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Radial basis function (RBF) networks are the new, recently developed, meshless explicit, 
piecewise geometry description methods. Among many useful properties the RBFs have, they 
belong to Reproducing Kernel Hilbert Spaces and have the best approximating property, and 
they therefore might be suitable for describing complex ship geometry. Moreover, they are the 
solution of scattered data interpolation problem and can achieve high accuracy. Various types of 
radial basis functions and their parameters will be investigated and their applicability in 2D ship 
geometry description studied in this paper.
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Opisivanje brodske geometrije globalnom 2D RBF interpolacijom 

Izvorni znanstveni rad

Mreže radijalnih osnovnih funkcija (RBF) su nove, nedavno razvijene bezmrežne eksplicitne 
metode opisivanja geometrije po dijelovima. Između brojnih korisnih svojstava koje imaju, RBF 
pripadaju Reprodukcijskim jezgrama Hibertovog prostora i imaju svojstvo najbolje aproksimacije, 
pa bi stoga mogle biti prikladne za opisivanje složene brodske geometrije. Štoviše, one su rješenje 
problema interpolacije raštrkanih podataka te mogu postići visoku točnost. U ovom radu će se 
istražiti razni tipovi radijalnih osnovnih funkcija te njihova svojstva, i ispitati njihova primjenjivost 
na dvodimenzionalno opisivanje brodske geometrije.

Ključne riječi: globalna interpolacija, dvodimenzionalno, visoka preciznost, po dijelovima, 
RBF, opisivanje brodskih rebara

Authors’ Address (Adresa autora):

University of Split, Faculty of Electrical 

Engineering, Mechanical Engineer-

ing and Naval Architecture (FESB), 

Ruđera Boškovića b.b., 21000 Split, 

Croatia

E-mail: dario.ban@fesb.hr; bblag@

fesb.hr; jani.barle@fesb.hr, 

Received (Primljeno): 2010-01-20

Accepted (Prihvaćeno): 2010-02-085

Open for discussion (Otvoreno za 

raspravu): 2011-09-30

1 Introduction

In the last three decades several authors like Micchelli [1], 
Schaback [2], Wendland [3], and Wu [4] continued the work of 
Bochner [5] and Schoenberg [6], [7] on positive defi nite functions 
and work from the middle of the 20th century, and developed new 
calculating meshless techniques applicable in geometry descrip-
tion. Additionally, in 1950 [8], Nachman and Aronszajn defi ned 
the concept of Reproducing Kernel Hilbert Spaces, setting thus 
foundations for linear radial basis function (RBF) networks.

Among meshless methods, the radial basis functions (RBF) 
are recognized as the solution of scattered data interpolation 
problem and are therefore applicable for high precision math-
ematical representations of 2D and 3D objects. They are a direct, 
explicit, interpolating representation method, in nature opposite 
to approximating parametric methods based on Bezier, Basis (B-
spline) or Non-Uniform Rational Basis splines (NURB spline), 
mostly used in shipbuilding industry computer programs today.

In general, explicit representation methods have problems 
with accurate description of non-bijective parts and form breaks, 
together with singularity of inversion matrix. Usually, complex 
geometries like ship’s hull form cannot be described properly 

using explicit representations without decomposition to bijective 
parts called manifolds, or transformation methods.

The applicability of different types of RBFs to ship geometry 
representation using global RBF interpolation procedures is the 
subject of this paper. The characteristics of different radial basis 
functions and their parameters will be observed, checking their 
accuracy and properties for 2D representation of ship’s test sec-
tions without and with camber. The quality of RBF representation 
will be thus tested for the description of form discontinuity as one 
of the major advantages of NURB representation.

