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Summary 

In this paper, numerical simulation of viscous flow around a tanker model was carried out 

utilizing software package STAR-CCM+. A mathematical model based on Reynolds Averaged 

Navier-Stokes equations, a k-ε turbulence model and Volume of Fluid method for describing 

the motion of two-phase media are given. Necessary boundary conditions for the mathematical 

model and the method of discretization are also described. The effect of grid density on the 

numerical results for the total resistance of the tanker model was investigated using three 

different grid densities. Two different types of the k-ε turbulence model were implemented and 

deviations in the numerical results are highlighted. The results for the total resistance of the 

tanker model, obtained by numerical simulations, were validated against the experimental 

results. The experiments were performed in the towing tank of the Brodarski Institute for a wide 

range of Froude numbers. It was shown that for all three grid densities and for both types of the 

k-ε turbulence model satisfactory agreement with the experimental results can be achieved for 

the whole range of Froude numbers. The scale effects were investigated by a Computational 

Fluid Dynamics study for the same tanker model in three different scales. Numerically 

calculated scale effects on wave resistance are reviewed. 

Key words: Computational Fluid Dynamics; Reynolds Averaged Navier-Stokes 

equations; Volume of Fluid method; k-ε turbulence model; total resistance 

1. Introduction 

To determine the characteristics of water flow around a ship hull, numerical and physical 

models, i.e. numerical and experimental methods, are most commonly used nowadays. A 

combination of these methods, together with the results of full-scale trials, is the best way of 

designing a high-quality ship form and of obtaining a reliable estimation of the hydrodynamic 

characteristics of a new vessel. Conducting experiments with ship models in towing tanks is 

very expensive and time consuming. With the application of Computational Fluid Dynamics 

(CFD), it is possible in the early phase of ship design to gain an insight into the details of the 

flow around the ship hull and to obtain guidance on how to improve a specific ship form or how 

to choose the most suitable ship form for model testing. 

Currently, to simulate free surface flow around a ship hull, potential and viscous flow 

methods are most commonly used. Viscous flow methods give more accurate results in terms 
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of the ship resistance than potential flow methods [1]. The main problem of viscous flow 

methods, beside turbulence modelling, is grid dependence, but this problem is expected to be 

solved in the future [2]. Enger et al. [3] performed numerical calculations of resistance, trim 

and sinkage based on viscous flow for the KRISO Container Ship (KCS) for different Froude 

numbers (Fn) in calm water. They investigated the influence of grid refinement and the choice 

of the turbulence model on the numerical results. The authors showed that acceptable accuracy 

of the total resistance in comparison with the experimental results can be achieved with a 

relatively coarse mesh when the grid is well designed and locally refined in critical zones. Deng 

et al. [4] investigated factors affecting the ship resistance calculation utilizing CFD with an 

emphasis on mesh generation. They concluded that the grid size on the hull surface is the most 

influential parameter in the numerical calculation of ship resistance for a monohull vessel. 

Banks et al. [5] predicted the components of total resistance for a KCS utilizing CFD. In their 

work, friction and pressure resistance are further divided into aero and hydro components. The 

influence of the turbulence model on the numerical results was also investigated. The authors 

concluded that the Baseline (BSL) Reynolds stress model provided better results than the Shear 

Stress Transport (SST) eddy viscosity model. Guo et al. [6] carried out numerical simulations 

of viscous flow around a KRISO Very Large Crude Carrier 2 (KVLCC2) model in order to 

estimate the influence of grid density and the turbulence model on the numerical results. The 

authors used the SST and Explicit Algebraic Stress k-ω (EAS) turbulence model and concluded 

that the anisotropic EAS model provided higher accuracy of results. Pereira et al. [7] performed 

an extensive verification and validation procedure for the numerical results of flow around a 

