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Summary 

The need for green energy sources without or with low emissions in addition to improve 

the using efficiency of current fossil fuels in the marine field makes it important to replace or 

improve current fossil-fuelled engines. The replacement process should work on narrowing 

the gap between the most scientific innovative clean energy technologies and the concepts of 

feasibility and cost-effective solutions. Early expectations of very low emissions and 

relatively high efficiencies have been met in marine power plants using fuel cell. In this study, 

steam and SOFC based reforming options of natural gas for PEM fuel cells are proposed as an 

attractive option to limit the environmental impact of the marine sector. The benefits of these 

two different reforming options can be assessed using computer predictions incorporating 

chemical flow sheeting software. It is found that a high overall efficiency approaching 60% 

may be achieved using SOFC based reforming systems which are significantly better than a 

reformed PEM system or an SOFC only system. 

Key words:   Solid oxide fuel cell; Polymer electrolyte membrane fuel cell; reforming options, 

marine applications. 

1. Introduction 

Use of the conventional marine fuels as a source of energy for traditional marine power 

plant have been faced a lot of barriers due to its demerits especially regarding to the 

environmental and economic point of views. Environmentally, it was shown by [1] that in 

2000, 15% of all global NOx emissions and 4-9% of global SO2 emissions have been emitted 

around by ocean-going ships. In addition, IMO revealed in 2009 that ships had emitted about 

25 million tons of NOx during the year 2007. To eliminate the harmful NOx emissions; the 

IMO regulations had planned to achieve NOx emissions reduction through three Tiers which 

could require reduction in nitrogen oxides by 85% onboard ships [2]. Regarding eliminating 

of dangerous SOx emissions, IMO planed using of marine fuel containing 0.1% sulfur 

onboard ships beginning by January 2015[3, 4, and 5]. In addition economically, the prices of 

the conventional marine fuels showed a great fluctuation through the past few years and still 

present the main part of ship operating budget. To rise above, the shipping industry started 

search for alternative fuels that are also price competitive comparing to typical marine fuels 
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like marine diesel oil (MDO). After over 20 years of preparatory steps, Liquefied Natural Gas 

(LNG) can be used as an alternative fuel in the shipping industry [6]. LNG-propelled ships 

will be particularly attractive in case the vessel will enter Emission Control Areas (ECAs) 

since they can meet Tier III emission levels and the SOx requirements without any treatment 

of the exhaust gas. It is estimated that almost 70% of the world fleet will be entering ECAs in 

the near future [7, 8]. 

Some guidelines were set for installing of fuel-cell systems (FC systems) permanently 

on ships and boats in different classification societies rules [9]. It described the technical 

requirements for the safe operation of FC systems. One of these guidelines belong to Det 

Norske Veritas (DNV) and Germanischer Lloyd (G.L) classification society, which revealed 

some consideration that should be taken into account regarding safety functions,  installation, 

fuel transfer system, fuel storage, fuel conditioning, and fuel distribution [10, 11]. Lloyd’s 

Register in its guidelines [9] showed the importance of study safety of the ship, safety of 

personnel, and safety of machinery in case of use fuel cell onboard ships to be comply with 

standards of Safety of Live at Sea ( SOLAS) convention. There are five main types of fuel 

cells being developed in the stationary fuel cell market. These cells are referred to the type of 

electrolyte used within the system. Two of those are considered candidates for shipboard use, 

the Solid Oxide Fuel Cell (SOFC) and the Proton Exchange Membrane fuel cell (PEM) as 

they are available in the market size, most of materials used in their manufacturing are 

available, and the development of their efficiency is high [12, 13]. 

Steam Reforming (SREF), Partial Oxidation (POX), Auto-thermal Reforming (ATR), 

SOFC are the four major hydrocarbon-reforming technologies for PEM fuel cells. Steam 

reforming and auto thermal reforming appear to be the most competitive fuel processing 

options in terms of fuel processing efficiencies. Partial Oxidation (POX) method has a less 

fuel processing efficiency than steam reforming method [14, 15]. The primary purpose of this 

paper is to identify favorable operating conditions at which natural gas fuel is converted to 

hydrogen rich gas mixtures via SREF and SOFC internal reforming processes at reasonable 

fuel reforming efficiencies to be used in PEMFCs. Natural gas is selected for hydrogen rich 

gas production for PEMFC due to its favorable composition from lower molecular weight 

compounds compared with other fossil fuels. In addition, a simulation study of the different 

components of the selected two reforming options for PEM fuel cell will be conducted. Also, 

some of the performance parameters of the total system operated with natural gas fuel will be 

discussed as a proposed marine power plant for ships. 