2 Reproducing Kernel Hilbert Spaces

The theoretical background for RBF network to be defi ned as 
linear combination of certain basis functions came from the theory 
on Reproducing Kernel Hilbert Spaces (RKHS) introduced by 
Nachman and Aronszajn [8]. RKHSs are positive defi nite kernels 
that ensure pointwise convergence and ortonormal bases defi ned 
with the statement:
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where: x j N x IRj
s, ,..., ;= ∈1   is input data set, K are reproducing 

kernels, B
1
 are basis functions, F 

i
 are radial basis functions, t

i
 

are the development centres of RBF with i = 1,...,O, where O is 
the number of centres, w

i
 are RBF network weight coeffi cients, 

ϕ is radial basis function based on Euclidian norm between 
input data and centres, and f̂ (x) is the generalized interpolation/ 
approximation function.

3 RBF networks defi nition

3.1 Neural networks analogy

The RBFs are multivariate functions that can be used for 
calculation of required number of output variables, at once. They 
can be, by analogy with neural networks, defi ned as direct, feed-
forward single-layered neural networks with possibly infi nite 
input and output data sets, and their dimension, as shown in 
Figure 1. Their input and output variables are connected with 
weighted sum of radial basis functions translated around the 
points called centres, whose number depends on mathematical 
procedure chosen for object representation.

Figure 1  Single-layer feed-forward RBF neural network
Slika 1  Jednoslojna, unaprijedna RBF neuronska mreža

3.2 Interpolation matrix invertibility

For basis functions B
j
 to be invertible their interpolation 

matrix must be in Haar space, i.e. satisfy the condition:
 

(2)

When the number of elements of input data set equals the 
number of elements in centres set, the interpolation network with 
an interpolating matrix is obtained. Otherwise, the approxima-
tion network is obtained with a corresponding approximation 
matrix. 

The interpolation procedures with high generalization ac-
curacy are the target of this paper, and therefore the number of 
centres O will always equal the number of elements in input data 
set N and centres set equals input data set. 

3.3 Calculation procedure

The solution of scattered data interpolation problem based 
on RKHS is unique RBF network weight coeffi cient parameters 
w

i
, equalling the number of development centres.

The neural network’s weight coeffi cient values can be ob-
tained by direct inversion of the neural network interpolation 
(activation) matrix H multiplied by target vector y, i.e. with:

 
(3)

where: y - target vector (output data set), H – neural network 
activation (interpolation) matrix, N×N, with elements r

ji
:

 
(4)

where: r
ji 
is the norm, x xj i−  ,  j, i = 1, …, N.

The main disadvantage of RBF networks is the problem with 
possible singularity of above interpolation matrix, (4). That matrix 
must be well-posed and the main criterion for it is that interpola-
tion matrix is positive defi nite.

3.4 Generalization and accuracy

The RBF network weights w
i
 calculation procedure consists 

of two parts: evaluation and generalization. In the evaluation 
phase shown above, the network weight coeffi cients have to 
be calculated and corresponding accuracy on the input data set 
checked. After the weights are calculated, the RBF network 
goodness test is performed checking generalization accuracy 
over testing data set.

3.4.1 Evaluation accuracy

The usual accuracy measure used is RMSE (Root Mean 
Squared Error):

 
(5)

with N - input data set number, y
i
, 1,...,N - output data set, f(x) 

- radial basis function, and it will be used here, too.

3.4.2 Generalization accuracy

Usually, the evaluation accuracy does not ensure achieving 
overall required accuracy for geometric object to be described, 
so generalization accuracy has to be performed using additional 
data set.

 
(6)

where T is test data set x yT T,{ } .

In the case of ship hull forms, the generalization accuracy 
checking will be performed calculating local error on the places 
of interest, like the bilge or transition from the bilge to the fl at 
of the side, with acceptable value set to 0.1 mm.
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4  Radial basis functions and their 
characteristics

The radial basis functions are defi ned as the functions based 
on norms (usually Euclid’s L

2
 norm) between input set data points 

and centres of development points. 
 