KVLCC2 obtained using Reynolds Averaged Navier-Stokes (RANS) equations for a model and 

full-scale Reynolds number (Rn). The authors selected a wake-fraction and form factor to 

illustrate the scale effects. They concluded that deviations between the flow fields at the 

propeller plane, obtained using different turbulence models, decrease with the increase of the 

Rn, and that the form factor depends on the Rn. Ozdemir et al. [8] assessed the possibility of 

utilizing the software package STAR-CCM+ for the design, analysis and feasibility of computer 

simulations for a fast ship, by comparing the results of conducted simulations with the 

experimental results. The authors used the Standard k-ε turbulence (SKE) model, and the 

obtained results showed satisfactory agreement for Fn values below 0.25. For higher values of 

Fn, a low Rn turbulence model is recommended. In the end, they concluded that STAR-CCM+ 

is a very useful tool to predict the ship resistance curve for Fn below 0.25. Ozdemir et al. [9] 

investigated the applicability of a CFD code to predict the total resistance coefficient, wake 

distributions and wave profiles in wave cuts. For this purpose, they performed numerical 

simulations of viscous flow with a free surface around a KCS model. The authors showed that 

nominal wake distribution could be obtained relatively precisely, as could a far field wave 

pattern. They obtained satisfactory agreement with the experimental results for the total 

resistance coefficient using a fine grid. 

While most authors use methods based on RANS for the simulation of flow around a ship 

hull, discretization methods for a free surface vary considerably. Although very different, all of 

them have been used with success. Wackers et al. [10] described three different methods for the 

discretization of a free surface. They concluded that the selection of a particular method 

depends on the problem to which the method is applied and the requirements of the applied 

method. 

Azcueta [2] investigated the impact of a near-wall treatment and concluded that the best 

results are obtained if the value of the y+ parameter on the first cell next to the wall is around 

50. 

One of the disadvantages of viscous flow methods with regard to potential flow methods 

is the calculation time. Leroyer et al. [11] represented two numerical procedures which can 

reduce the required calculation time for solving the RANS equations with the Volume of Fluid 
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(VOF) method. By comparing these procedures with classic procedures, the authors showed 

that real problems can be solved up to four times faster. 

Nowadays, RANS are used to solve many different types of problem regarding free 

surface flows. Atlar et al. [12] used RANS and potential flow methods to develop a hull form 

for the Deep-V catamaran. The authors investigated the contribution of novel bow and stern 

features on the catamaran performance and found that an anti-slamming bulbous bow and 

tunnel stern geometry were optimum. Zaghi et al. [13] investigated the influence of a separation 

length on the catamaran interference resistance, both experimentally and numerically. They 

used RANS to better understand this phenomenon, because RANS can provide more 

information in terms of the wave field, surface pressure and velocity field than an experiment. 

Tezdogan et al. [14] performed RANS simulations in order to predict motions and added 

resistance for a full-scale KCS at a design and slow steaming speed. The conducted simulations 

showed that the application of slow steaming can lead to a decrease of up to 52% in effective 

power and CO2 emissions compared with the design speed. Qian et al. [15] performed numerical 

and experimental investigations on the hydrodynamic performance of a Small Waterplane Area 

Twin Hull (SWATH) with inclined struts. The results of numerical computations, performed 

using RANS, are validated by comparing the results with the experimental ones. The authors 

concluded that inclined struts can reduce the required power for propulsion in the waves by 

using wave energy. Bašić et al. [16] used RANS equations and the VOF method in order to 

determine the total resistance of an intact and partially flooded tanker due to a large hole in the 

bottom of the hull. RANS provided a better understanding of the very complex flow around and 

inside the damaged hull. The authors concluded that the proposed CFD model and settings 

provided a good prediction of the total resistance of a damaged tanker. 