2.  Simulation steps for PEM fuel cell 

PEM fuel cells require a high purity hydrogen source for operation. Hence, the 

projected commercialization of PEMFC powered ships requires a readily available hydrogen 

source, which is either used directly or is produced in an on-board fuel processor. Hydrogen 

can be produced by reforming a hydrocarbon fuel into a hydrogen rich gas gases. The 

reformed fuel often contains other gases such as carbon monoxide (CO) that are detrimental 

to PEMFC operation. The CO contained in the reformat must be further reduced to capacity 

10 ppm prior to feeding to the PEM fuel cell [16, 17, and 18]. The investigated PEM fuel cell 

system consists of three sections and their components as shown in Fig. 1. The first section is 

fuel processing and clean-up section. It includes steam reforming or SOFC with internal 

reforming (two cases investigated), high and low temperature shift reactors (HTS and LTS), 

and preferential oxidation reactor (PROX). The second section is PEM fuel cell which 

contains fuel cell stack and DC/AC converter. The third section is the auxiliary units like 

pumps, compressor, expander, heat exchangers, heaters, coolers, and burner. For all sections, 

all reactors are simulated to operate under equilibrium conditions. 
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Fig. 1 Typical inlet and outlet steam temperature ranges for PEMFC reactors 

 

SOFC based reforming option for PEM fuel cell is a combined cycle in which both 

SOFC and PEM fuel cell are combined. The system can be shown in Fig. 2 and it works as 

follows: the internal reforming SOFC is run under conditions that give low fuel utilization. 

This enables a high power output for a relatively low stack size. Unused fuel from SOFC 

appears in the anode exhaust where it undergoes shift reaction, followed by a process stage 

when the final traces of carbon monoxide are removed. At this stage, the gas comprises 

mainly hydrogen and carbon dioxide, with some steam. This gas, once it is cooled, is suitable 

for use as a fuel in the PEM stack [19, 20, 21, and 22]. 

 
Fig. 2 Reforming option based on solid oxide fuel cell used for PEM fuel cell 

 

The main difference in SOFC stack cost compared to PEMFC cost relates to the simpler 

system configuration of the SOFC system. This is mainly due to the fact that SOFC stacks do 

not contain the high-cost precious metals that PEFCs contain. In addition, the cost of SOFC 

balance of plant is low by comparison to the PEMFC [19]. However, the cost of the 

recuperating heat exchangers partially offsets that. This is offset in part by the relatively 

complex manufacturing process required for the SOFC electrolyte plates and by the lower 

power density in SOFC systems [23, 24]. 

 

2.1 Brief description of fuel cell processing and clean up sections 

 

The fuel processing efficiency covers the section from the hydrocarbon feed section to 

the fuel cell including all reforming and clean-up reactors and auxiliary equipment. 
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The pressure is kept constant at 3 bars in this study. The operating parameters of 

reactors are changed parametrically to determine the best operating conditions. The 

limitations set by the catalysts and hydrocarbons involved are also considered. The simulation 

code is capable to calculate the steady state product compositions taking into account the 

incoming stream compositions under the defined operation conditions.  

The aim is to convert as much hydrogen in the fuel into hydrogen gas at acceptable 

yields in an efficient manner while decreasing CO and CH4 formation. Lower SC ratios favor 

soot and coke formation, which is not desired in catalytic steam and auto thermal reforming 

processes. 

 

2.2 Chemical reaction scheme 

 

The fuel processor is simplified to a steam reformer or SOFC reactor, two water gas 

shift reactors and a preferential oxidation reactor for the modeling purpose. Steam reforming 

is a method of hydrogen production used on a large scale industrially, most notably in the 

production of ammonia. Steam reforming involves both the reforming reaction Eqs. (1) and 

(2) and the water-gas shift reaction Eq. (3). These are carried out at elevated temperatures 

over a supported nickel catalyst. 

 

CH4 + H2O → CO + 3H2         (1) 

CH4 + 2H2O → CO2 + 4H2         (2) 

CO + H2O ↔ CO2 + H2                    (3) 

In case of SOFC internal reforming (SOFC-IR), the electrolyte, which divides the stack 

into two electrodes, acts as an electronic barrier and avoids the direct chemical reaction of the 

fuel at the anode with the oxygen at the cathode. At the cathode, molecular oxygen combines 

with electrons and is reduced to negatively charged ions (O2−) with the aid of a catalyst [19, 

23].  

