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Summary 

An effective ship scheduling strategy is critical for the efficiency of waterway 

transportation, especially in restricted one-way waterways. By treating ship traffic as a 

distributed system, a novel Ship Self-Organizing Cooperation algorithm (SSOCA) is proposed 

to evaluate the effects of self-organizing cooperation between ships. An assumption is made 

that overtaking is not allowed under the given safety requirement. Observing that traffic 

efficiency is influenced by speed differences, two types of delay times, wait time and navigation 

time as increased by speed reductions, are applied to evaluate traffic efficiency. The 

mathematical model of delay time is inferred in different entry sequences subsequently. Taking 

advantage of the delay model, each ship makes a decision regarding its own sequence to find 

the local optimum iteratively. An Arena-based ship traffic model is constructed. The simulation 

results indicate that average delay time for ships is decreased in comparison with the First Come 

First Served (FCFS) model. That advantage exists for different combinations of traffic flow 

parameters. Moreover, a balance between efficiency and computation is also achieved by 

distributing the computational burden to each ship.  

Key words:  self-organizing; cooperation mechanism; restricted one-way waterway; 

traffic efficiency; delay time; speed difference 
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1. Introduction 

Maritime transportation plays an important role in cargo shipping. As the numbers and 

sizes of ships increase [1], waterways are becoming one of the most important resources, 

especially in world-class ports and busy inland waterways. Some of them are becoming 

increasingly congestion. Congestion brings high navigational risks and also reduces overall 

traffic efficiency, with many delays. Waterway improvement projects are supposed to be among 

the most effective ways to mitigate such problems. However, huge infrastructure investments 

for waterways are not always available in practice. Another idea is to re-organize waterway 

traffic to improve efficiency by enhancing the overall utilization of the waterway resource and 

by reducing the overall delays of arriving ships. Ship scheduling [2] is among the most effective 

ways to do that. First Come First Serve (FCFS) is one of the most popular scheduling models 

for transportation. However, FCFS is not the most efficient because it prioritizes equality over 

efficiency.  

In general, ship scheduling can be performed in centralized or distributed ways. A large 

amount of existing research has concentrated on centralized modes, including queuing models 

[3, 4], waterway-berth coordination [5, 6] and sequential scheduling models [7]. Among their 

premises, the information on all arriving ships should be available and a top-level agent assigns 

the arrival time for each ship. All the ships need to navigate under the requirements from the 

top-level agent. However, it should be noted that a ship is usually controlled by crewmembers 

who are responsible for route planning. Operations such as ship scheduling and collision 

avoidance are resolved individually and locally. Although Vessel Traffic Services (VTSs) are 

responsible for ship traffic from a macro-perspective [8], it is usually arguable how VTSs play 

an importance role in maritime supervision. In fact, VTSs are only in charge of information 

services and receiving reports on intentions and constraints from ships. That is to say, VTSs do 

not control ship traffic directly. Therefore, VTSs are not top-level agents. In addition, an 

assumption is often made in centralized models that all the ships are navigating under identical 

and stable speeds. Nevertheless, the speeds of ships usually vary by large amounts within 

certain ranges in many real cases. For instance, ship speed in the Pelagos Sanctuary is high and 

dependent on vessel type, with specific spatial distributions [9]. A similar result was also found 

for the Port of Rotterdam, in which a normal distribution was fit to a speed histogram with a 

mean value of 10.7 knots and a standard deviation of 1.2 knots [10]. Variances in speed exist 

not only at different locations at a given time but also at different times at a given location, 

which triggers changes in course or speed. In order to analyze such problems, several 

characteristic parameters [11] are proposed for traffic in restricted one-way waterways, and 

simulation results show that the interactions of speed differences are closely related to 

congestion degree. A sensitivity analysis [12] then shows that the interactions owing to speed 

variances also largely influence traffic efficiency. Overall, unstable traffic derived from those 

interactions reduces navigation efficiency. Because ships interact with each other in a 

parallelized way, it is difficult to predict the future state [13] of a ship traffic system in 

centralized scheduling mode.  

Distributed scheduling provides an alternative that focuses on the interactions between 

individuals, which enables the ships to make decisions individually by negotiating with adjacent 

ships [14]. Distributed scheduling can be accomplished using a self-organization approach [15]. 
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Individuals can respond to local stimulations, realizing the division of work and accomplishing 

complex goals [16]. The individuals are equals, manifest self-control and make decisions based 

on local information that conforms to the ship traffic situation. In this sense, ship traffic should 

be treated as a self-organizing system, and distributed scheduling based on self-organization is 

more suitable for ship traffic than central scheduling. Self-organization, which is a process in 

which some form of overall order arises from local interactions between parts of an initially 

disordered system, was introduced and formulated by W. Ross Ashby [17]. The main idea is to 

build the components of a system in such a way that they will find solutions to problems by 

themselves [15]. Because trends in traffic systems are far from balanced [18], self-organizing 

theory is suitable for studying the behaviours and characteristics of such systems. The self-

organizing behaviours of drivers, which is commonly identified in vehicle traffic [19], decides 

nearly all the spatial-temporal behaviours of a traffic system [20], including route choice [21] 

and traffic light coordination [22]. From statistics of the Automatic Identification System (AIS), 

ships navigating in restricted waterways cluster, similar to results obtained in car-following 

models [23, 24]. However, there are some differences. First, vehicles often choose routes 

according to degree of congestion in road networks, whereas ships usually navigate over regular 

or recommended routes because waterway networks seldom exist. Even if a ship discovers a 

bottleneck emerging in the planned route, the ship’s pilot would prefer to wait near the entrance 

rather than find an alternative. Second, vehicles are largely affected by traffic signal lights at 

intersections. Ships, however, act autonomously in restricted areas according to rules. In 

summary, the self-organizing models used to study vehicle traffic are not suitable for ship traffic 

due to the latter’s particular characteristics. 