The prediction of full scale resistance is most commonly carried out by one of the 

extrapolation methods. Among them, the most commonly used method is the ITTC 1978 

performance prediction method. In order to improve this extrapolation method and to better 

understand total resistance decomposition, CFD methods can be used. Inviscid CFD methods 

require significantly lower computational time than viscous CFD methods, but they usually 

overestimate the stern wave field [17]. Grid refinement studies have indicated that wave field 

is grid dependent for viscous CFD methods [18]. Viscous effects are more significant for fuller 

ships at lower Fn where shorter waves are present. Therefore, denser grids are needed for 

resolving the wave pattern than for higher Fn. Consequently, simulation time is even further 

increased. Ploeg et al. [19] used two different viscous CFD methods in order to simulate free 

surface viscous flow around a container ship at the model scale and at full scale. One method 

is based on finite volumes, unstructured grids, and wall functions, and uses free surface 

capturing (ISIS CFD), while the other is based on finite differences, structured grids, no wall 

functions and uses the free surface fitting method (PARNASSOS). The authors compared the 

results obtained when two different methods were used with the experimental results and 

showed that both methods give very similar results in the computed wave pattern, wake fields 

and total resistance. Raven et al. [17] performed extensive research on the CFD-based 

prediction of full-scale resistance and scale effects. The authors investigated the scaling of 

viscous and wave resistance with the PARNASSOS code and concluded that viscous effects 

reduce the stern wave system more significantly at the model scale than at full scale. Therefore, 

the wave resistance coefficient is found to be 20% greater at full scale than at the model scale. 

In this paper, viscous flow around the tanker model is numerically simulated utilizing the 

STAR-CCM+ software package for CFD. The results of the numerical calculations are 

compared with the experimental results obtained in the Brodarski Institute [20]. The following 

sections present the mathematical and physical models used in numerical simulations, describe 

the boundary conditions and the discretization method, and give the results of the conducted 
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numerical simulations. The numerical results obtained with three different grid densities and 

two different types of the k-ε turbulence model are validated against the experimental results. 

Furthermore, the initial tanker model was scaled and two additional models were created. For 

these two models, the total resistance values are numerically calculated. The total resistance 

values for the three models, obtained with numerical simulations, were extrapolated according 

to the procedure described in [21] in order to obtain the total resistance of a full-scale ship and 

to investigate the scale effect. 

2. Governing equations  

Computer codes based on viscous flow solve the law of conservation of momentum and 

mass conservation with an accuracy that depends on the characteristics of the computational 

model of ship motion on the free surface and computing resources [22]. In the case of free 

surface flows, an additional equation, which resolves the VOF problem, is introduced. The law 

of conservation of momentum becomes the Navier-Stokes equations after the introduction of 

the constitutive equations which represent the non-linear partial differential equations. These 

equations have no analytical solution for turbulent flows that are stochastic in nature. Therefore, 

the Navier-Stokes and continuity equations are most commonly averaged and solved 

numerically. A detailed description of the mathematical model and numerical methods for 

solving are presented in [23]. 

The averaged continuity equation and RANS equations for incompressible flows in index 

notation read: 
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where   is the fluid density, iu  is the averaged velocity vector, i ju u    is the Reynolds 

stress tensor, p  is the mean pressure and 
ij  is the mean viscous stress tensor defined as 

follows: 
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where   is the dynamic viscosity. 

The problem of modelling the free surface is solved using the VOF method. This method 

can model two or more fluids which are immiscible and solve only one set of equations (1) and 

(2) for one fluid, by introducing the new parameter i -fraction of i-fluid in the cell. The volume 

fraction of one phase is determined according to the continuity equation, and for incompressible 

flow reads: 

  0l l iu
t
 


 


          (4) 

where l  is the fraction of water in a particular cell. 

The physical properties of a particular fluid depend on the presence of that fluid in a 

particular cell. In a domain where there are only two fluids, fluid 1 and fluid 2, the density is 

calculated according to the equation: 
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2 1 1 1(1 )                (5) 

where 
1  is the density of fluid 1, 2  is the density of fluid 2, and 

1  is the volume 

fraction of fluid 1. 