(7)
 
They are usually defi ned with only one parameter called shape 

parameter, c, and their defi nition for the interpolation case is:
 

(8)

RBFs have some good intrinsic properties, being invariant 
on:

− translation, 
− rotation, and 
− refl exion. 
These properties will be used in the selection of coordinate 

system representation.
The main criterion for the basis function to be acceptable 

as RBF is that it ensures interpolation matrix invertibility. That 
criterion can be fulfi lled if the function chosen is positive defi nite 
and radial.

4.1 Positive defi nite functions

Positive defi nite functions were fi rst studied by Mathias, 
1923, [9] and Stewart was in 1976 [10] the fi rst who waded cor-
responding theory to strictly positive defi nite functions. Finally, 
Micchelli [1] fi rst connected scattered data interpolation with 
positive defi nite function.

4.1.1 Positive defi nite functions

The complex defi ned function Φ:IR ICs →  is called positive 
defi nite on IRs if for any N different points x x IRN

s
1, , ∈  and 

c = [ ] ∈w w ICN

T N
1, ,  holds:

 
(9)

 
The basis properties of positive defi nite functions are:
1) Non-negative linear combination of positive defi nite 

functions is positive defi nite. If Φ Φ1,..., N  are positive defi nite 
on IRs and w j Nj ≥ =0 1, ,...,  then:

 
 

is positive defi nite, also. Moreover, if any F
j
 is strictly positive 

defi nite and corresponding weight coeffi cient c
j
 > 0 then F is 

positive defi nite. 
2) Φ 0( ) ≥ 0 ,
3) Φ Φ−( ) = ( )x x ,
4) Any positive defi nite function is bounded, i.e.
 Φ Φx( ) ≤ ( )0 ,
5) If Φ  is positive defi nite with Φ 0( ) = 0  then Φ ≡ 0 ,

6) The product of (strictly) positive defi nite functions is 
(strictly) positive defi nite function.

The properties 1) and 2) follow directly from the defi nition 
of positive defi nite functions (9). The property 5) follows from 
4), and 6) is the result of the Schur theorem from linear algebra 
theory, described by Wendland [11].

The functions are positive defi nite if they satisfy one of the 
following three criteria:

− strictly positive defi nite, 
− completely monotone, and
− multiply monotone functions.
When Fourier transform is not available, there are two alter-

native criteria for decision whether a function is strictly positive 
and radial on IRs: 

− complete monotone for: 
−( ) ( ) ≥ > =( )1 0 0 0 1 2

l l r r lϕ , , , , , ...     (but not constant), see 
Schoenberg [7], (converse also holds, see Wendland [11]) for 
the case of all s, and 

− multiply monotone:
′′ ≥ϕ 0 (non-negative, non-increasing, and convex, Williamson 

[12]), for some fi xed s.

4.2 Strictly positive defi nite radial basis functions

When choosing basis functions B
i
 that generate strictly 

positive defi nite RBF interpolation matrix, Micchelli [1], a well-
posed interpolation problems are always produced. According 
to Wendland’s theorem [11], the radial basis function ϕ x( )  is 
strictly positive defi nite and radial on IRS if and only if ϕ x( )  
its s-dimensional Fourier transform is non-negative and not 
identically equal to zero. 

The examples of strictly positive defi nite radial functions are 
stated in Fasshauer [13]:

− Gaussian functions – radial functions,
− Laguerre-Gaussians – infi nitely differentiable, oscillatory 

functions (not strictly positive defi nite and radial on IRS for all 
s), Andrews at al. [14],

− Matérn functions – depending on the modifi ed Bessel 
function of the second kind (sometimes called modifi ed Bessel 

Φ x x( ) = ( )ϕ
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Table 1  Strictly positive defi nite radial functions based on Gaus-
sian function

Tablica 1 Striktno pozitivno definirane funkcije temeljene na 
Gaussovoj funkciji

Basis Functions, F(x) Equations
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function of the third kind), or MacDonald’s function, or Sobolev 
splines of order v, Schaback [2],

− Poisson functions - oscillatory function that is radial and 
strictly positive defi nite on IRS (and all IRσ ≤ s), not defi ned in 
origin, but can be extended to be infi nitely differentiable in all 
of IRS, Fornberg at al. [15].

