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Summary 

Within the scope of the presented work a hull girder ultimate strength analyses of the 

double hull oil tanker structures damaged by the collision or grounding is performed. An 

incremental-iterative progressive collapse analysis method prescribed by the forthcoming 

IACS Harmonized Common Structural Rules (H-CSR) is used for determination of the 

ultimate vertical bending moment and collapse sequence of the considered structures. Three 

characteristic variants of the oil tanker main frame cross sections of a different geometry and 

size (Aframax, Suezmax and VLCC) are considered. The position of a ship’s side and/or 

bottom damage is defined in accordance with the IACS H-CSR. Proposed analytical 

formulations of the relationship between reduction of the hull girder ultimate vertical bending 

moment (with respect to the undamaged state) and damage size are based on the results of a 

systematic variation of a ship’s side or bottom damage size. Finally, comparison of the 

collapse sequences determined for the undamaged and damaged state in upright position 

(defined by IACS H-CSR) of the considered structure of the Aframax ship example is 

performed. 

Key words: Damaged ships; hull girder ultimate strength; grounding; collision; double hull 

tanker structure, residual strength. 

 

1. Introduction 

A large number of ship accidents resulting in a loss of cargo, pollution of the 

environment and a loss of human life still occur, despite the advancements in a ship design, 

production and navigation procedures. Accident scenarios typically include collision, 

grounding, fire and explosion. In that respect, it is of a great importance to ensure acceptable 

safety level for ships damaged in those accidents. When faced with any of these accidental 

situations, the ship operator’s need to take rapid decisions regarding the salvage actions and 

further steps should be based on evaluation of the damage effects on the ships safety using the 

residual strength assessment procedure. Adequate hull girder strength in intact condition does 

not necessarily guarantee an acceptable safety margin in damaged conditions [1]. 
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A draft of the IACS Harmonized Common Structural Rules (H-CSR) [2] has been 

released for the industry review in April 2013. In comparison to the IACS CSR currently in 

force [3] IACS H-CSR contains additional requirement regarding the residual strength of 

tankers and bulk carriers, i.e. the hull girder ultimate strength in prescribed damaged 

conditions. According to the IACS H-CSR, the residual strength is evaluated for the two 

specific accident scenarios: collision and grounding. A similar approach can be found in ABS 

Guide to accessing hull girder residual strength for tankers [4] but with the different request 

regarding extent of damage. 

Among a number of the contemporary methods for the hull girder strength evaluation, 

various incremental-iterative progressive collapse analysis method based on Smith’s approach 

[5] are arguably the most widespread. Furthermore, rules of many classification societies, 

including IACS CSR and IACS H-CSR, prescribe utilization of incremental-iterative 

procedures based on Smith’s approach for evaluation of the longitudinal ultimate load-

capacity of ship structures both in intact and damaged condition. Overview of various existing 

methods for the hull girder ultimate strength calculation in intact condition can be found in [6-

10], while the critical review of their accuracy can be found in [11 , 12]. Recently, the residual 

hull girder strength has been investigated through two different approaches: nonlinear FEM 

[13, 14 and 15]. and progressive collapse methods (PCM) based on Smith’s approach using 

incremental-iterative or pure incremental procedures [16-20]. 

When the cross section is asymmetrically damaged like in a way of collision damaged, 

the neutral axis (NA) rotates and the problem can be treated as biaxial bending problem. 

Recently several procedures have been suggested to include NA shift into account. Choung et 

al. [21] provided two convergence criteria to find translational and rotational locations of the 

neutral axis plane for intact and damaged vessels. Definition of three types of asymmetries of 

a ship section was proposed: material-, load-, and geometry-induced asymmetries. Concept of 

moment plane (MP) was introduced to define the heeling angle of ship section. It is suggested 

that force equilibrium and force vector equilibrium criteria are both necessary to determine 

new position of NA due to both translational and rotational shifts. Recently Fujikubo et al. 

[22] have suggested updated pure incremental method (PCM) to derive the biaxial bending 

moment-curvature relationship taking into account the rotation and translation of the neutral 

axis in asymmetrically damaged hull girders, while Makouei et al. [23] further tested the 

accuracy of method presented by Fujikubo. However this effect is much more expressed for a 

single skin bulk carrier structures compared to double hull tanker structures examined in the 

research performed by Fujikubo et al. [22]. 

Intention of the present study is to investigate the influence of the damage size on the 

ultimate hull girder capacity of oil tankers for the two characteristic types of accidents: 

collision and grounding. Proposed analytical formulations of the relationship between the 

reduction of the hull girder ultimate bending moment (with respect to the undamaged state) 

and damage size are based on the analysis of the results of a systematic variation of damage 

extent of ship’s side or bottom. 

