1 , , ,F a b c z , the other is the exact division of the whole domain of physical importance. 

For convenient comparison, there are four kinds of different methods. The first kind 

method [14] is called M1, which will be used to the comparison of computational precision. M2 

stands for the classical fast method [6]. The third method derived from equations (5) (6) (7) (8) 

(9) (10), called Mpre, is the direct numerical method, which can provide double precision result 

employing Romberg integral method. The last method from this paper is called Mnew. One 

benchmarks the corresponding numerical errors of M1 and Mnew against the Mpre results, with 

the representations E1=|M1-Mpre| and Enew=|Mnew-Mpre|.  

The notations T1, T2, Tpre and Tnew represent the computational time of M1, M2 and Mpre, 

Mnew respectively. Although X and Y may take on all positive values, without loss of generality 

one assumes that for error analysis, calculation range of X and Y is up to 40, in which the step 

length of X and Y is 0.2, and that for efficiency analysis, calculation interval of X and Y is (0, 

500] with variable step lengths, which are 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 respectively. 

The constant range of X-Y plane with changeable step length is corresponding to one certain 

wetted surface with different number of discrete panel elements. The following numerical 

calculations were performed on a desktop computer (Microsoft Windows 7, 64 bit, Intel Core 

i5-5200 2.2 GHz/ 4 core, 4 GB implementation memory). 

4.1 A note on the approximations of special functions 

Efficient approximations of 0 ( )Y X , 1( )Y X , 0 ( )J X , 1( )J X  are derived from rational 

functions [16], which are theoretically accurate to at least 18 significant decimal digits. The fast 

calculation method about 0 ( )H X , 1( )H X is proposed by Zhang et al. [17], with precision up to 

10-15. The rational Chebyshev approximation [18] of Ei(Y) has maximal relative errors as low 

as from 8×10-19 to 2×10-21. Relative to the above special functions, numerical computation of 

the Gauss hypergeometric function  2 1 , , ,F a b c z is a challenging task [19][20]. Here one 

introduces a fast and accurate computation method of this function [19]. 

Furthermore, the computational efforts of all these special functions are also acceptable, 

outlined in Table 1 (the consumed time is for one time, which is the average computational 

efforts from 105 times calculation of the special function). It can be found that the calculation 

of Gauss hypergeometric function is a little time-consuming, compared with those of other 

special functions. 

Table 1 Computational efforts of special functions 

Special function Consumed time/ s/once Special function Consumed time/ s/once 

2F1 1.42×10-5 Y0 3.00×10-7 

Ei 2.00×10-7 Y1 2.00×10-7 

J0 1.00×10-7 H0 4.00×10-7 

J1 1.00×10-7 H1 3.00×10-7 

4.2 The refined division of four subdomains 

Generally, exact division of the domain is closely related to the calculation precision and 

efficiency under appropriate SEM. In this paper, the algorithmic applicability with different (X, 

Y) and constant truncated number of each SEM is outlined on the X-Y two-dimensional plane. 
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Furthermore, the exact division and different truncated number of SEM is derived from the 

balance between calculation precision and efficiency. 

Firstly, one derives the representative numerical Enew of ( , )F X Y  with constant truncated 

numbers (N1=15, N2=35, N3=13, N4=15 respectively) of each SEM. 

From Fig 3(1), it can be clearly found that SEM1 is available when Y/X is more than 2.0 

in one quadrant of the two-dimensional X-Y plane. Fig. 3(2) illustrates that the approximation 

of the square region (when X is less than 10 and Y is less than 11) can be derived from SEM2. 

Fig. 3(3) shows that SEM3 is suitable when X/Y is more than 2.0 and X is more than 6.5. From 

Fig. 3(4) one can conclude that SEM4 can be applied to the whole zone except when X is less 

than 11.0 and Y is less than 31.0.  

  

(1) Numerical Enew of SEM1 with N1=15 (2) Numerical Enew of SEM2 with N2=35 

  

(3) Numerical Enew of SEM3 with N3=13 (4) Numerical Enew of SEM4 with N4=15 

Fig. 3 Algorithmic applicability of each SEM with constant truncated number 

However, from the computational efficiency of special functions presented earlier, one 

believes that efficiency sorting order of these four SEM is: SEM1  SEM3> SEM4> SEM2, as 

to exact division of the whole domain, the above coarse result is far from enough. Consequently 

based on the general consideration for three aspects, which are the efficiency difference 

between these SEM, the computational error control of transitional region (especially the exact 

boundary of the SEM2), the balance between the calculation precision and efficiency of the 

whole domain, one outlines the refined boundary and truncated number of infinite series for 

each SEM as follows. 
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Fig. 4 Refined boundary and truncated number of infinite series for each SEM. 