A novel self-organizing cooperation model for ships navigating in restricted waterways 

is proposed in this paper. The remainder of the paper is organized as follows. In Section 2, the 

reasons and preconditions of ship deceleration are ascertained by analyzing the process of ships 

navigating in restricted waterways. Considering safety distance, a mathematical model of delay 

time is inferred in Section 3. A ship self-organizing cooperation method is offered in Section 4. 

Using an Arena-based ship traffic simulation model, self-organizing cooperation is verified and 

discussed in Section 5. Finally, the conclusions are presented in Section 6.  

2. Problem statement 

The restricted waterway discussed in this paper is a one-way waterway with one entrance 

and one exit. Overtaking is prohibited to all ships navigating in the waterway. To avoid 

collisions in the waterway, ships are required to maintain safe distances between each other. 

Safe distance is usually described as ship domain [25]. In general, a ship will need a larger safe 

distance if it has a greater size or speed. 

Assume that two ships are arriving sequentially at a restricted waterway of length of Lwat. 

The first arriving ship is ship i, and the later-arriving ship is ship j. As shown in Fig. 1, the 

whole process of the ships is divided into 4 phrases. In phrase 1 in Fig. 1(a), ship i arrives at the 

approach of the waterway at ti
arr while ship j is traveling to the approach. If there are no ships 

ahead, ship i would immediately enter the waterway at ti
in. Under that circumstance, ti

in is equal 

to ti
arr. Ship j then arrives at the approach of the waterway at tj

arr and enters the waterway at tj
in. 

In phrase 2 in Fig. 1(b), ship i and ship j are sailing in the waterway. The original distance d 
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between them exceeds safe distance dj
s. Ship i and ship j could maintain their initial speeds vi 

and vj, respectively. If vj > vi, the distance between them would gradually decrease. At phase 3 

in Fig. 1(c), ship j arrives a point A from the entrance point O, which are separated by a distance 

lij. Ship j would then slow to vi to maintain a safe distance because d = dj
s and because overtaking 

is not allowed in the restricted waterway. At phrase 4 in Fig. 1(d), ship i and ship j depart the 

waterway at vi. It can be seen that ship j is delayed owing to its speed reduction in the section 

of Lwat - lij (from A to B at the exit), and hence traffic efficiency is sacrificed to some degree. 

 

 

 

 

(a)  (b) 

 

 

 

(c)  (d) 

Fig. 1  Ship navigation process. (a) Arriving in phrase 1, (b) Maintaining speed in phrase 2, (c) Deceleration in 

phrase 3, (d) Departure in phrase 4. 

According to the description in Fig. 1, the deceleration has two preconditions. The first 

precondition is that vj must be greater than vi, as shown in Eq. (1); that is, 

i jv v   (1) 

If the speeds of the two ships are same, their distance will be maintained until they depart 

the waterway. The distance between the two ships will gradually increase if vj < vi. Ship j will 

catch up with ship i only if vj > vi. The second precondition is that the difference in the arrival 

times is sufficiently small, which is expressed as Eq. (2). ΔTij
arr is the difference between ti

arr 

and tj
arr. The extreme is denoted as Δtij

arr such that ship j will not catch up with ship i until ship 

i leaves the waterway. Δtij 
arr can be derived as Eq. (3). 

arrarr arr
ij j i

r
j

ar
it tT t       (2) 
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s
wat jarr wat

ij
i j

L dL
t

v v


     (3) 

If Eq. (2) is satisfied, ship j will slow down owing to the obstruction caused by ship i. If 

Eq. (2) is not satisfied, ship j will maintain its initial speed until leaving the waterway because 

ship i is sufficiently distant from ship j throughout the process. Thus, the precondition that ship 

j decelerates due to ship i is summarized in Eq. (4). 

i j

arr arr
ij

arr arr

ij

i j

v v

T t

t t 





  

  (4) 

3. Traffic efficiency for different sequences 

To reflect the influence of deceleration, delay time is applied to evaluate traffic efficiency, 

being defined as the sum of wait time and the increased navigation time caused by deceleration, 

which is denoted deceleration time. Obviously, smaller delay times are more desirable. 

Therefore, the objective function for traffic efficiency in a restricted one-way waterway can be 

described as 

1 1

1 1
  = ( )

m m
delay wait dec

i i i

i i

Min T T T
m m 

    (5) 

In Eq. (5), m is the number of arriving ships, Ti
delay is the delay time for ship i, Ti

wait is 

the wait time for ship i, and Ti
dec is the deceleration time. 

The assumption is still that only two ships will pass through the waterway. The distance 

between the two ships always exceeds dj
s when Eq. (4) is not satisfied. In that case, neither 

waiting nor deceleration occurs. Thus, the overall delay time Tij
delay is zero, as expressed in Eq. 

(6), and traffic efficiency reaches its optimum. 

0 0 0delay ddelay
i

y
j i j

elaT T T       (6) 

However, when Eq. (4) is satisfied, ship j will slow down owing to the obstruction caused 

by ship i. If the sequence is changed, ship j will enter the waterway immediately, and the 

deceleration is eliminated. At the same time, the wait time for ship i is increased, although the 

deceleration time remains zero. Whether the sequence should be changed to improve traffic 

efficiency remains uncertain, and to answer that question, the mathematical model is analyzed 

in the following subsections.  