2. Capacity models of considered hull girder structures 

Three characteristic variants of the double hull oil tanker midship sections of a different 

geometry and size (Aframax, Suezmax and VLCC) are considered. All examined structures 

are designed according to the pre-CSR requirements of different classification societies. The 

main particulars of the tanker structures considered by this study are given in Table 1. 

Examined structures denoted as models M2 and M3 (Suezmax and VLCC tanker) belong to 

the standard set of the ISSC benchmark examples and all relevant data regarding their 

material and geometric properties are given in Technical Committee IV.2. [9].and Technical 



Residual hull girder ultimate strength of a double hull oil tankers J. Andrić, S. Kitarović, K. Pirić 

  

3 

Committee III.1 [8]. Figures 1-3 illustrates one-bay structural models at midship section of all 

considered structures in intact condition. Structural model definition, essential for all ultimate 

bending capacity calculations performed by the co-authors for the purposes of the present 

paper is done using the computer program MAESTRO [24]. For all models no corrosion 

deduction has been implemented, so as-built scantlings were used for the study. 

Table 1 Main particulars of the examined ships 

  M1 - Aframax tanker M2 - Suezmax tanker M3 - VLCC tanker 

LBP (m) 235 265 320 

B (m) 42 46.4 58 

D (m) 21 23.2 30 

CB (-) 0.86 0.83 0.82 

 

 

 

 

Fig. 1 Structural model of the Aframax double hull oil 

tanker (model M1). 

Fig. 2 Structural model of the Suezmax double hull oil 

tanker (model M2). 

 

 

Fig. 3 Structural model of the double hull VLCC (model M3). 

3. Damage scenarios 

The damage due to grounding and collision are the most common reasons of the 

destruction of ship structures. Ship to ship collision causes the bow of the striking ship to 

collapse and the side of the struck ship to be damaged. It is the most destructive among all 

possible damages. Ship grounding on rock(s) results in a cutting or crushing of the bow 
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bottom [20]. The basic definition of the damage extent in this study was performed according 

to IACS H-CSR [2] and a specified extent of damage for collision and grounding type of 

accident is illustrated by Figures 4 and 5, respectively. The hull girder ultimate bending 

capacity with the specified damage extents is to be checked. 

 

 

Fig. 4 Damage extent for collision specified by IACS H-CSR [2]. 

 

Fig. 5 Damage extent for grounding specified by IACS H-CSR [2]. 

As stated by Notaro et al. [13] the ultimate capacity in damaged condition is not largely 

influenced by the shape and the longitudinal extension of the damage. The main factor leading 

the capacity reduction is the vertical and transversal extent of the damage. With respect to 

those remarks the performed systematic variation of a damage size is based on the following 

principles: 

 For the collision case depth of the damage penetration is kept constant (d=B/16), as 

specified by the Rules, while the damage penetration height h is systematically varied 

from 0.1D to 0.8D, with the step of 0.1D. For this case the damage is on one side only 

and located immediately below the freeboard deck; 

 For the grounding case height of the damage penetration is kept constant (h=min(B/15, 

2)) as specified by the Rules, while the damage penetration breadth b is systematically 

varied from 0.1B to 0.8B, with the step of 0.1B. For this case the damage is considered 

to be located symmetrically from the CL on PS and SB side. 

Nine different models were generated for the each of three tankers (eight damaged and 

one intact) and used for each damage case. Several examples of a damaged ship models are 

presented in Figures 6 and 7 for the collision and grounding case, respectively. 
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Fig. 6 VLCC oil tanker midship section (M3), relevant for collision case with damage size of 0.2D and 0.5D 

 
 

Fig. 7 Suezmax oil tanker midship section (M2), relevant for grounding case with damage size of 0.3B and 0.8B 

4. Hull girder ultimate strength results 

Imminent occurrence of the inter-frame collapse prior to any other feasible global 

collapse mode ensures that the global structural behaviour of the complex monotonous thin-

walled structures submitted to flexure can be idealized in accordance with the beam bending 

theory during the whole collapse process. This implication represents the fundamental 

premise of the Smith’s method [5] which is considered to be the first among established 

progressive collapse analysis methods that incorporate more sophisticated consideration of the 

structural collapse sequence and structural post-critical response of structural elements. 