Other physical properties are calculated analogously according to equation (5). 

For the discretization of RANS, the Finite Volume Method (FVM) is used. In this paper, 

the k-ε turbulence model is used, together with the wall functions for the description of the 

turbulence effect on averaged flow. This model is based on two differential equations: one for 

the description of turbulent kinetic energy k and one for the turbulent energy dissipation rate ε. 

In order to investigate the influence of different turbulence modelling, two different types of 

the k-ε turbulence model are used: the Realizable k-ε Two-Layer (RKE2L) model and the 

Standard k-ε (SKE) model. SKE is a type of k-ε turbulence model that was defined by Launder 

and Spalding [24]. In this paper, the SKE model is combined with the high wall y+ treatment 

(wall function type of mesh). The wall function type of mesh represents a mesh in a boundary 

layer which is set in order to obtain the value of the y+ parameter in the first cell above 30. The 

first cell height is set according to this condition. RKE2L contains a new transport equation for 

ε, and the critical coefficient of the model Cµ is expressed as a function of a mean flow and of 

turbulence properties rather than as being assumed constant as in the standard model. 

Furthermore, this model works with low-Rn type meshes and with wall function type meshes 

[25]. The differences between these two types of meshes are explained in Section 4 of this 

paper. 

3. Geometry and experimental setup 

Total resistance of the Panamax tanker model made of wood was measured in the towing 

tank of Brodarski Institute [20]. The dimensions of the towing tank are: length 276.3 m, width 

12.5m and depth 6.0 m. Considering the dimensions of the towing tank and the ship model 

scale, no blockage effects were taken into account. The body plan of the towed model and the 

bow and stern contour are shown in Figure 1. The main particulars of the full scale ship and 

ship model are given in Table 1. The hull has a block coefficient 0.8BC   and a midship section 

area coefficient 0.995MC  . A total of 24 experiments for Fn in the range of 0.064 to 0.212 was 

conducted in calm water. The tanker model and measurement equipment can be seen in Figure 

2. 

 

 

Fig. 1  Body plan, bow and aft contour 
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Table 1 Main particulars of the full-scale ship and ship model 

Parameter Ship Model 

λ (scale) 1 28.814 

Lpp 174.8 m 6.0667 m 

LWL 178.4 m 6.1917 m 

B 32.2 m 1.1176 m 

T 12.9 m 0.4477 m 

Δ 60829 t 2.4788 t 

S (wetted surface) 8749.3 m2 10.5389 m2 

xCG (from amidships) 2.54 m 0.0882 m 

yCG 0 m 0 m 

zCG 6.74 m 0.2341 m 

 

 

Fig. 2  Towing tank experiment with tanker model [20] 

4. Numerical setup 

Numerical simulation of viscous flow around the tanker model is carried out utilizing the 

software package STAR-CCM+. Creating a computer model begins with the domain creation 

around a ship model. The distance of the domain boundaries from the ship model in literature 

vary considerably [14]. In this research, the domain boundaries are set to the length Lpp of the 

ship model in all directions. Due to the symmetry of the ship model, only half of the 

computational domain was modelled. Then a surface mesh was created and remeshed within 

the software package STAR-CCM+, using the surface remesher tool. Discretization using FVM 

begins with the creation of a surface mesh that consists of faces. 

In this paper, the domain is meshed using a surface remesher, trimmer and prism layer 

mesher. All mesh parameters are defined as relative values of the cell base size, except in the 

case of the prism layer mesher, where the prism layer thickness is set at an absolute value. The 

effect of the grid density on the numerical results is investigated using three different grid 

densities obtained by changing the cell base size and with the RKE2L turbulence model. 