3.1 Traffic efficiency for the original sequence 

If ship i arrived and entered the waterway earlier, it passed through the waterway without 

restrictions throughout the entire process. That is to say, the wait time (Ti
wait) and deceleration 
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time (Ti
dec) are both zero, as shown in Eq. (7) and Eq. (8). Hence, Ti

delay is described in Eq. 

(9). 

0waiting
iT    (7) 

0dec
iT    (8) 

0waitdela de
i

y c
i iT T T     (9) 

Ship j enters the waterway after ship i and may be waiting at the entrance due to the safe 

distance constraint. When ship j arrives at the entrance, ship i has travelled some distance in the 

waterway. If the distance exceeds dj
s, ship j can enter the waterway directly like ship i, and wait 

time Tj
wait is equal to zero, as shown in Eq. (10). 

=0wait
jT   (10) 

Otherwise, ship j has to wait until the distance between ship j and ship i reaches dj
s. In 

that case, Tj
wait can be expressed as Eq. (11). 

 /wait s
j j i

arr
i

rr
j

aT d v t t    (11) 

It can be determined that the result of Eq. (11) is negative when ship j does not wait at 

the entrance. Tj
0 as shown in Eq. (12), which is the wait time caused by the constraint of safe 

distance: 

  0 0, /s
j

arr ar
jj i i

rMax d vT t t  .  (12) 

As shown in Fig. 1(c), ship j navigates with speed vj from O to A and reduces speed to vi 

from A to B. Therefore, Tj
dec as expressed as Eq. (13), which is the deceleration time of ship j 

and is related to the speed change and deceleration distance (i.e. Lwat - lij).  

wat ij

i j

wat ijdec
j

v

L

v

L l l
T 

 
   (13) 

Here, lij is calculated based on Newton's first law, which is closely associated with arrival 

time and speed difference, as shown in Eq. (14). 

0( )arr arr
i j

ij

s
j i

j
j i

jt t dv T
l v

v v

  





   (14) 

Therefore, the sum of wait time and deceleration time for ship j is Tj
delay in Eq. (15). 

0= +
wat ij wat ijwait dec

j j
dela

j
y

j
i j

T
L l L l

T T T
v v

 
     (15) 
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Furthermore, the overall delay time for the two ships, Tij
delay, is expressed in Eq. (16) 

when the FCFS model is followed and Eq. (4) is satisfied. 

0+delay delay wat ij wat ijdelay
i

i
i

j
j j j

L l L l
T T T T

v v


 
     (16) 

3.2 Traffic efficiency for the changed sequence 

The sequence of ship i and ship j is changed in this section, presuming that Eq. (4) is still 

satisfied. That is to say, ship i enters behind ship j, although ship i arrives the approach earlier. 

In general, anchorages lie near approaches. When ship i arrives, the ship would wait for ship j 

at the anchorage in Fig. 2(a) and then follow ship j as shown in Fig. 2(b). 

  

(a) (b) 

Fig. 2  ship i and ship j enter the waterway in a different sequence. (a) ship j is entering the waterway, and ship 

i is waiting at the anchorage, (b) ship i enters the waterway behind ship j. 

As shown in Fig. 2(a), ship i does not enter the waterway until ship j arrives and steers 

for di
s under the constraint of safe distance. As a result, the wait time of ship i is the sum of the 

difference of arrival time and the period of ship j navigating for di
s as shown in Eq. (17). After 

entering the waterway, ship i does not slow down, as shown in Eq. (18), because of the 

increasing distance from ship j. 

= /  wait arr arr s
j i i ji t d vT t    (17) 

0dec
iT    (18) 

Therefore, the delay time of ship i is expressed as Eq. (19). In the meantime, ship j does 

not wait and has the deceleration time shown in Eq. (20). 

 = /wait dec arr arr
i
delay s

ji i i ji t tT T d vT      (19) 

0waitdela de
j

y c
j jT T T     (20) 

Furthermore, Tji
delay, which is the overall delay time when ship j enters the waterway first 

and ship i enters the waterway afterwards, is expressed in Eq. (21). 
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/delay delay s
j

delay ar
i i

r arr
jji j i t tT T T d v      (21) 

4. Ship self-organizing cooperation model  

With regard to the transportation problem, it is usually time and space consuming [26] to 

calculate the solution using a deterministic algorithm. An algorithm that calculates all of the 

permutations is possible for traffic efficiency when many ships arrive in succession. However, 

the computations will grow exponentially according to the permutation combination formula, 

especially when it involves too many ships. Heuristic algorithms are usually used to solve such 

problems, as in Zhang et al. [5]. Nevertheless, it is usually challenging to obtain a mathematical 

expression when many ships are navigating with different speeds. In this section, a self-

organizing cooperation model is proposed to solve the problem. The fundamental idea of this 

model is that a slower ship yields priority to another faster ship to improve traffic efficiency 

employing a cooperation mechanism [27]. Cooperation usually refers to the process of groups 

of organisms working or acting together for joint or mutual benefit [28]. In this paper, it mainly 

denotes that ships follow simple local rules to closely approach optimal global coordination [29] 

in a distributed mode. 