The degree to which an anode supports direct oxidation will then impact the degree of 

the reforming of the fuel that is required, which in turn typically impacts the balance of plant 

complexity and cost [23, 25]. The net cell reaction is thus written as: 

 

CH4,anode + 2O2,cathode ⇔ 2H2O,anode + CO2,anode                                                                     (4) 

 

In order to reduce the CO concentration out of the LTS, the preferential oxidation 

reaction (PROX) is performed. 

CO + 1/2 O2 → CO2                         (5) 

H2 + 1/2 O2 → H2O                   (6) 

 

2.3 Simulation of the steam reformer and SOFC internal reforming 

 

Steam reforming is a method for hydrogen production from hydrocarbon fuels such as 

natural gas. This is achieved in a processing device called a reformer which reacts steam at 

high temperature with the natural gas fuel.  In this study, both steam reforming and SOFC 

internal reforming reactors are modelled using HYSYS conversion reactors.  

 



Steam and SOFC based reforming options of PEM                              Mohamed M. El Gohary, Nader R. Ammar,                              

fuel cells for marine applications                                                         Ibrahim  S. Seddiek                                                                                                                                                                                                                        

65 

2.4 Simulation of water gas shift reactor 

 

The CO content can be reduced to about 0.5% by reacting it with water at lower 

temperatures to produce additional hydrogen according to the WGS reaction (Eq. (3)). 

Commercial hydrogen plants generally perform the WGS in two stages: (i) High-temperature 

shift at 300-450oC using an oxide catalyst, and (ii) low-temperature shift at 200 – 250 oC 

using copper zinc oxide. Heat exchangers are required between shift reactors to provide 

cooling, and the conversion in an adiabatic reactor is limited because the reaction is 

exothermic and the temperature increases as the reaction proceeds. In this study, WGS 

reactors are modeled using equilibrium reactor. By using equilibrium reactor, HYSYS will  

determine the composition of the outlet stream given the stoichiometry of all reactions  

occurring and the value of equilibrium  constant for each reaction. 

 

2.5 Simulation of preferential oxidation reactor 

 

Carbon monoxide is a poison to the precious metal catalyst in the anode of the PEM 

fuel cell. Preferential oxidation (PROX) is a reactive approach to destroy CO in the reformat 

composition. PROX of CO is typically used to reduce CO to the part per million levels 

required for the PEM fuel cell. The catalyst and conditions must be selected to minimize the 

oxidation of hydrogen. For the overall process model heat and material balance, 50% 

selectivity to CO oxidation is assumed, with the remainder of the oxygen reacting with 

hydrogen to form water.  The PROX reactor was modeled in HYSYS as a conversion reactor 

based on two reactions to oxidize CO as shown in Eqs. (5) and (6). 

 

3. The present simulation 

 

Figs. 3 and 4 show the two reforming cases of PEM fuel cell system scheme simulation 

studied by Aspen- HYSYS 3.2 taking into account selected balance plant of plant equipment. 

The hydrocarbon fuel is first pressurized (2), and then vaporized (5). The vaporized 

hydrocarbon fuel is divided into two streams: One stream (6) is directed to the burner where it 

is combusted to provide the necessary process heat, the other stream (7) is mixed in the air-

fuel mixer (AFM) with the hot compressed air (12) from the compressor. The air fuel mixture 

(13) is heated with the hot combustion gases (40) from the combustor up to the required PRE-

SR temperature (35). 
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Fig. 3 Actual steam reforming based PEM fuel cell system flow diagram simulated by Aspen HYSYS 

3.2. 

 
Fig. 4 Actual SOFC based reforming PEM fuel cell system flow diagram simulated by Aspen HYSYS 

3.2. 

All of the chemical reactions are assumed to occur adiabatically under equilibrium 

conditions. The gases leaving SOFC reactor (14) are cooled (16) prior to entering the HTS 

reactor. The gases are further processed in LTS and PROX. The exit gases from the PROX 

(23) are fed to PEM fuel cell after cooling (25). 

It is desired to maximize hydrogen concentration and to minimize carbon monoxide 

(CO) content considering the requirements of PEM fuel cells.  The high and low temperature 

water- gas shift reactors (HTS and LTS) and the preferential oxidation (PROX) are used to 

decrease the CO concentration level of the SREF or SOFC  reactors exit gas to the desired 

values.  