Above functions are Gaussian generalizations and can be set 
in one category, i.e. only basis Gaussian will be investigated in 
this paper. Table 1 shows the functions that are generalizations 
of Gaussian function.

Another group of strictly positive defi nite and radial basis 
functions that are not Gaussian based functions are as stated in 
Fasshauer [13]:

− Inverse Multiquadrics – infi nitely differentiable, see Hardy 
[16],

− Generalized Multiquadrics, see Fornberg and Wright 
[17],

− Potentials and Whittaker’s radial functions, Abramowitz 
and Stegun [18].

− Truncated power functions – the functions with compact 
support.

Table 2 shows strictly positive defi nite radial functions that 
are not Gaussian generalizations.

Table 2 Strictly positive defi nite radial functions not based on 
Gaussian function

Tablica 2  Striktno pozitivno defi nirane funkcije koje nisu temeljene 
na Gausovoj funkciji

Basis Functions, 
j(r) 

Equations

Inverse 
Multiquadrics r c IN x IRs2 2 0 2+( ) ≤ ∉ ∈

β
β β, , ,

Generalized
Multiquadrics 1 0 22 2+( ) > ∉ ∈r c IN x IRsβ

β β, , ,

Potentials and
Whitteker 1 2 2

1

0

−( ) ( ) ≥ ⎢⎣ ⎥⎦ ++
−

∞

∫ rt f t dt k s
k

, /

Truncated Powers 1 −( )+r
l

where  r x xi= −
2

.

4.3 Conditionally positive defi nite radial functions

Another class of radial basis functions are conditionally posi-
tive defi nite functions of order m, see Micchelli [1], and Guo at al. 
[19]. These are the functions that provide the natural generaliza-
tion of RBF interpolation with polynomial precision, important 
for high accuracy required for hull geometry description. 

According to the theory of conditionally positive defi nite 
radial functions the RBF network defi nition can be changed to:

 
(10)

where: p pM1  form the basis for the M m
s m= ( )−
+ −

1
1  – dimensional 

linear space Πm
s

−1  of polynomials of total degree less than or equal 

to m – 1 in s variables.

There are conditionally and strictly conditionally positive 
defi nite functions. The condition for function F to be condition-
ally positive defi nite is that it possesses a generalized Fourier 
transform of order m, continuous on IRs 0{ } , i.e. if F̂    is non-
negative and non-vanishing.

To ensure unique solution M, additional conditions need to 
be added:

 
(11)

with polynomial degree at most m – 1.
The function F̂   is strictly conditionally positive defi nite 

function of order m on IRS  if its quadratic form is zero only for 
w ≡ 0 .

If their conditional positive defi niteness can be connected to 
complete monotone and multiple monotone functions and not 
generalized Fourier transform, we are obtaining the criteria for 
function F to be strictly conditionally positive defi nite radial 
function.

The examples of conditionally positive defi nite functions are 
shown in Fasshauer [13]:

− Generalized multiquadrics, Hardy [16],
− Thin plate splines (without shape parameter c, 2D polyhar-

monic splines), see Duchon [20],
− Radial powers (without shape parameter c, 3D polyhar-

monic splines), with no even powers.
Table 3 shows the list of some conditionally positive defi nite 

radial functions.

Table 3 Conditionally positive defi nite radial functions
Tablica 3 Uvjetno pozitivno defi nirane radijalne funkcije

Functions
j(r) 

Equations

Generalized
Multiquadrics 1 0 22 2+( ) > ∉ ∈r c IN x IRsβ

β β, , ,

Thin-plate 
spline

−( ) ∈ ∈+
1

1 2β β βr r IN x IRslog , ,

Radial
Powers

−( ) > ∉ ∈1 0 2
β β β βr IN x IRs, , ,

5 Polynomial precision

In general, solving interpolation problem with extended ex-
pansion with polynomial term leads to solving a system of linear 
equations of the form:

 
(12)

where H
ji
 = B

j
(x

i
), j, i = 1, …, N, P

jl
 = p

l
(x

i
), l = 1, …, M, w = 

[w
1
, …, w

N
]T, ω = [ω

1
, …, ω

M
]T , y = [y

1
, …, y

N
]T and 0 is a zero 

vector of length M.
The above system of linear equations can be solved using 

criterion (11) only, and therefore unique solution can be obtained 
by imposing this criterion. 