4.1 Ship self-organizing cooperation algorithm 

The assumption is that ship i, ship j and ship k will arrive at the entrance in rapid 

succession and navigate through the waterway as shown in Fig. 2. To reduce the overall delay 

time, the sequence between ship i and ship j should be changed when Eq. (22) is matched 

besides Eq. (4). Otherwise, the original sequence is retained for the two ships. 

delay delay
ji ijT T   (22) 

If ship i and ship j follow the initial sequence of entering the waterway when Eq. (22) is 

not satisfied, the same method employed in section 3 is applied to calculate the delay between 

ship j and ship k. In the case that ship j would enter the waterway before ship i after calculation, 

ship k is faced with whether rearranging ship i and ship k is reasonable. In that situation, it is 

determined that ship i will wait for ship j in anchorage so that ti
in = ti

arr is no longer satisfied, 

and ti
in should theoretically be reassigned as expressed in Eq. (23). Eq. (23) indicates that ship 

i does not enter the waterway until ship j navigates a distance di
s in the waterway, as shown in 

Fig. 2(a). 

( /)/in arr arr arr s s
j i i j

arr
i ii j jt t t t d v t d v      (23) 

The deceleration criteria between ship i and ship k is shown in Eq. (24) for ti
in < tk

arr and 

omitting the influence of ship j. 
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) (( ) 

in arr
i

s
arr in wat wat

i

k

k
k

i

i
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k

L L d

v v

t t

v v

t t











   


  (24) 

Once Eq. (24) is satisfied, the criteria for a sequence change to improve traffic efficiency 

is presented in Eq. (25), which is similar to Eq. (22).  

  

0

0

0

/

0,

+

/

( )

delay delay
ki ik

delay wat ik wat ik
ik k

delay arr in
ki i

arr in
i i k

ik k
k

i k

s
k i k

s
k k

s
k i k

i

arr in
k i

v v

t t d v

t t d

Max d v t t

T T

L l L l
T T

T

v T
l v

v v

T




  
 










 

   
 

  






  (25) 

It is also possible that ti
in ≥ tk

arr. Supposing the safe distances for ship i and ship k are 

same for simplicity, ship i would wait for at least ti
in to satisfy the safe distance requirement, 

whereas the earliest time that ship k could enter the waterway is also ti
in. That is to say, the two 

ships will wait at the anchorage, and the earliest times at which they could enter the waterway 

are both ti
in. In that case, the faster ship should enter first to increase overall efficiency, as shown 

in Eq. (26). 

 and   should enter ahead of  ,  when 

  should enter ahead of  ,  when  and 

arr in
i

arr in
i

k i k

k k i

ship k ship i t t v v

ship i ship k t t v v

 











  (26) 

The problem here is to obtain details on arrivals of other ships. As a matter of fact, ship 

reporting systems [30] have been established in many restricted waterways and can be used to 

obtain position and dynamic information from passing ships. When a ship arrives at a report 

line, it should report its intention, arrival time and other information to the VTS centre for 

information sharing. Using an information inquiry and display system, all the ships could easily 

obtain other ships’ information, including the arrival list.  

According to local optimization, a ship only considers those ships that affect its 

navigation and puts others aside [31]. Under the assumption that every ship arrives at the 

approach at the time coinciding with its report, ships whose arrival times are earlier are the most 

likely obstacles in the waterway. Therefore, each ship only needs to find the target ship that 

will arrive at the waterway earlier for self-organization. Using the arrival list offered by VTS, 

every ship could seek out the target ship, even if the target ships are not detected by common 

instruments such as radar or AIS. Own ship could then ask for the target ship to wait at the 

file:///C:/Users/whonbo/AppData/Local/youdao/dict/Application/7.2.0.0703/resultui/dict/
file:///C:/Users/whonbo/AppData/Local/youdao/dict/Application/7.2.0.0703/resultui/dict/
file:///C:/Users/whonbo/AppData/Local/youdao/dict/Application/7.2.0.0703/resultui/dict/
file:///C:/Users/whonbo/AppData/Local/youdao/dict/Application/7.2.0.0703/resultui/dict/
file:///C:/Users/whonbo/AppData/Local/youdao/dict/Application/7.2.0.0703/resultui/dict/
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anchorage temporarily so that own ship is not hampered in the waterway. Own ship should not 

make a request to give way for local interests if Eq. (22) or Eq. (25) is not satisfied.  

The top level of the ship self-organizing cooperation algorithm (SSOCA) is presented in 

Tab. 1. According to Tab. 1, every ship reports the details of its navigational information to the 

VTS. The VTS then stores the information to ArrivingList. From ArrivingList, a ship can 

acquire the information of the last arriving ships before it. Once a ship has determined an entry 

sequence after calculating the delay times under different sequences, the decided sequence is 

reported and stored in SequenceList. The next ship behind in ArrivingList then undertakes 

further calculations. The procedure will proceed until all the ships are cleared from ArrivingList, 

which means that all the ships have determined their own sequences, and the self-organization 

is realized. 