Compressed air is divided into 4 streams in case of SOFC based reforming PEM fuel 

cell system: one stream is directed to the SOFC (8) as SOFC reactant; another stream is used 

in PROX (9); the third stream (10) supplies the cathode air of PEM fuel cell; the fourth air 

stream is the combustion air (11). Pressurized water (3) is converted to steam (4) to be used in 

SOFC. Water is circulated (41-42) to cool down the PEM fuel cell. 

Anode and cathode off-gases (26) of the PEM fuel cell are combusted together with the 

hydrocarbon fuel (6). The combustor off- gases are expanded after exchanging heat with the 

hydrocarbon fuels to heat them up prior to SREF-SOFC entrance to produce additional power. 

The final burner exit gases (40) are above 500oC. The fuel cell stack is assumed to run under 

constant temperature and pressure, namely 70oC and 3bars. The PEM fuel cell characteristics 

are presented in Table 1.  

 

Table 1 The PEM fuel cell characteristics (e-: Electron) 

Anode Reaction 2H2 → 4H+ + 4e- 

Cathode Reaction O2 + 4H+ + 4e-→2H2O 

H2O Fuel utilization ( %) 65 

Fuel cell outlet temperature (°C) 70 

Pressure (bar) 3 

Average cell voltage (mV) 800 

Stack cooling media Water 

 

Table 2 summarizes  the  assumed data  of  different  auxiliary  system  components  utilized  

in  the simulation  studies. They are based on commercially available units [17, 26]. 
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Table 2 Auxiliary system component data 

Value Parameter Component 

75 Adiabatic efficiency (%) Fuel pump 

75 Adiabatic efficiency (%) Water pump 

75 Adiabatic efficiency (%) Cooling water pump 

70 Adiabatic efficiency (%) Compressor 

75 Adiabatic efficiency (%) Expander 

98 Conversion efficiency (%) DC/AC Converter 

The thermal efficiencies of the REF, HTS, LTS and PROX reactors are ηREF, ηHTS, ηLTS 

and ηPROX, respectively. They are defined as the ratio of the heating values and mass flows of 

the exit and inlet streams, Eqs. (7) to (11). The heating value of a stream is calculated by the 

multiplication of its lower heating value (LHV) with its mass flow rate in kg per hour. η1 

presents the fraction of the REF inlet stream heating value to the heating value of the total fuel 

feed to the system. The remainder is fed to the burner. The total fuel processing efficiency is 

the product of η1, ηREF, ηHTS, ηLTS and ηPROX as shown in Eq. (12). 

 

η1 =
�̇�7 × LHV7

ṁF × LHVF
                                                                                                                                    (7) 

 

ηREF =
�̇�16 × LHV16

ṁ35 × LHV35
                                                                                                                         (8) 

ηHTS =
�̇�19 × LHV19

ṁ16 × LHV16
                                                                                                                             (9) 

ηLTS =
�̇�22 × LHV22

ṁ19 × LHV19
                                                                                                                          (10) 

ηPROX =
�̇�25 × LHV25

ṁ22 × LHV22
                                                                                                                        (11) 

ηFP = η1 × ηREF × ηHTS ×  ηLTS × ηPROX                                                                                      (12) 

The PEM fuel cell module has been simulated using the PEM fuel cell characteristics 

presented in Table 2. The SOFC and PEM fuel cell stack efficiencies depend on fuel 

utilization coefficient (Uf), stack voltage, and DC/AC conversion efficiencies. Fuel cell 

voltage (Vcell) is the difference between cell voltage at no load, which can be called open 

circuit voltage and the specific fuel cell irreversibility or voltage drop. The following Eq. (13) 

shows the operating voltage of a fuel cell at a current density (iden) [19, 27]. 

 

Vcell = Eo − (iden × r) − A × ln(iden) + m × e(n×iden)                                                              (13) 

 

𝜂stack voltage =
Vcell × Uf

Eo
                                                                                                                   (14) 

𝜂DC/AC = 0.98                                                                                                                                       (15) 

ηFC = 𝜂stack voltage × 𝜂DC/AC                                                                                                            (16) 
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In Eq. (13), Eo is the open circuit voltage, ' in' internal current density, 'A' is slope of 

Tafel curve, 'm' and 'n' are constants, 'r' is specific resistance. Typical values of these 

constants for a SOFC and PEM fuel cell systems are given in Table 3. 