There is the minimal polynomial degree to be used depending 
on particular RBF selected [21] as shown in Table 4.
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Table 4 The minimal degree of the polynomial depending on the 
RBF chosen

Tablica 4 Minimalni stupanj polinoma ovisno o odabranoj RBF

Basis function
j(r) 

Default 
degree

Minimal required degree

2D 3D

Biharmonic 1 1 0

Triharmonic 2 2 1

Multiquadric 2β 2 0

2 0
2 1

2

β

β β
<

≥ = −
:

:

 No polynomial

d

The goal of this paper is to select RBFs with high accuracy 
so polynomial precision is required. The RBFs having this prop-
erty are acceptable only, and the basis functions will be selected 
among them.

6 Compactly supported radial basis 
functions

Compactly supported RBFs are strictly conditionally posi-
tive functions and radial of order m > 0, but not for all s on IRS, 
see Micchelli [1]. The acceptable range of compactly supported 
RBFs is defi ned for some restricted s range, with condition 

s k m2 2⎢⎣ ⎥⎦ ≤ + − , i.e. maximal s value. This restriction ensures 
that F is integrable and therefore possesses classical Fourier 
transform F that is continuous. For integrable functions, the 
generalized Fourier transform coincides with the classical Fourier 
transform.

The compactly supported functions j 
s,k

 are all supported on 
[0,1] and have polynomial representation there, with minimal 
degree for given space dimension s and smoothness 2k.

These functions j 
s,k 

 are strictly positive defi nite and radial 
on IRs and are of the form:

 
(13)

with a univariate polynomial j 
s,k

 of degree s k2 3 1⎢⎣ ⎥⎦ + + . 

In order to obtain compact support the distance between 
points needs to be divided by some value, d, that can be larger 
than points distance.

For example, the Wendland’s CSRBFs [3], are obtained from 
truncated power function ϕ l

l
r= −( )+1  by dimension walk and 

repeatedly applied operator I, and we obtain: ϕ ϕs k
k

s kI, /= ⎢⎣ ⎥⎦+ +2 1 .  
Table 5 shows the list of some compactly supported functions, 

see Wendland [3], Wu [4], Buhmann [22].
The greatest advantage of CSRBFs is sparsing interpolation 

matrix H to some quasi-diagonal form, i.e. compact support en-
sures that many elements of matrix H become zero. In that way, 
the inversion of interpolation matrix becomes easier, reducing 
quadratic matrix to some more computable one. 

7 Global interpolation of 2D ship geometry 
with radial basis functions

The conditionally positive defi nite and radial functions have 
polynomial precision when applied to scattered interpolation 
problem that is required for high accurate hull form geometry 
description. 

When used in global interpolation those functions have global 
support. Globally supported functions chosen are:

− MQs,
− Inverse MQs,
− Generalized MQs,
− Thin-plate splines.
Additionally, compactly supported functions have polynomial 

representation on [0,1] and are suitable also for achieving high 
accuracy, and the functions to be used are:

− Wendland CSRBFs.
Therefore, the functions from Tables 3 and 4 are chosen for 

ship geometry modelling in this paper, with compact supported 
functions limited to Wendland’s functions for s = 3. Table 6 shows 
selected functions to be tested for accuracy in ship geometry 
description using RBF interpolation procedures.