Furthermore, the effect of different types of the k-ε turbulence model on the numerical results 

is investigated only for the coarse mesh. The coarse mesh has half a million cells, the medium 

mesh 1.1 million cells and the fine mesh 2.2 million cells approximately. To avoid using too 
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dense a grid in areas where it is not necessary, additional parts were created with different 

conditions of discretization. By applying these refinements, the obtained mesh can capture some 

flow characteristics, for example the Kelvin wake or flow separation. In the boundary layer, 

where the velocity gradients are high, a prism layer with six cells was created. As mentioned 

above, the thickness of this layer is given as an absolute value to achieve a y+ parameter value 

around 50 in the first cell next to the wall. The structure of the coarse and fine mesh is shown 

in Figure 3. 

 
a) structure of the fine mesh 

 
b) structure of the coarse mesh 

                                   
                     c) domain discretization using fine mesh             d) domain discretization using coarse mesh 

Fig. 3 Discretized computational domain 

The mesh is evaluated using two parameters: y+ and the Courant number. The value of 

the y+ parameter in the first cell next to the wall should be in the range of 30 to 1000 for the 

wall function types of meshes, but since in some cells this cannot be achieved, smaller values 

of the y+ parameter are also acceptable. For low-Rn types of meshes, the y+ parameter in the 

first cell next to the wall should be around 1 [25]. Wall function types of meshes are chosen for 

meshing near the wall, for both types of turbulence models, in order to have a lower total 

number of cells. The Courant number is defined as a relation of the time step and the time 

required for fluid to pass a certain cell with its local speed. Its value should be less than 1 to 

have a simulation which requires less calculation time and has higher stability [8]. Coupling the 

pressure and velocity field was done with an implicit unsteady solver. It is important to mention 
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that this solver can also work with higher values of the Courant number (in the range of 10 to 

100) and it is acceptable if a small number of cells have values of the Courant number higher 

than 1. The obtained values of these two parameters are shown in Figures 4 and 5 for 

Fn=0.1926. 

 

 
Fig. 4 Value of the y+ parameter on the first cell next to the wall for Fn=0.1926 

 

 
Fig. 5 Value of the Courant number on the free surface for Fn=0.1926 

Based on the previously mentioned values of these two parameters, it can be concluded 

that the values of these parameters are within acceptable limits.  

Convection terms in RANS were discretized with a second-order upwind scheme. For 

temporal discretization, the first-order temporal scheme was used, which is also referred to as 

the Euler Implicit. The under-relaxation factor for velocity was set at 0.7 and for pressure at 

0.4. The selected boundary conditions are: velocity inlet for inlet, bottom and top boundaries, 

pressure outlet for the outlet boundary, the symmetry condition for the side and symmetry 

boundary, and no slip wall for the hull surface boundary. After setting the boundary conditions, 

VOF wave damping was applied. The reflection of the VOF waves occurs due to the abrupt 

mesh transitions or reflection from the domain boundaries. The first problem is solved by 

creating a mesh that has a gradual transition from smaller cells to bigger cells and the second 

one is solved by importing vertical resistance for vertical motion. The approach implemented 

in the STAR-CCM+ software package was proposed by Choi and Yoon [25]. In this paper, the 
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VOF wave damping length is set using the dvar function. This function is presented with the 

following equation: 

2 π
cos

2 2 2 10

pp ppL L t
dvar

T

 
   

 
         (6) 

where Lpp is the length between the perpendiculars and T is the period defined as the 

relation between Lpp and fluid velocity. This function dampens almost the entire area around 

the ship model at the beginning. As physical time passes, a smaller part of the domain is 

damped. After physical time reaches the middle of the total physical time, half of the domain is 

damped until the end of the physical time. Using the larger damping zone in the beginning of 

the simulation ensures faster convergence of the results. The total physical time is set at 20T 

and the time step is set at T/200. 