Development of the original method subsequently stimulated proposition of various methods 

based on Smith's approach [16, 25, 26]. In shipbuilding practice, rules of many classification 

societies and their associations [2, 3] prescribe utilization of the incremental-iterative 

procedures based on Smith’s approach for evaluation of longitudinal ultimate capacity during 

the structural design synthesis. The ultimate vertical bending moment capacities of the hull 

girder transverse section, in hogging and sagging conditions, are defined as the maximum 

values of the curves of the vertical bending moment capacity versus the curvature χ of the 

transverse section considered. The curve is obtained through an incremental-iterative 

approach. Within the framework of this paper, IACS incremental-iterative progressive 

collapse analysis method is employed, as previously implemented within OCTOPUS [27] 

computer program. In performed calculations several assumptions were made: 

 Calculation procedure for the vertical ultimate bending moment capacities of a damaged 

section is same as for the intact condition and follows recommendations given in IACS; 
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 Damaged area, as defined in Ch. 3, carries no loads and is therefore removed from the 

models; 

 Only vertical bending is considered. The effects of the shear force, torsion loading, 

horizontal bending moment and lateral pressure are neglected; 

 The ultimate bending capacity of the damaged transverse cross section is calculated with 

the model kept in upright position and a neutral axis rotation is not considered. Implication 

of that assumption, and possibly error can be advocate to be below 10 % due to fact that 

the same method is defined in H-CRS [2] with prescribed safety factor equal to CNA=1.1 

for collision and CNA=1.0 for grounding case. Some suggestions regarding the inclusion of 

the neutral axis rotation are given in Choung et al. [21] and Fujikubo et al. [22]). Fujikubo 

et al. [22] also reported that influence of NA rotation on hull girder ultimate strength is 

very low for tankers in collision case. For bulk carriers the effect is more significant due to 

single side shell structure and around 8% reduction of ultimate strength can be expected for 

70% side damage. 

In this study the residual strength index (RIF), originally introduced by Fang and Das 

[28] and used by Hussein and Soares [20], as a way to compare the ultimate strength capacity 

of the damaged hull (MU,Damage) with the intact one (MU,Intact), is used to systematically 

investigate the relationship between the ultimate strength capacity and a damage size: 
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where ADamage and AIntact are cross sectional area in damaged and intact condition, 

respectively; Iy,Damage and Iy,Intact  are vertical moments of inertia for cross sections in damaged 

and intact condition, respectively; WB,Damage and WB,Intact are bottom sectional modulus in 

damaged and intact condition, respectively; WD,Damage and WD,Intact are deck sectional modulus 

in damaged and intact condition, respectively. 

 

4.1. Grounding case 

Summary of the obtained results for the grounding case is given in Table 2. 

Damage ratio  for grounding has been specified as breadth of damage area (bdamage) 

divided by the breadth of the ship (B), see Table 2. 

From the presented results it can be noted that the reduction of the hull girder ultimate 

bending moment, expressed through the RIF, is larger in the hogging than in the sagging case 

for all evaluated tankers. Data given in Table 2 enable easy establishment of the dependence 

between the reduction of the cross sectional characteristics (RIF_A, Iy, WD, WB) and RIF. 

For example, a damage size ratio of  = 0.6 in the grounding case (specified by the 

IACS (2014) as the requested damage value), cause average reduction of the cross section 

area by 13.9%. At the same time, the ultimate hogging and sagging moments are reduced in 

average (for all three models) by 19.7% and 8.3%, respectively. Graphical presentation of the 

relationship between RIF and a damage size ratio is presented in Figure 8. From the data 
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presented in Table 2 and Figure 8, a linear equations are proposed to describe the relationship 

between the RIF and a damage size ratio ( = bdamage/B): 

RIFgrounding-SAGG = 1.008 - 0.158      (3) 

RIFgrounding-HOGG = 1.006 - 0.341      (4) 

Hussein and Guedes Soares published [15] a similar research and specified a unique 

expression for the double hull oil tanker structure: 

RIFgrounding = 1.02 - 0.254       (5) 

Table 1 Residual strength index for grounding. 