 

Table 3 Typical values of over voltage parameters [19, 28, 29, 30, and 31]. 

Constant SOFC PEMFC 

Eo   (V) 1.01  1.031  

r     (kΩcm2) 2.0×10-3   2.45×10-4  

A     (V) 0.002  0.003  

m     (V) 1.0×10-4  2.11×10-5  

n   (cm2mA-1) 8×10-3  8×10-3  

 

Auxiliary units comprise pumps, compressor, expander, heat exchangers, heaters 

coolers and burner. The auxiliary system efficiency (ηAux) is calculated as follows: 

 

ηmotor  = 0.9                                                                                                                                        (17) 

Ppar  =
PP1 + PP2 + PC

ηmotor
                                                                                                                        (18) 

ηAux  = 1 +
(PE − Ppar)

PPEM,AC
                                                                                                                     (19) 

 

Extensive heat integration is sought within the study to achieve acceptable overall 

system efficiency levels. The overall system efficiency (ηnet.el) is calculated as the product of 

fuel processing (ηFP), both SOFC and PEM fuel cell (ηFC) and auxiliary (ηAux) system 

efficiencies. 

 

ηnet.el  =  ηFP × (ηPEMFC + ηSOFC) × ηAux                                                                                    (20) 

 

4. Results and discussion 

The performance of both SOFC and PEM fuel cells can be described by the polarization 

curve, which relates the cell voltage to its current density. This polarization curve is affected 

by the losses of the fuel cell. Fig. 5 shows the polarization curves of both SOFC and PEM fuel 

cells. As the cell current density increases, there will be a drop of the output voltage of the 

fuel cell. This drop of the cell voltage will be higher in SOFC than that of PEMFC. As the 

current density reaches its maximum value, the SOFC voltage drops sharply to zero before 

than PEMFC voltages does.  
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Fig. 5 SOFC and PEMFC polarization curves 

 

In the following, the results obtained for the reforming of natural gas using SREF and 

SOFC-PEM shown in Fig.s 3 and 4 are presented. The components results for the selected 

reforming options for PEM fuel cell. The operating points for the SOFC and PEM fuel cells 

are at cell output current density of 250 mA/cm2, cell voltage and fuel utilization coefficient 

of (0.804 volts, 65%)  and (0.499 volts, 45%) for PEM and SOFC respectively. Moreover, AF 

and SC ratios are (5, 8.25) and (7.75, 8.5) for SREF and SOFC reforming options 

respectively. In addition, the percent of the fuel supplied to the burner is 1.4% from the 

supplied fuel to the system. Tables 4 and 5 show the results of selected system points 

calculated under the prescribed operating conditions applied in the two cases of reforming. 

 

Table 4 Simulation results for selected system points calculated under the prescribed operating conditions 

applied in SREF-PEM 

Stream Fuel Air  Water 5 6 13 8 10 11 

Temperature (oC) 25 20 25 200 200 495 206 206 206 

Pressure (kPa) 120 100 170 300 300 300 400 400 400 

Mass flow(kg/hr) 40 200 330 40 0.55 369 1.5 55 143 

Stream 35 14 17 19 20 22 23 25 40 

Temperature(oC) 500 850 350 200 250 120 150 70 513 

Pressure (kPa) 300 300 168 170 170 163 163 300 300 

Mass flow (kg/hr) 369 369 369 25 25 25 25 25 570 

 

Table 5 Simulation results for selected system points calculated under the prescribed operating conditions 

applied in SOFC-PEM 

Stream Fuel Air  Water 5 6 13 8 10 11 

Temperature (oC) 25 20 25 200 200 455 162 162 162 

Pressure (kPa) 120 100 170 300 300 300 300 300 300 

Mass flow(kg/hr) 40 310 340 40 0.55 379 105 65 173 

Stream 35 14 17 19 20 22 23 25 40 

Temperature(oC) 500 850 350 100 250 120 150 70 536 

Pressure (kPa) 300 300 168 170 170 163 163 300 300 

Mass flow (kg/hr) 379 450 450 450 450 450 451 451 960 
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The product compositions and LHVs results for SREF and SOFC cases at the operating 

points can be shown in the following Figs. 6 and 7. With  the  developed  system  models  

which  are implemented  in  the  HYSYS  3.2  process  simulator,  effluents  from  all  

reactors  are simulated. A considerably wide SC and AF ratios has been changed to see its 

effect on hydrogen yield and CO formation. The selected operating point achieves high 

reformer efficiency and acceptable CO content for PEM. CO content in the product steams 

changes from 2.3% and 3.3% to 0.0 for steam and SOFC based reforming options before 

entering PEMFC.        