5. Model-ship extrapolation method 

In order to investigate the scale effect, two additional tanker models were created. The 

first model (model S) has a scale 1.5 larger than the scale of the initial model, and the second 

model (model L) has a scale 1.5 smaller than the scale of the initial model. Numerical 

simulations of viscous flow around these two models were performed using the medium mesh 

and RKE2L turbulence model. The numerical setup within these simulations was the same as 

that described in section 4. In order to investigate the scale effects, the total resistance obtained 

for the initial model, model S and model L is extrapolated to the full-scale values according to 

the procedure described in [21]. 

The total resistance coefficient can be divided according to the following equation: 

(1 )T F WC k C C              (7)  

where k is the form factor, FC  is the frictional resistance coefficient, and WC is the wave 

resistance coefficient. The total resistance coefficient is calculated according to: 

21

2

T
T

R
C

v S

             (8) 

where TR  is the total resistance, v  is the ship speed, and S  is the wetted surface. The 

frictional resistance coefficient is calculated according to the ITTC 1957 model-ship correlation 

line: 

 
2

10

0.075

log 2
FC

Rn



         (9) 

The form factor is determined according to the Prohaska method and equals 0.2736. For 

all three models, as well as for the full-scale ship, the form factor is the same. In order to obtain 

the total resistance coefficient of the full-scale ship, the wave resistance coefficient is assumed 

to be equal for the model and for the full scale, and FC is scaled according to the equation (9). 

6. Results 

The total resistance of the tanker model is calculated for five different values of Fn in the 

range of 0.0642 to 0.2117 and the obtained results are compared with the experimental results 

[20]. A comparison of the obtained results using three different grid densities and the RKE2L 

turbulence model with experimental data is given in Table 2. The mean value of the total 
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resistance force is calculated, but taking into account only the values of the last 20% of physical 

time. Relative deviations are calculated according to the following equation: 

 
CFD EXP

EXP
% 100T T

T

R R
RD

R


          (10) 

where CFD

TR  is the total resistance obtained numerically and EXP

TR  is the total resistance 

obtained experimentally. 

If the relative deviation is positive, the result obtained with numerical simulation 

overestimates the measured value, and if it is negative, the result obtained with numerical 

simulation underestimates the measured value. The results obtained with numerical simulations 

show satisfactory agreement with the experimental results. The greatest relative deviation for 

fine mesh is 1.35%, for medium mesh 1.90%, and for coarse mesh 2.55%, except for the 

smallest value of Fn. These deviations for the smallest values of Fn are larger, i.e., 8.14% for 

coarse mesh, 5.42% for medium mesh, and 4.23% for fine mesh. It is important to remark that 

for the smallest value of Fn, a physical wave pattern was not obtained. Fine mesh with 2.2 

million cells was not sufficient to capture the wave pattern for such a small value of Fn, because 

the obtained wave elevations were around 2 mm. It is necessary to use mesh with a larger 

number of cells to capture waves. The obtained relative deviations would have been smaller if 

mesh with a larger number of cells was used, but this would significantly increase the 

calculation time. Frictional resistance decreased for this value of Fn when mesh with a larger 

number of cells was used. For the smallest value of Fn, frictional resistance has a significantly 

higher proportion in the total resistance than the pressure resistance (numerically obtained 

frictional resistance is 80% of the total resistance). Since the value of the frictional resistance 

obtained with numerical simulations using a larger number of cells decreases, the value of the 

total resistance also decreases and thus converges to the total resistance value obtained with 

measurements [26]. In addition, for small values of Fn it is possible to ignore the wave 

resistance and to carry out simulation for a deeply immersed body according to ITTC 

recommendations [27]. 

The total resistance coefficient CT curve as a function of Fn obtained by numerical 

simulations and experimentally is shown in Figure 6.  