Tab. 1  Pseudo code of SSOCA 

Input: ArrivingList 

1. SequenceList ← the first two ships from ArrivingList; 

2. Remove the first two ships from ArrivingList; 

3. while ArrivingList is not empty do 

4. 
    ShipTemp ← Collect the last two ships (ship i and ship j, ti

arr < tj
arr) in 

SequenceList and the first ship (ship k) in ArrivingList; 

5. 
if the entry sequence between ship i and ship j has not been changed in 

SequenceList then 

6. 
Tjk

delay ← Calculate the delay time of ship j and ship k when ship j enters 

waterway before ship k; 

7. 
Tkj

delay ← Calculate the delay time of ship k and ship j when ship k enters 

waterway before Ship j; 

8. if Tjk
 delay

 <= Tkj
 delay  then 

9.             ShipTemp ←ship i, j and k in sequence; 

10. else  

11. ShipTemp ←ship i, k and j in sequence; 

12.         endif 

13.     else 

14. 
Tik

delay ← Calculate the delay time of ship i and ship k when ship i enters 

waterway before ship k; 

15. 
Tki 

delay ← Calculate the delay time of ship k and ship i when ship k enters 

waterway before Ship i; 

16. if Tik
 delay

 <= Tki
 delay  then 

17. ShipTemp ←ship j, i and k in sequence; 

18. else 

19.       ShipTemp ←ship j, k and i in sequence; 

20. endif 

21.     endif 

22. SequenceList ←ShipTemp; 

23.     Remove ship k from ArrivingList; 

24.     Clear Tjk
delay, Tkj

delay, Tik
delay, Tki 

delay, ShipTemp; 

25. endwhile 

26. return SequenceList 
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The delay times of ships in different sequences are calculated according to the ships’ 

arrival times and speeds, which can be obtained from ArrivingList. Tab. 2 presents pseudo code 

for ship self-organizing cooperation. Unlike previous algorithms such as in [5] and [7], the main 

purpose of the algorithm is to decide the entry sequence in SequenceList rather than the entry 

time. In consideration of computation efficiency, every ship can obtain the sequence in 

SequenceList as long as it undertakes computation. Meanwhile, in order to be fair to all, the 

ships arriving first will be served first as much as possible. It also should be noted that it is 

assumed that all the ships are willing to make a sacrifice to promote local traffic efficiency. 

That is to say, there is a trade-off between equity and efficiency in the scheduling model. 

Furthermore, deceleration is deemed to accomplished instantly, and the safe distances for all 

the ships are the same for simplification.  

  

(a) (b) 

  

(c) (d) 

  

  

(e) (f) 

Fig. 3  ship i, ship j and ship k in different sequences of entering the waterway. (a) ship i is entering the 

waterway, ship j and k are approaching the entrance, (b) ship i is navigating in the waterway, ship k is entering 

the waterway, and ship j is waiting at the anchorage, (c) ship i is navigating in the waterway, ship j is entering 

the waterway, and ship k is approaching the entrance, (d) ship j is entering the waterway, ship i is waiting at the 

anchorage, and ship k is approaching the entrance, (e) ship j and ship i are navigating in the waterway, and ship k 

is approaching the entrance, (f) ship j is entering the waterway, and ship i and ship k are waiting at the 

anchorage. 
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The ship self-organizing cooperation in each round is described as follows. First, own 

ship looks for the two front ships in ArrivingList and then judges whether the two ships change 

the sequence in SequenceList. If the sequence is unchanged, own ship (for example, ship k in 

Fig. 3(a)) makes a further judgement of whether own ship will be influenced by the target ship 

ahead (for example, ship j in Fig. 3(a)) according to Eq. (4), omitting the other hampers. If so, 

Eq. (22) is the second criterion for changing the sequence. In other words, the better strategy 

is that the target ship awaits own ship when Eq. (4) and Eq. (22) are both satisfied, as displayed 

in Fig. 3(b). Otherwise, when either of Eq. (4) or Eq. (22) is not satisfied, it is more effective 

that own ship enters the waterway afterwards, as indicated in Fig. 3(c). 

Comparing the arrival times of two ships ahead in ArrivingList, own ship may find that 

they have already changed the sequence in SequenceList. Eq. (25) and Eq. (26) are applied in 

that circumstance. When ti
in < tk

arr, own ship (for example, ship k in Fig. 3(d)) confirms whether 

it will switch the order with the waiting target ship (for example, ship i in Fig. 3(d)) according 

to Eq. (24) and Eq. (25), leaving the others (for example, ship j in Fig. 3(d) and Fig. 3(e)) out. 

Otherwise, the more efficient sequence could be decided in accordance with Eq. (26), as 

indicated in Fig. 3(f).  

When all the ships are cleared from ArrivingList and confirm the sequence in 

SequenceList, the final entry sequence of all the ships can be obtained.  

Tab. 2  Pseudo code for ship self-organizing cooperation in each round 

Function Round Self-organization(); 

Input:  Lwat;                      % length of waterway 

Input:  ds ;                       % safe distance of ship  

Input:  ShipTemp;                 % ship i and j (ti
arr < tj

arr) are the last two 

ships in succession in SequenceList and ship k is the first ship in ArrivingList;  

Input:  ti
arr;                      % arrival time of ship i 

Input:  vi;                        % speed of ship i  

Input:  tj
arr;                       % arrival time of ship j  

Input:  vj;                        % speed of ship j  

Input:  tk
arr;                       % arrival time of ship k  

Input:  vk;                        % speed of ship k  

1. for each ship k in ShipTemp do 

2.    if the sequence between ship i and j in SequenceList is ship i and ship j in 

sequence  then       % the sequence is not updated 

3.         if  vj < vk and tk
arr – tj

arr < Lwat / vj – (Lwat - d
s) / vk then 

4.              Tk
0 ← Max(0, ds/ vj – (tk

arr – tj
arr)); 

5.              ljk ← (vj × (tk
arr – tj

arr + Tk
0) - ds) ×vk / (vk – vj); 

6.              Tjk
delay ←Tk

0 + (Lwat – ljk) / vj - (Lwat – ljk) / vk; 

7.              Tkj
delay ← tk

arr – tj
arr + ds / vk; 