Table 6 Testing radial basis functions
Tablica 6 Radijalne osnovne funkcije koje će se testirati

Functions
j(r)

Equations

MQ & Inverse 
MQ r c IN x IRs2 2 2+( ) ∉ ∈

β
β, ,

Generalized MQ 1 0 22 2+( ) > ∉ ∈r c IN x IRsβ
β β, , ,

Thin-plate 
splines

−( ) ∈ ∈+
1

1 2k k sr r k IN x IRlog , ,

Wendland’s 
Compactly 
Supported RBFs

ϕ

ϕ

ϕ

3 0

2

3 1

4

3 2

6

1

1 4 1

1 3

,

,

,

= −( )
= −( ) +[ ]
= −( )

+

+

+

r

r r

r 55 18 32r r+ +⎡⎣ ⎤⎦

8 RBF parameters selection

The radial basis functions chosen have a few parameters 
depending on their type. Wendland’s CSRBFs have compact sup-

ϕ s k
s kp r r

r
,

, , , ,

,
=

( ) ∈[ ]
>

⎧
⎨
⎪

⎩⎪

 

         

0 1

0 1

Table 5 Compactly supported functions
Tablica 5 Funkcije s kompaktnom podrškom

Functions
j(r) 

Equations

Wendland ϕ

ϕ
s

l

s

r l s k

r

,

,

, /0

1

1 2 1

1

= −( ) = ⎢⎣ ⎥⎦ + +

= −( )
+

+

 with 
ll

s

l

l r

r l l r

+

+
+

+( ) +⎡⎣ ⎤⎦
= −( ) + +( ) +

1

2

2 2 2

1 1

1 4 3 3ϕ , ll r+( ) +⎡⎣ ⎤⎦6 3

Wu ϕ

ϕ

s

s

r r r r r

r

,

,

2

5 2 3 4

3

1 8 40 48 25 5

1

= +( ) + + + +( )
= +( )

+

++ + + +( )4 2 316 29 20 5r r r

Buhmann Φ = − + − +12 21 32 12 14 4 3 2r r r r rlog
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port diameter d as parameter together with space dimension s and 
smoothness 2k. The rest of the functions have shape parameter c 
as parameter, together with the function exponent β.

8.1 MQRBFs

The MQRBFs are the functions described with one shape 
parameter c and exponent β value. Their high accuracy is re-
quested in this paper, and therefore they are used together with 
polynomial term.

8.1.1 Exponent b values 

The properties of multiquadric radial basis function can 
be clearly observed by graphical plot of Gamma and inverse 
Gamma function. 

MQRBFs generalized Fourier transform has form for x IRs∈ :

 
(14)

where: G is Gamma function, K
V
 is modifi ed Bessel function of the 

second kind of order v (MacDonald’s function), shape parameter 
c > 0and x is input variable.

Corresponding plot of Gamma and inverse Gamma func-
tion is:

Figure 2 Gamma and inverse Gamma functions plot
Slika 2  Graf Gama i inverzne Gama funkcije

If we observe the Gamma function in the denominator, its 
plot self-explanatory shows effi cient exponent b values to be 
used for MQRBFs, Figure 2. Obviously, integer b values should 
be avoided when using L

2
 norm because of zero values.

8.1.2 Shape parameter c

The shape parameter c determines the shape of MQRBF cho-
sen. The sensitivity diagram, Figure 3, shows the typical relations 
between shape parameter c and corresponding RMSE values.

It can be seen from the c – RMSE sensitivity diagram in 
Figure that the acceptable values of shape parameter c for high 
accuracy to be obtained are near zero value. Therefore, those 
values will be applied for MQRBFs in ship geometry description 
of 2D sections.

8.2 Wendland’s CSRBFs

The selection of different smoothness 2k, and the diameter 
of compact support are crucial for the representation properties 
of CSRBFs. 

Corresponding compact support diameter is the parameter 
that quality of RBFs description mostly depends on and it will 
be varied in the results study in the next chapter

9 Results

The results of the RBF interpolation of the test section for the 
above chosen representative functions from Table 6 are extended 
with the polynomial of minimum degree. The accuracy of the 
description is checked on ship’s midship section with and without 
camber for chosen RBFs. 