In Fig. 4 of X and Y coordinate plane, the Di is shorted for subdomain i (i=1, 2, 3, 4), Ni 

stands for the truncated number of infinite series for subdomain i (i=1, 2, 3, 4). The boundaries 

of the whole calculating domain are Y/X=2, Y=15, X=9.5, X=6.5, and X/Y=2. With the desired 

accuracy as the precondition, for the sake of efficiency, D1, D2, D4 is re-divided into different 

zones. It must be pointed out that this introduction of the re-division for D1, D2 and D4 with 

different truncated number did not increase computational efforts in practice compared those 

derived from selection of evaluation algorithm.  

D1 is re-divided into two zones with different truncated number of infinite series, its 

following boundary is Y=14 and Y=17, with truncated number N1=15 and N1=19 respectively. 

D2 is re-divided into four zones with different truncated number of infinite series, its following 

boundary is Y=6 and x=4.5, Y=8 and X=7.5, and Y=11. The truncated number of these four 

zones are N2=26, N2=30, N2=36, and N4=42 respectively. D4 is re-divided into two zones with 

boundary X=14, the truncated number of these two zones are N4=20, N4=15 respectively. 

4.3 Numerical results of Green function and its derivatives 

  

Fig. 5 Numerical E1 of ( , )F X Y with M1 Fig. 6 Numerical Enew of ( , )F X Y  with Mnew 

Fig. 5 shows numerical E1 for ( , )F X Y with M1. One finds that M1 can obtain the accuracy 

of 10-9 in some area, not covering the whole domain. The precision of some sizeable areas is 

about 10-6~10-8. The numerical results also shows that there are actually some areas with the 

precision of 10-2~10-5, to some extent, which is not sufficiently accurate for computational 
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application, such as for the wave-induced motions, forces, and resistance [21]. However, Fig. 

6 gives numerical Enew for ( , )F X Y . It can be obviously concluded that precision of all the 

evaluating points with different X and Y from the whole domain can reach at least 10-9, which 

is due to the proper SEM, the highly precise approximation of special function and refined 

subdomain division. The same results can be found in Table 2, which is the comparison of 

numerical results between M1 and Mnew. 

Table 2 Comparison of numerical error for F(X,Y) between M1 and Mnew 

X Y E1 Enew X Y E1 Enew 

0.8 0.8 0.00×100 0.00×100 8.2 13 3.34×10-10 3.34×10-10 

0.8 5 8.99×10-15 0.00×100 8.2 15 3.67×10-10 3.67×10-10 

0.8 10 5.57×10-12 0.00×100 8.2 18 1.68×10-7 2.50×10-10 

0.8 13 1.85×10-8 0.00×100 21 0.8 1.06×10-12 1.06×10-12 

0.8 15 1.10×10-6 0.00×100 21 5 1.60×10-14 1.58×10-14 

0.8 18 1.29×10-4 0.00×100 21 10 1.94×10-15 0.00×100 

8.2 0.8 1.00×10-13 6.99×10-15 21 13 0.00×100 5.09×10-15 

8.2 5 1.17×10-8 1.24×10-12 21 15 0.00×100 2.11×10-14 

8.2 10 4.14×10-10 1.01×10-11 21 18 1.62×10-9 8.62×10-14 

 

  

Fig. 7 Numerical Enew of ( , )F X Y X   Fig. 8 Numerical Enew of 
2 2( , )F X Y X   

As a result, Fig. 7 and 8 show that evaluations of the first and second order derivatives of 

GF can also obtain a precision of 10-9 at least under Mnew presented earlier. Furthermore, one 

can rationally expect satisfactory calculation results of GF other derivatives due to the 

relationship of equations (6) (7) (8) (9) (10). 

In addition, the computation time is also acceptable. Efficiency of the new method is 

compared with that of the rest three methods. From Table 3, one finds that T1, T2, Tnew have the 

same order of magnitude, which are much less than Tpre derived from the direct integration. 