8.              if Tkj
delay < Tjk

delay then  

9.                 ShipTemp ← ship i, k and j in sequence;      

10.              else 

11.                 ShipTemp ← ship i, j and k in sequence; 
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12.              endif 

13.         else 

14.            ShipTemp ← ship i, j and k in sequence; 

15.         endif 

16.    else                       % sequence has been changed 

17.         ti
in ← tj

arr + ds / vj; 

18.         if ti
in < tk

arr then 

19.             if vi < vk and tk
arr – ti

in < Lwat / vi – (Lwat - d
s) / vk then 

20.                Tk
0 ← Max(0, ds/ vi – (tk

arr –ti
in)); 

21.                lik ← (vi × (tk
arr – ti

in + Tk
0) - ds) ×vk / (vk – vi); 

22.                Tik
delay ← Tk

0 + (Lwat – lik) / vi - (Lwat – lik) / vk; 

23.                Tki
delay ← tk

arr – ti
in + ds / vk; 

24.                  if  Tki
delay < Tik

delay then 

25.                       ShipTemp ← ship j, k and i in sequence; 

26.                  else 

27.                       ShipTemp ← ship j, i and k in sequence; 

28.                  endif 

29.              else 

30.                    ShipTemp ← ship j, i and k in sequence; 

31.              endif 

32.         else          % ship i and k are both waiting at the anchorage; 

33.              if  vi < vk then 

34.                 ShipTemp ← ship j, k and i in sequence; 

35.              else 

36.                 ShipTemp ← ship j, i and k in sequence; 

37.              endif 

38.         endif 

39. endif 

40. endfor 

41. return ShipTemp 

4.2 Simple SSOCA and secondary SSOCA 

A simple SSOCA and secondary SSOCA are offered in addition to SSOCA. In view of 

the weaker computational capabilities of individual ships, the simple SSOCA model is proposed 

for easy calculation in Tab. 3. This model only refers to the arrival times of ships as expressed 

in Eq. (4) and ignores the calculation when the ship ahead could enter the waterway earliest, 

even if the ship ahead has changed the sequence, such as ti
in in Eq. (23). Hence, the 

computational process is simplified to a large degree. 
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Tab. 3  Pseudo code for simple SSOCA 

Input: ArrivingList 

1. SequenceList ← the first ships in ArrivingList; 

2. Remove the first ships from ArrivingList; 

3. while ArrivingList is not empty do 

4. 
    ShipTemp ← Collect the last ships (ship i) in SequenceList and the first ship (j) 

in ArrivingList; 

5. if  vi < vj and tj
arr – ti

arr < Lwat / vi – (Lwat – ds) / vj then 

6.    Tj
0 ← Max(0, ds/ vi – (tj

arr – ti
arr)); 

7.  Lij ← (vi × (tj
arr – ti

arr + Tj
0) - ds) ×vj / (vj – vi); 

8. Tij
delay ← Tj

0 + (Lwat – lij) / vi - (Lwat – lij) / vj; 

9.      Tji
delay ← tj

arr – ti
arr + ds / vj; 

10. if Tji
delay < Tij

delay then  

11. ShipTemp ← ship j and i in sequence;      

12.        else 

13.           ShipTemp ←ship i and j in sequence; 

14.  endif 

15. else 

16. ShipTemp ← ship i and j in sequence; 

17. endif 

18. SequenceList ←ShipTemp; 

19. Remove ship j from ArrivingList; 

20. Clear Tij
delay, Tji

delay, ShipTemp; 

21. endwhile 

22. return SequenceList 

In addition, it is noted that the sequence of a ship is just moved one step forward in the 

SSOCA model. Nevertheless, it is possible that the ship ahead still matches the requirements of 

both Eq. (4) and Eq. (22) after own ship has moved forward once in SequenceList. The further 

experiment is very necessary to inspect if own ship could continue to move forward for better 

results. Hence, an algorithm herein named the secondary SSOCA model, the pseudocode for 

which is shown in Tab. 4, is introduced to test that idea. The algorithm is performed with 

SSOCA twice, taking the SequenceList as the new ArrivingList in the secondary SSOCA model. 

Tab. 4  Pseudo code for secondary SSOCA 

Input: ArrivingList 

1. Obtain SequenceList according to SSOCA; 

2. ArrivingList ← SequenceList; 

3. Obtain the second SequenceList according to SSOCA; 

4. return the second SequenceList 

5. Experiments and analysis 

5.1 Simulation model 

The experiments performed for a restricted one-way waterway are presented in this 

section. Monte Carlo simulations, which are widely accepted in ship traffic studies, are used to 

file:///C:/Users/whonbo/AppData/Local/youdao/dict/Application/7.2.0.0703/resultui/dict/
file:///C:/Users/whonbo/AppData/Local/youdao/dict/Application/7.2.0.0703/resultui/dict/
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make an approximate evaluation by the law of large numbers, [32]. Arena software (version 

14.0) [33] was used to construct a ship traffic simulation model that includes four sub-models: 

arriving, self-organizing cooperation, navigation and departure. A top-level view of the model 

is shown in Fig. 4(a). Taking the process as an example, the arriving ships follow some kind of 

defined probability distribution. A ship’s attributes (including arrival time and speed) are 

assigned randomly when it is created by the ship arrival module. In the ship self-organizing 

cooperation module in Fig. 4(b), each ship then adjusts the entry sequence using SSOCA. After 

determining the entry sequence, the ship enters the waterway and navigates under the 

constraints of safe distance. Finally, the ship leaves the waterway through the ship departure 

module.  