The RBF network quality of 2D ship section description will 
be observed for three corresponding description capabilities:

1. the description of form breaks,
2. the description of rounded form parts like the bilge,
3. the transition from rounded to fl at parts, like the transition 

from the bilge to the fl at of the side.
The break of the form between the deck and the side is 

checked against large oscillations characteristic for explicit in-
terpolation procedures (“Gibbs phenomenon”) for general cargo 
ship test-section.

The quality of the representation of the rounded bilge part and 
its transition to the fl at of the side is checked on the main frame of 
one tanker with a fl at bottom, fl at sides and a rounded bilge with 
constant radius. This frame is chosen in order to check the quality 
and the accuracy of the RBF description of rounded geometry 
parts connected by the fl at of the side by 90 degrees. 

9.1 Calculation accuracy

The results of RBF interpolation of the test sections for the 
ship geometry with and without camber are shown in Table 7 
in order to observe RBF interpolation accuracy and quality of 
description of the ship’s test section.
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Figure 3 Sensitivity diagram c – RMSE 
Slika 3    Dijagram senzitivnosti c – RMSE
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Table 7 RBF interpolation results of the ship’s test section
Tablica 7 Rezultati RBF interpolacije brodskog rebra za provjeru

Function
Without Camber

With Camber and   
Additional points

RMSE Err
max

RMSE Err
max

MQ, β = 1/2,       
c = 0.01

1.57⋅10-10 1.34⋅10-4 4.69⋅10-9 8.51⋅10-3

MQ, β = 3/2,       
c = 0.01

6.16⋅10-8 9.69⋅10-5 1.45⋅10-1 2.65⋅10-1

MQ, β = 5/2,       
c = 0.01

2.06⋅10-5 1.78⋅10-2 1.15⋅104 2.06⋅104

Generalized MQ, 
β = 1/2, c = 0.01

1.09⋅10-10 3.65⋅10-7 6.04⋅10-9 8.51⋅10-3

Generalized MQ, 
β = 3/2, c = 0.01

5.39⋅10-8 9.69⋅10-5 2.62⋅10-1 -

Generalized MQ, 
β = 5/2, c = 0.01

2.43⋅10-5 1.78⋅10-3 4.33⋅103 7.75⋅103

Inverse MQ, 
β = 1/2, c = 0.11

3.10⋅10-12 1.50⋅100 3.58⋅10-9 1.48⋅100

Inverse MQ,
β = 3/2, c = 0.11

1.33⋅10-12 5.36⋅100 4.34⋅10-10 5.36⋅100

Thin-plate 
spline, k = 2, 

1.03⋅10-9 1.55⋅10-3

Osc.
3.13⋅10-5 1.47⋅10-1

Osc.

Thin-plate 
spline, k = 4

9.07⋅10-6 3.75⋅10-3

Osc.
8.27

1.48⋅102

Osc.

Wendland
k = 0, d = 2.5

6.55⋅10-14 3.64⋅10-1 4.00⋅10-13 3.64⋅10-1

Wendland
k = 1, d = 2.5

2.02⋅10-9 4.33⋅10-2 1.06⋅10-7 1.66⋅10-2

Wendland
k = 2, d = 2.5

1.22⋅10-8 5.74⋅10-2 4.35⋅10-4 2.40⋅100

Wendland
k = 0, d = 5

9.20⋅10-14 9.22⋅10-2 1.84⋅10-12 9.17⋅10-2

Wendland
k = 1, d = 5

3.80⋅10-9 9.54⋅10-3 1.07⋅10-4 4.44⋅10-3

Wendland
k = 2, d = 5

1.98⋅10-7 9.94⋅10-3 2.94⋅100 4.94⋅100

(Note: “Osc.” marks large bottom end oscillations)

The acceptable values of global and local representation are 
obtained for the test-section without camber only, with MQRBF 
and generalized MQRBF with β = 3/2 giving acceptable val-
ues. 