Except from Tpre, Tnew is more approximate to T2. 
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Table 3 Comparison of the computational efforts between four methods 

Step Length T1 /s T2 /s Tpre /s Tnew /s 

0.10 9.03 7.01 585.61 8.41 

0.15 3.86 2.88 259.28 3.79 

0.20 2.27 1.66 143.02 2.18 

0.30 0.96 0.76 64.72 0.90 

0.40 0.54 0.42 35.56 0.51 

0.50 0.36 0.26 22.80 0.35 

0.60 0.25 0.20 15.87 0.23 

0.70 0.17 0.14 11.72 0.16 

0.80 0.15 0.11 8.95 0.14 

  

(1) ( , )F X Y  (2) ( , )F X Y X   

  

(3) ( , )F X Y Y   (4) 
2 2( , )F X Y X   

  

(5) 
2 2( , )F X Y Y   (6) 

2 ( , )F X Y X Y    
Fig. 9 Change trends of GF and its derivatives when X and Y is up to 40 
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Fig. 9 shows that along the X direction, which is also the propagation direction of the 

surface wave, the variation trend generally meets the cyclical variation law with continued 

amplitude attenuation, and that along the Y direction, which is the increasing direction of water 

depth, wave amplitude sharply attenuates to zero. The above law accords with the actual 

physical phenomenon. 

4.4 Application to a floating hemisphere 

  
Fig. 10 The wetted surface of the hemisphere Fig. 11 Different location of X and Y of the assumed situation 

Table 4 Comparison of the hemisphere results 

Di X Y new( , )F X Y X   pre( , )F X Y X   2 2

new( , )F X Y X   
2 2

pre( , )F X Y X   

D1 

0.69 4.63 0.02494874147 0.02494874147 -0.01459808394 -0.01459808394 

1.69 6.75 0.01965759843 0.01965759843 0.14871920744 0.14871920744 

1.22 3.5 0.07086810313 0.07086810313 -0.08560264733 -0.08560264725 

3.92 9.47 0.01060699083 0.01060699083 0.00094282431 0.00094282431 

D2 

4.85 7.73 0.01853267444 0.01853267442 0.03592574647 0.03592574647 

3.53 3.5 0.16494598775 0.16494598775 0.00928292079 0.00928292079 

6.98 9.47 0.01069571687 0.01069571687 0.06461107428 0.06461107428 

3.56 1.18 0.94613454029 0.94613454029 0.01544230344 0.01544230344 

D3 

12.13 4.63 0.00670053215 0.00670053215 -0.00146967274 -0.00146967287 

8.14 2.35 -0.04549872003 -0.04549872003 -0.01566467737 -0.01566467737 

23.79 2.35 0.05423060139 0.05423060144 -0.00042957506 -0.00042957507 

19.42 8.64 0.00406975411 0.00406975411 -0.00038566806 -0.00038566806 

D4 

10.52 7.73 0.01147046297 0.01147046297 -0.00144538009 -0.00144538008 

13.58 10.87 0.00573333490 0.00573333490 -0.00040810851 -0.00040810851 

16.4 8.64 0.00575424116 0.00575424116 -0.00048625128 -0.00048625128 

11.66 11.42 0.00614036471 0.00614036471 -0.00038105601 -0.00038105601 

The above-described numerical method of evaluating GF is tested here through a floating 

hemisphere with radius of 25 meters (see Fig. 10). The wetted surface of this hemisphere is 

represented by an ensemble of connected four-sided panels. A panel degenerates to a triangle 

when the coordinates of two vertices coincide. Total number of panel is 1008. The centroid of 

each panel is used as field point or source point. Here one investigates GF between a fixed field 

point located at (-19.71,-0.98,-2.93) and all the points regarded as unit sources. So 1007 times 

calculations need to be solved except for the situation when the field point coincides with the 

source point. In addition, considering the range of the subdomains, it is reasonable to assume 

wave number equals to 0.8. Then the resulting (X, Y) is outlined in Fig. 11. 
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One chooses four points from XY plane in each subdomains to make the verification. 

Table 4 depicts these results obtained by Mnew and Mpre. As to the hemisphere, it can be 

concluded that evaluations of the first and second order derivatives of GF can obtain a precision 

of 10-9 at least from all the listed data with accuracy of 11 decimal digits. 

5. Conclusion 

This paper explored in detail the classical representation of free surface GF, composed of 

a semi-infinite integral involving a Bessel function and a Cauchy singularity. For the evaluation 

of the function itself and its high order derivatives, only four kinds of analytical series expansion 

was developed, and the involved special functions, especially the hypergeometric function were 

evaluated with high precision and efficiency. In addition, one put forward the refined 

subdomains of the whole domain. The numerical results showed that the new method could 

acquire a high degree of precision and an acceptable and practical efficiency. 
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