 

 (a) 

 

 (b) 

Fig. 4  An Arena-based ship traffic simulation model. (a) Top-level view of the model, (b) Modules used for 

self-organizing cooperation. 
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In Fig. 4(b), the ship has priority to enter the channel in two cases. In case 1, when the 

arrival time of the ship is later than the entry time of the previous ship, three requirements 

must be satisfied: (1) its speed is larger than the previous ship, (2) the time interval between 

its arrival time and the entry time of previous ship is sufficiently small, and (3) the delay time 

can be shortened. In case 2, when the arrival time of own ship is earlier than the entry time of 

the previous ship, the ship has higher priority only when the first requirement in case 1 is 

satisfied.  

5.2 Parameter settings 

In accordance with Eqs. (16), (21) and (25), the delay time of a ship is related to the 

time interval between ships’ arrival times, speeds, channel length and safe distances. These 

simulation parameters and the ranges of the fixed steps over which they can updated (in the last 

column) are summarized in Tab. 5. According to a statistical analysis of traffic flow data for 

the Xiashimen Waterway in China, the ship arrival rule was subject to a Poisson distribution 

with a rate of arrival of 3 ships per hour, and the ship speeds obeyed a normal distribution. The 

base case values of mean speed and standard deviation of speed were designed as 10 knots and 

2 knots, respectively. The speeds were confined in the range between 4 and 40 knots. 99.73% 

of speed values fell within [4, 16] in accordance with three-sigma rule of thumb [34], so that 

ignoring values outside that range would pose very little influence on the normal probability 

distribution. Waterway lengths from 8 to 12 nautical miles and safe distances from 1000 to 

1400 meters were used in the model. Meanwhile, the safe distances for all ships were the same 

in a simulation. The above presumptions can be adjusted to real cases via statistical analyses of 

historical data on such parameters. Five inputs are therefore introduced: rate of arrival, mean 

speed, standard variation of speed, waterway length and safe distance.  

Tab. 5  Parameter settings 

Factor Base case value Fixed step Range 

Rate of arrival (h-1) 3  0.5  2.0-4.0 

Mean speed (kn) 10  0.5 9-11 

Standard deviation of speed (kn) 2  0.1 1.8-2.2 

Waterway length (nm) 10  1 8-12 

Safety distance (m) 1200  100 1000-1400 

Considering that waiting and ship speed reductions would influence traffic efficiency, the 

average of delay time is used to undertake a quantitative analysis of those influences. The 

average delay time is calculated as 

1 1 1

1 1 1
( ) ( )

m m m
delay wait dec out arr wat

i i i i i
ii i i

L
T T T t t

m m m v  

 
     

 
     (27) 

where ti
out is the departure time of ship i, which is obtained through simulation. On the one hand, 

(ti
out- ti

arr) displays the actual time consumed for ship i owing to waiting or deceleration. On the 

other hand, Lwat / vi is the shortest time consumed for ship i without waiting and deceleration. 

The difference between the two comprises the delay for ship i. 

Furthermore, the number of ships in all simulations was set to 2000, and each simulation 

was repeated 200 times. To ascertain the warm-up period, a scatter plot was used to observe 
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when the system reached a stable state. The horizontal axis of Fig. 5 represents simulation 

running time, and the vertical axis represents average delay time. As can be seen, 72 hours 

(approximately 260×103 seconds) of warm-up was sufficient.  

 

Fig. 5  Scatterplot from the ship traffic simulation model for the base case 

5.3 Results and analysis 

To undertake a comprehensive analysis, the following five simulation scenarios were 

used. 

1. Rate of arrival is a variable varied by fixed steps over its range, while the other 

parameters remain unchanged. 

2. Mean speed is a variable varied by fixed steps over its range, while the other parameters 

remain unchanged. 

3. Standard deviation of speed is a variable varied by fixed steps over its range, while the 

other parameters remain unchanged. 

4. Waterway length is a variable varied by fixed steps over its range, while the other 

parameters remain unchanged. 

5. Safety distance is a variable varied by fixed steps over its range, while the other 

parameters remain unchanged. 

By removing the data from the warm-up period, Arena generates mean values of the 

outputs at a 95% confidence level. The average delay times with rate of arrival, mean speed, 

standard deviation of speed, waterway length and safe distance under the different scenarios 

are presented in Fig. 6. The performance is analyzed by comparing the ship traffic simulation 

results determined using the SSOCA model with those of the other models in Fig. 6. In the first 

place, it can be seen that the factors had significant positive correlations with average delay 

time, with the exception of mean speed. The average delay time tended to increase with rate of 

arrival, standard deviation of speed, waterway length and safe distance but experienced a 

decreasing trend with mean speed. The tendency proves that traffic efficiency would decrease 

for more frequently arriving ships, smaller mean speeds, greater speed differences, greater 

waterway lengths and larger safe distances. 
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Fig. 6  Average delay times for different (a) rates of arrival, (b) mean speed, (c) standard deviations of speed, 

(d) waterway lengths and (e) safe distances. 
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It can be seen that the four lines are almost parallel and that the delay time for the FCFS 

model was always the highest, which shows that delay time was reduced with the variation of 

each factor in some of the methods. For the base case, the average delay time was reduced from 

550 seconds for FCFS to 418 seconds for SSOCA, i.e., 24.0% of the average delay time was 

eliminated. This indicates that the adjustments in the sequences of traffic flow in the waterways 

were greatly improved and the phenomenon of speed deceleration was alleviated when using 

the SSOCA model. Moreover, in comparison with FCFS, SSOCA’s advantage always held 

under different combinations of traffic flow parameters. It should be noted that four ships or 

more may change their sequences at higher arrival rates. Under such circumstances, the 

algorithm could also yield better performance, even if the possible additional interactions exist. 