Damage ratio: M1-Aframax tanker 

=bdamaged/B RIF_M-sagg RIF_M-hogg RIF_A RIF_Iy RIF_WD RIF_WB 

0 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 0.988 0.966 0.973 0.969 0.988 0.992 

0.2 0.977 0.934 0.952 0.942 0.976 0.983 

0.3 0.966 0.907 0.931 0.914 0.964 0.975 

0.4 0.951 0.867 0.907 0.881 0.949 0.938 

0.5 0.933 0.829 0.877 0.839 0.929 0.864 

0.6(H-CSR request) 0.910 0.789 0.853 0.802 0.910 0.804 

0.7 0.891 0.760 0.833 0.768 0.892 0.752 

0.8 0.859 0.713 0.800 0.713 0.862 0.671 

M2-Suezmax tanker 

=bdamaged/B RIF_M-sagg RIF_M-hogg RIF_A RIF_Iy RIF_WD RIF_WB 

0 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 0.991 0.975 0.977 0.972 0.989 0.950 

0.2 0.980 0.947 0.955 0.944 0.977 0.902 

0.3 0.968 0.912 0.931 0.911 0.963 0.849 

0.4 0.953 0.873 0.906 0.876 0.947 0.795 

0.5 0.937 0.830 0.882 0.838 0.929 0.740 

0.6(H-CSR request) 0.922 0.797 0.860 0.803 0.912 0.692 

0.7 0.902 0.757 0.838 0.766 0.892 0.643 

0.8 0.874 0.707 0.807 0.714 0.864 0.578 

M3-VLCC tanker 

=bdamaged/B RIF_M-sagg RIF_M-hogg RIF_A RIF_Iy RIF_WD RIF_WB 

0 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 0.987 0.967 0.977 0.974 0.989 0.952 

0.2 0.976 0.941 0.956 0.947 0.977 0.906 

0.3 0.964 0.912 0.935 0.919 0.964 0.861 

0.4 0.950 0.879 0.910 0.886 0.948 0.808 

0.5 0.935 0.849 0.889 0.856 0.934 0.762 

0.6(H-CSR request) 0.920 0.823 0.870 0.827 0.919 0.722 

0.7 0.899 0.792 0.850 0.794 0.901 0.677 

0.8 0.876 0.757 0.824 0.754 0.879 0.624 

Collapse sequences in hogging and sagging are analyzed in detail for undamaged and 

damaged case ( = 0.6) for all three examined cross sections. Vertical bending moment 

capacity versus the curvature χ curve is presented for the undamaged and damaged conditions 

for the Aframax tanker model in hogging, see Figure 9, as an example. 
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Fig. 8 RIF for grounding in sagging and hogging cases. 

 

Fig. 9 Collapse sequences of Aframax tanker in grounding, hogging case. 
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Due to the reduced cross section, it can be noted that the damaged section has reduced 

bending stiffness and reaches the ultimate bending capability faster that the undamaged 

section. Also, the damaged section reaches the ultimate bending capacity at the lower 

curvature compared to the undamaged section. 

Due to the ineffectiveness of the damaged bottom plating, which does not contribute to 

the bending stiffness of the cross section, the inner bottom plating is imposed with the higher 

compressive load. When inner bottom structure collapses due to buckling, the damaged 

section reaches the ultimate bending capacity. It can be noted that the undamaged section 

reached its ultimate bending capacity just after the bottom plating collapsed, but without the 

collapse of the inner bottom plating. Furthermore, it can be also noticed that the deck structure 

is the structural part that collapses first, due to the high tensile stresses in both cases. 

In-house software OCTOPUS [27] used in this study enables identification of the 

characteristic structural collapse sequence accounting for the load-shedding effect during the 

progressive load incrementation. This capability can enable determination of more rational 

distributions of the longitudinally effective material within the process of concept design 

synthesis, i.e. during the consideration of various topologic variants and/or materially-

geometrical properties of the feasible structural cross-sections, since it can point to the more 

efficient ways of required structural safety level accomplishment. Furthermore, collapse 

sequence can also be considered as a rational pathfinder during the material reduction process 

of the initially over-dimensioned cross section (for the case of structural safety criteria over-

satisfaction). 

4.2. Collision case 

Summary of the obtained results for the collision case are given in Table 3. 

Damage ratio  for the collision is specified as the height of the damage area (hdamage) 

divided by the depth of the ship (D), see Table 3. 

From the presented results it can be noted that the reduction of the hull girder ultimate 

bending moment expressed through residual RIF is larger in sagging than in hogging case for 

all evaluated tankers. This is the opposite trend with respect to the findings obtained for the 

grounding case. 

Case with damage size ratio of  = 0.6 (specified by the IACS H-CSR [2] as requested 

damage value), causes an average reduction of the cross sectional area by 11.5%. At the same 

time, the ultimate hogging and sagging moments are reduced in average (for all three models) 

by 12.2% and 18.8%, respectively. 

Graphical presentation of the relationship between the RIF and a damage size ratio is 

presented in Figure 10. 