 

 

Fig. 6 Product compositions and LHV values of steam reforming based fuel preparation reactors. 

 
Fig. 7 Product compositions and LHV values of SOFC based fuel preparation reactors. 

 

Fig. 8 shows the molar fractions and product lower heating values of all components in 

the effluent of the two reformer reactors of the natural gas fuel processor system. In SREF 

case, 100% methane is converted to produce 30.8% hydrogen, 6.0% CO2 and 2.4% CO. In 

addition, under these conditions, oxygen is 100% consumed. Simultaneously, in the case of 

SOFC-PEM, 100% methane is converted to produce 22.6% hydrogen, 4.2% CO2 and 3.2% 

CO. 
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Fig. 8 The molar compositions of the two cases of reformer products 

 

The operating parameters of the reforming process are of utmost importance to achieve 

the desired high hydrogen and low CO content product gases along with acceptable fuel 

conversion efficiency level. The total air to fuel ratio range studied is between 3.0 and 5.0 for 

the SREF-PEM as shown in Fig. 9. Similar approach has been adopted for SOFC-PEM; in 

this case air to fuel consumption (m8/mf) has been changed between 1.0 and 3.0 as shown in 

Fig. 10. It can be noticed that, in the case of SREF-PEM, the reformer efficiency as well as 

the hydrogen content of the product gases steadily decreases as the air to fuel ratio decreases. 

In addition, increasing the steam flow rate increases the reformer efficiency but this increase 

will affect the following reformers like PROX and burner exhaust temperature. In the other 

case, the reformer efficiency decreases as the reformer air to fuel ratio decreases at low steam 

to carbon ratios. In contrast, at high steam to carbon ratios the reformer efficiency increases as 

the air to fuel ratio decreases.  

 

 

 

Fig. 9 Reformer efficiency as a function of steam flow rate and total system AF ratio (SREF-PEM) 

 

0

10

20

30

40

50

60

70

CH4 CO CO2 H2O H2

SREF-PEM SOFC-PEM
C

o
m

p
o

s
it
io

n
s
 (

%
 m

o
le

)

0,7

0,75

0,8

0,85

0,9

0,95

1

110 140 170 200 230 260 290 320

AF(total
system)=5.0R

ef
o

rm
er

  

Steam Flow rate [ 



Mohamed M. El Gohary, Nader R. Ammar,                              Steam and SOFC based reforming options of PEM         

Ibrahim S. Seddiek                                                                    fuel cells for marine applications                                                                                                                                                      

72 

 
Fig. 10 Reformer efficiency as a function of steam flow rate and reformer AF ratio (SOFC-PEM) 

 

The two reforming options based fuel-processing, fuel cell, auxiliary and overall system 

efficiencies of the investigated natural gas fuel are presented in Table 6. The values indicate 

that reforming of natural gas either by steam reforming or by SOFC based reforming option 

achieves high fuel processing efficiency. Moreover, natural gas based systems do not require 

the pre-reformer unit compared with liquid fuel systems due to their high lower molecular 

weight hydrocarbon, namely CH4 content [32, 33]. In addition, both fuel cell efficiency and 

net electrical efficiency depends on fuel utilization coefficient fuel cell output current density.   

 

Table 6 SREF and SOFC based fuel processing options for PEM fuel cell system  

System Uf FP FC Aux net.el 
PEMFC SOFC 

Reformer-PEM 0.65 96.48 50.71 ------ 90.7 44.37 

SOFC-PEM  0.45 (SOFC)-

0.65(PEMFC) 

95.27 50.71 22.26 90.0 62.56 

It can be noticed from Table 6 that, heat integration within reforming, cleanup sections 

and PEM fuel cell components are the most important factor to achieve high PEMFC 

efficiency levels. These efficiency levels will be necessary to achieve the aims of the 

international emission regulations and to improve the total efficiency of marine power plants. 