The average delay time was reduced to 460 seconds for the simple SSOCA model applied to 

the base case. Only 16.3% of the reductions in delays showed that simple SSOCA was inferior 

to SSOCA. The average delay time was further reduced to 410 seconds for the base case using 

the secondary SSOCA model, which shows that the secondary SSOCA is superior to SSOCA. 

However, the SSOCA and secondary SSOCA results nearly overlapped, which means that only 

a small improvement was obtained with the SSOCA model. One reason is that a ship could 

seldom change its sequence beyond two times, considering the arrival time interval and speed 

variance between the ships set up in the experiments. 

To identify the traffic parameters that contribute significantly to the uncertainties of the 

models’ average delay times , sensitivity analyses [12] of the four models were performed. The 

results are presented in Tab. 6. Mean value of ship speed was most sensitive to average delay 

time. Recalling the decrease tendency shown in Fig. 6(b), large ship speeds are beneficial for 

improving the efficiencies of restricted waterways. The sensitivity of the standard deviation of 

speed was approximately half the mean speed and was followed by waterway length and rate 

of arrival. The safety distance was the least sensitive to average delay time. Noting that a 

constant safety distance was assumed in the simulations, it can be inferred that the assumption 

did not have an apparent influence on the results. Nevertheless, more investigations examining 

different safety distance values are necessary. Meanwhile, comparing the four approaches, the 

sensitivities for SSOCA were basically smaller than those for FCFS and the simple SSOCA 

model, which reflects the advantage of the SSOCA model vis-à-vis stability. 

Tab. 6  Parameter sensitivity of the four models 

Method 
Rate of 

arrival  

Mean 

speed  

Standard 

deviation of 

speed 

Waterway 

length 

Safety 

distance 

FCFS  1.71 6.03 3.25 1.88 1.08 

SSOCA  1.46 4.81 2.54 1.60 0.83 

simple SSOCA  1.60 5.26 2.80 1.64 0.50 

secondary SSOCA  1.43 4.71 2.45 1.54 0.81 

According to Fig. 5, there was a large uncertainty in the results of the simulation model. 

The 95% confidence intervals are listed in the 3rd column of Pogreška! Izvor reference nije 

pronađen.. The half width of confidence interval for delay time was approximately 1.5% of 

the mean value, which shows that the mean values were adequately precise when the 
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simulations were repeated 200 times. Furthermore, the smaller confidence interval for the 

SSOCA model was found to be comparable with those for FCFS and the simple SSOCA, 

indicating that satisfactory convergences can be achieved. 

Tab. 7 Comparisons among FCFS, SSOCA, simple SSOCA, secondary SSOCA and all permutation for the base 

case 

Model Average delay 

time (s) 

Confidence 

intervals (s) 

Computation 

cost 

Optimization 

FCFS 550  [542.28 557.72] 0 None 

SSOCA 418  [412.21 423.79] m Local 

Simple SSOCA 460  [453.04 466.96] m Local 

Secondary SSOCA  410  [404.26 415.74] 2m Local 

All permutation Unknown Unknown m! Global 

In addition, as an important part of computational complexity theory, the analysis of 

algorithms [35] provides theoretical estimates for the resources needed by any algorithm that 

solves a given computational problem. These estimates provide insights into reasonable 

directions in the search for efficient algorithms. In consideration of low computational 

complexity, a computation cost model substituted for usual run-time analysis [36] was applied 

to compare the algorithms. The computation cost model assigns a constant cost to every 

computation for each ship. The amounts of computations for the different models are also listed 

in Pogreška! Izvor reference nije pronađen.. In the FCFS model, ships are only required to 

report their own details to the VTS, and no computations are needed. A ship needs only make 

a single set of computations in the SSOCA and simple SSOCA models, but twice the 

computations are made in the secondary SSOCA model, which is unsatisfactory. Furthermore, 

as far as the central control mode is concerned, the number of computations even reaches m 

factorial when using the all permutation algorithm with m ships. Although the all permutation 

model is more likely to realize global optimizations, computational cost increases greatly with 

the number of ships. In a word, the SSOCA model is the best option for balancing performance 

and computation. 

6. Conclusions 

The SSOCA model, a self-organizing cooperation strategy, has been proposed in this 

paper. Delay time is presented as an evaluation indicator for traffic efficiency and includes wait 

time and deceleration time. A mathematic model of delay time with different sequences was 

deduced based on following theory. A self-organizing cooperation model was offered that 

enables slower ships to assign higher priorities to faster ships. By obtaining information on 

nearby target ships, each ship can interactively choose the optimum sequence in accordance 

with a local benefit delay time model. An Arena-based ship traffic simulation model was 

constructed to compare the SSOCA model with the FCFS model and two other associated 

models. The results show that SSOCA model can effectively reduce the average delay times 

suffered by ships to acceptable levels. Furthermore, the model can also obtain satisfying results 

with different combinations of factors, including high arrival rates. Moreover, a trade-off 

between efficiency and computation is achieved by allocating computation burden to each ship.  
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In future work, an anchorage and berth cooperation model can be considered by taking 

their capacities as constraints in order to make the self-organizing model more reasonable and 

practical. In addition, ultra-large-scale ships can only enter waterways during periods of high 

tides due to their deep draughts. In addition, pilotage is compulsory in particular areas, but there 

are often too few pilots for ships. These restrictions can also be considered in the models.  
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