Table 2 Comparison between experimentally and numerically obtained total resistance values 

Fn v, m/s 

RT
 EXP, N 

RT
 CFD, N, 

(Relative deviation, %) 

Experiment Coarse mesh Medium mesh Fine mesh 

0.0642 0.5001 6.093 6.589 

(+8.137)  

6.423 

(+5.422) 

6.351 

(+4.227) 

0.1283 0.9999 22.937 23.121 

(+0.804)  

23.010 

(+0.320)  

22.879 

(-0.251)  

0.1669 1.3002 38.147 38.028 

(-0.311) 

37.912 

(-0.615)  

37.934 

(-0.558)  

0.1926 1.5008 53.461 52.435 

(-1.920)  

52.448 

(-1.895)  

52.741 

(-1.346)  

0.2117 1.6499 67.639 65.909 

(-2.558)  

67.036 

(-0.891)  

68.041 

(+0.594)  



Numerical simulation of viscous flow around a tanker model Andrea Farkas, Nastia Degiuli, 

 Ivana Martić 

  

119 

 

 

Fig. 6 Curve of the total resistance coefficient as a function of Fn  

 

The wave profile on the ship model, obtained using fine mesh and the RKE2L turbulence 

model, is shown in Figure 7 for Fn=0.1926. It can be seen that the bow and stern wave system 

begins with a wave crest, while the system of bow and stern shoulders begins with a wave 

hollow as specified in [28]. 

 
Fig. 7 The shape of the wave profile along the ship model 

Streamlines around the tanker model for Fn=0.2117 obtained using coarse mesh and the 

RKE2L turbulence model are shown in Figure 8. In this figure, a decrease of flow velocity 

astern of the ship model, as well as in front of the bow, and an increase of flow velocity in the 

area of the bow and stern shoulder can be noticed. 

Wave patterns for four different values of Fn obtained using medium mesh and the 

RKE2L turbulence model are shown in Figure 9. The obtained angle between the transverse 

and divergent waves of the ship wave system is equal to 19°28' and fits the Kelvin angle for 

deep water [28]. 
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Fig. 8 Streamlines around the tanker model for Fn=0.2117 

 
                       a) Fn=0.1283                                                                b) Fn=0.1669 

 
                    c) Fn=0.1926                                                                  d) Fn=0.2117 

Fig. 9 Wave pattern for different values of Fn 
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A comparison between the numerical results obtained using coarse mesh and two 

different types of the k-ε turbulence model and the experimental results is given in Table 3. As 

can be seen from Table 3, both types of the k-ε turbulence model show satisfactory agreement 

with the experimental data. Relative deviations obtained using the RKE2L turbulence model 

for Fn equal to 0.0642, 0.1283 and 0.1669 are smaller than those values obtained using the SKE 

turbulence model. For Fn equal to 0.1926 and 0.2117, the results obtained with SKE show 

smaller relative deviations. Wave patterns obtained using SKE and RKE2L and coarse mesh 

for Fn=0.2117 are shown in Figure 10. It can be noticed that these wave patterns do not vary 

considerably. 

Table 3 Comparison between numerical results obtained using two different types of the k-ε turbulence model and 

experimental results 

Fn v, m/s 
RT

 EXP, N 
RT

 CFD, N, 

(Relative deviation, %) 

Experiment RKE2L SKE 

0.0642 0.5001 6.093 6.589 

(+8.137) 

6.660 

(+9.306) 

0.1283 0.9999 22.937 23.121 

(+0.804) 

23.160 

(+0.972) 

0.1669 1.3002 38.147 38.028 

(-0.311) 

38.745 

(+1.567) 

0.1926 1.5008 53.461 52.435 

(-1.920) 

53.528 

(+0.126) 

0.2117 1.6499 67.639 65.909 

(-2.558) 

66.888 

(-1.111) 

 

 

Fig. 10 Wave pattern obtained with the SKE (left) and RKE2L (right) turbulence model for Fn=0.2117 