The obtained net electrical efficiency levels are at 44% and 62% for SREF and SOFC 

based reforming options for PEM fuel cells. These efficiency levels are higher than those of 

Otto engines. Therefore, both Steam reforming and SOFC internal reforming options of 

natural gas offers an efficient, and can be widely used for hydrogen production, and for near 

and mid-term energy provide with a good environmental benefits. Natural gas is a convenient, 

easy to handle, hydrogen feedstock with a high hydrogen to-carbon ratio. The cost of 

hydrogen produced by methane is acutely dependent on natural gas prices.  

 

5. Conclusions 

 

 PEM fuel cells generate electrical power from air and from hydrogen or hydrogen rich 

gas mixtures. Therefore, there is an increasing interest in converting current 

hydrocarbon based transportation fuels such as Natural gas into hydrogen rich gases 

acceptable by PEM fuel cells on board ships. In addition PEM fuel cell fuelled by 

natural gas is an attractive option to limit the environmental impact of the marine 

sector in order to satisfy the requirements of international regulations and to achieve 

high efficiency.  
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 As a model for application, a SREF and SOFC based reforming options for PEM fuel 

cell system at cell output current density of 250 mA/cm2, and fuel utilization 

coefficients of 65% and 45% for PEM and SOFC respectively has been carried out. 

Among the conditions studied, the highest fuel processing efficiency is achieved at 

about 96% with AF= 5.0 and SC=8.25 using SREF-PEM fuel cell system. Also, 

SOFC-PEM fuel cell system resulted in high fuel processing efficiency at 95% 

incorporating AF and SC ratios of 7.75 and 8.5 respectively.   

 The simulation results of SREF-PEM showed that, the obtained net electrical 

efficiency level is at 44% which is higher than those of Otto engines and competitive 

to that of diesel engines. In SOFC-PEM fuel cell, the advantages of each type of fuel 

cell are enhanced by operating in synergy. It is found that a high overall efficiency 

approaching 60% can be achieved using SOFC–PEM systems which are significantly 

better than a SREF-PEM system or an SOFC only system. 

 Finally, high PEM fuel cell system efficiency levels can be achieved only with 

intensive heat integration within the PEMFC systems. Hence, heat integration within 

PEMFC components system studies along with the development of reforming and 

clean-up systems are of utmost importance if hydrogen production is desired on-board 

ships. 
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NOMENCLATURE 

 

A  Slope of Tafel curve Volt 

Eo Open circuit voltage  Volt 

iden Load current density mA/cm2 

LHV Lower heating value    MJ/Kg.mole 

m Fuel cell voltage constant Volt 

ṁ Mass flow rate kg/s 

n Fuel cell voltage constant cm2mA-1 

PC Power of compressor kW 

PE Total power of expanders kW 

Ppar   Parasitic power  kW 

PP1 Feed water pump power kW 

PP2 Fuel cell cooling water pump power kW 

PPEM,AC   Fuel cell output AC power kW 

r Specific resistance kΩcm2 

Vcell Fuel cell voltage  Volt 
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Greek symbols  

ηAux Auxiliary systems efficiency % 

ηDC/AC DC / AC conversion efficiency % 

ηFC Fuel cell efficiency % 

ηFP Fuel processing efficiency % 

ηHTS High temperature shift reactor efficiency % 

ηLTS Low temperature shift reactor efficiency % 

ηmotor Electric motor efficiency % 

ηnet.el Net electric efficiency % 

ηPEMFC Proton exchange membrane fuel cell efficiency % 

ηPROX Preferential oxidation efficiency % 

ηREF Reforming section efficiency % 

ηSOFC Solid oxide fuel cell efficiency % 

          ηStack voltage Stack voltage efficiency % 

η1 POX inlet to  total fuel feed efficiency % 

Abbreviations 

 

AC Alternating current 

AF Air to fuel ratio 

DC Direct current 

ECAs Emission Control Areas 

HTS High temperature shift reactor 

H2O Water vapor 

IMO International maritime organization 

LNG Liquefied natural gas 

LTS Low temperature shift reactor 

NOx Nitrogen oxides emissions 

      PEMFC Proton exchange membrane fuel cell 

PROX Preferential oxidation reactor 

ppm Part per millions 

REF Reforming 

SC  Steam to carbon ratio 

SREF Steam reforming 

SOFC Solid oxide fuel cell 

SOx Sulfur oxides emissions 

         SREF-PEM   Steam reforming based proton exchange membrane fuel cell  

        SOFC-PEM SOFC based reforming option for PEMFC 

Uf Fuel utilization coefficient 

WGS Water gas shift reactor 
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