From the data presented in Table 3 and Figure 10, a linear equations can be used to 

represent the relationship between the RIF and a damage size ratio ( = hdamage/D): 

RIFcollision-SAGG = 0.9927 - 0.5802 + 0.45162
     (6) 

RIFcollision-HOGG = 0.9948 - 0.3494 + 0.25442     (7) 

In [20], Hussein and Guedes Soares proposed a unique expression for the double hull oil 

tankers: 

RIFcollision = 0.98 - 0.084       (8) 
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Table 3 Residual strength indices for collision. 

Damage ratio: M1-Aframax tanker 

=hdamaged /D RIF_M-sagg RIF_M-hogg RIF_A RIF_I RIF_WD RIF_WB 

0 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 0.925 0.951 0.973 0.948 0.896 0.978 

0.2 0.895 0.932 0.958 0.928 0.898 0.978 

0.3 0.848 0.907 0.936 0.911 0.869 0.979 

0.4 0.827 0.894 0.921 0.905 0.857 0.982 

0.5 0.810 0.882 0.902 0.902 0.849 0.987 

0.6(H-CSR request) 0.802 0.874 0.879 0.901 0.846 0.990 

0.7 0.802 0.873 0.861 0.901 0.847 0.988 

0.8 0.803 0.872 0.836 0.897 0.850 0.974 

M2-Suezmax tanker 

=hdamaged /D RIF_M-sagg RIF_M-hogg RIF_A RIF_I RIF_WD RIF_WB 

0 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 0.931 0.959 0.975 0.953 0.929 0.987 

0.2 0.897 0.937 0.960 0.935 0.902 0.984 

0.3 0.856 0.910 0.939 0.920 0.877 0.986 

0.4 0.837 0.895 0.922 0.914 0.865 0.989 

0.5 0.826 0.882 0.903 0.912 0.859 0.994 

0.6(H-CSR request) 0.820 0.873 0.885 0.912 0.858 0.996 

0.7 0.820 0.869 0.862 0.911 0.859 0.990 

0.8 0.821 0.869 0.852 0.909 0.861 0.983 

M3-VLCC tanker 

=hdamaged /D RIF_M-sagg RIF_M-hogg RIF_A RIF_I RIF_WD RIF_WB 

0 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 0.934 0.957 0.975 0.949 0.928 0.981 

0.2 0.896 0.935 0.960 0.929 0.899 0.977 

0.3 0.860 0.917 0.942 0.915 0.876 0.978 

0.4 0.834 0.903 0.926 0.908 0.864 0.981 

0.5 0.818 0.892 0.906 0.905 0.857 0.986 

0.6(H-CSR request) 0.813 0.888 0.891 0.904 0.855 0.988 

0.7 0.811 0.887 0.873 0.904 0.856 0.986 

0.8 0.812 0.886 0.853 0.767 0.857 0.976 

 

Collapse sequences in hogging and sagging are analysed in detail for the undamaged 

and damaged cases ( = 0.6), for all three examined cross sections. Vertical bending moment 

capacity versus the curvature χ curves are presented for the undamaged and damaged 

conditions for Aframax tanker model in sagging, see Figure 11, as an example. 

A similar collapse sequences are identified for the damaged and undamaged conditions 

in the hogging and sagging case. The critical structural part which collapses first is the deck 

and after the part of the side structure (outer and inner) collapsed, the cross section reached its 

ultimate bending moment capacity. 
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Fig. 10 RIF for collision in sagging and hogging case. 

 

Fig. 11 Collapse sequences of Aframax tanker in collision, sagging case. 
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5. Conclusions 

Intention of the present study was to investigate the influence of the damage size on the 

ultimate hull girder capacity of the oil tankers for the two characteristic types of accidents: 

collision and grounding, using an IACS incremental-iterative progressive collapse analysis 

method. 

Influence of the different ship size, structural configuration and damage extent (size and 

location) in collision and grounding on the hull girder residual ultimate strength has been 

systematically investigated. Analytical formulations of the relationship between reductions of 

the hull girder ultimate bending moment (with respect to the undamaged state) and a damage 

size ratio has been proposed based on the analysis of the results of a systematic variation of 

damage extent of ship’s side or bottom. Those design equations and associated diagrams can 

be used for the rapid assessment of the hull girder residual ultimate strength and give first 

basis for the emergency situation decision making. 

In-house software used in this study enables identification of the characteristic structural 

collapse sequence and can be used for determination of more rational distributions of the 

longitudinally effective material within the design process. 

Future investigation will go a step further with respect to the extension of the employed 

progressive collapse analysis method regarding the possibility to calculate vertical and 

horizontal ultimate bending moments and to enable rotation of the cross sectional neutral axis 

in damaged conditions. 
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