The scale effects are investigated by comparing the obtained total resistance values for 

the full scale. Numerical simulations were performed for four Fn values in a range from 0.1283 

to 0.2117. The total resistance values for the full scale obtained by applying the extrapolation 

procedure on the numerically obtained total resistance values for three model scales are shown 

in Table 4. The total resistance coefficient curves for the full scale as a function of Fn obtained 

by extrapolation are shown in Figure 11. 
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Table 4 Extrapolated total resistance values for the full scale obtained with three model scales 

Fn RT
 MODEL, kN RT

 MODEL S, kN RT
 MODEL L, kN 

0.1283 263.759 253.192 267.055 

0.1669 451.194 438.811 449.678 

0.1926 666.727 649.852 656.939 

0.2117 907.882 897.148 900.561 

 

Fig. 11 Curve of the total resistance coefficient for the full scale as a function of Fn 

The obtained wave resistance coefficients for three model scales are shown in Table 5. 

As can be seen, the obtained wave resistance coefficients are not the same at different scales. 

Therefore, scale effects are present and the assumption that the wave resistance coefficient is 

the same for all scales is not valid. In order to propose a correct extrapolation method, the wave 

resistance coefficient should also be scaled. Since this problem is very complex, the assumption 

that the wave resistance coefficient is constant for all scales is still made nowadays. Even 

though this assumption is not physically correct, the results obtained with the extrapolation 

method do not differ greatly. For a smaller Fn, wave resistance is almost negligible and any 

mistake in estimation of the wave resistance coefficient does not significantly affect the total 

resistance value. As can be seen from Table 5, for higher Fn values, the obtained WC values for 

different scales do not vary considerably. At the highest value of Fn, the total resistance values 

for the full scale for all three models are almost the same as those shown in Table 4. 

Table 5 Obtained wave resistance coefficients for three model scales 

Fn 103CW
 MODEL 103CW

 MODEL S
 103CW

 MODEL L
 

0.1283 0.0992 0.0153 0.1254 

0.1669 0.1863 0.1282 0.1792 

0.1926 0.4523 0.3928 0.4178 

0.2117 0.7727 0.7414 0.7514 
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7. Conclusion 

In this paper, numerical simulations of viscous flow around a tanker model were 

performed. The k-ε turbulence model with wall functions was used. Cells near the wall were 

adjusted in order to achieve y+ parameter values around 50. The effect of the grid density on 

the numerical results was investigated using three different grid densities. The obtained results 

of the conducted numerical simulations show that it is possible to achieve satisfactory 

agreement with the experimental results even though a lower number of cells is used, greatly 

reducing the calculation time as a result. For example, calculation using fine mesh lasts about 

five times longer than calculation using coarse mesh. The greatest relative deviation for fine 

mesh is 1.35%, for medium mesh 1.90% and for coarse mesh 2.55%, except for the smallest 

value of Fn. These deviations for the smallest values of Fn are larger, i.e., 8.14% for coarse 

mesh, 5.42% for medium mesh and 4.23% for fine mesh. By using a grid with a larger number 

of cells, smaller relative deviation would be obtained, but the calculation time would increase 

considerably. The effect of two different types of the k-ε turbulence model on the numerical 

results was investigated using the SKE and RKE2L turbulence model. This investigation was 

performed for the coarse mesh and the obtained results showed satisfactory agreement for both 

types of the k-ε turbulence model. In this paper, the scale effects were investigated by 

comparing the total resistance values for the full scale obtained by extrapolating the results of 

numerical simulations for three different model scales. Since the obtained wave resistance 

coefficients for different scales were not the same, the scaling of the wave resistance coefficient 

should also be implemented in the extrapolation method in the future. Bearing in mind that 

scaling of the wave resistance coefficient is a very complex problem, the wave resistance 

coefficient is assumed to be constant for the model and for the ship. Nevertheless, the total 

resistance values for the full scale do not differ considerably. CFD studies could provide better 

insight into the scaling of wave resistance. This will form part of future work, as will an 

investigation of the effect of the turbulence model on the scale effect. 
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