The results for the section with camber do not have required 
Err

max
 accuracy, with Wendland’s CSRBF with s = 2, k = 1 and 

d = 5 having results the closest to the required ones. After the 
diameter d is set to 6.8, better values are obtained: RMSE = 
5.0⋅10-4 and Err

max
 = 9.66⋅10-4, showing CSRBFs dependency 

on that parameter.
It has to be noted, that MQRBFs with β = 1/2 and Wendland’s 

function with k = 0 give straight lines of the description with C0 
continuity, and therefore they can be neglected.

9.2 Section without camber

The results for the section without camber are acceptable for 
almost all RBF choices except thin-plate spline that oscillates 
near the bottom. 

Figure 4 shows the acceptable MQRBF representation of 
the test-section with β = 1.5, and with Ncrt number of drawing 
points.

Figure 4 The result of the MQRBF generalization of the ship test-
section with b = 3/2, c = 0.01

Slika 4 Rezultat poopćavanja brodskog test-rebra pomoću 
MQRBF sa b = 3/2, c = 0,01

The oscillations of the description at the transition from the 
rounded bilge to the fl at side are shown in Figure 5.

Figure 5 The zoom of MQRBF generalization of the ship test-sec-
tion with b = 3/2, c = 0.01

Slika 5 Povećanje MQRBF poopćenja brodskog test-rebra sa b 
= 3/2, c = 0,01 
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Figure 5 is Figure 4 zoom, and it shows slight oscillations near 
the curves transition from the rounded bilge to the straight side, 
as shown in Figure 5, of order 10-4 that can be taken as acceptable 
value. The additional points around transition can straighten the 
RBF curve in the fl at part, this enabling required transition. 

9.3 Section with camber

For the RBF description of the section with camber, the break 
of the form is the problem that cannot be solved acceptably for 
all chosen functions. 

Because of large oscillations of RBF descriptions at the upper 
section end, at shear strike, a single point is added very near it 
to stabilize the generalization curve at the distance 10-4 from the 
top at the side. After stabilization, the only accurate and smooth 
functions are Wendland’s functions with k = 1, s = 2 and d = 
5, with a slightly lower local accuracy Err

max
 than required, as 

shown in Figure 6.

Figure 6 Wendland’s CSRBF generalization of the ship’s test-sec-
tion with camber

Slika 6 Poopćavanje brodskog test-rebra s prelukom Wendlan-
dovom CSRBF

In order to adequately describe curved and fl at parts of the 
section, additional points are added, thus showing the need for 
adjustments in RBF description. The advantage of these adjust-
ments is in the fact that the required accuracy is easy to achieve, 
and a small number of added points is needed for high quality of 
description, thus showing fl exibility of RBF representation.

9.4 Description of the rounded bilge with transition to 
the fl at of the side

The RBFs capability of rounded parts description, with some 
radius, is observed in the description of the midship section of 
the test tanker with transition to the fl at of the side.

 The bilge is described in two ways:
− with standard point distribution, and
− with Chebyshev points.

When described with standard point distribution, the section 
bilge is described on “standard” height point positions: 0, 0.01, 
0.025, 0.100, 0.250, 0.500, 0.75, 1.000, 1.250, 1.500, 1.750, 
2.000, 2.250, 2.500 metres. The rest of the section is described 
with equally distributed heights on the side and with equally dis-
tributed points on the bottom with some appropriate distance. 

After calculations are made for chosen RBFs, the results are 
acceptable for standard shipbuilding point distribution only, and 
not for Chebyshev points. In mathematical sense, that means 
when the points are regular they will produce poor representation, 
with unexpected oscillations on the curved and fl at parts for the 
description of the bilge transition to the fl at of the side. 

Moreover, the results are tolerant for MQRBFs only, show-
ing the problems with compactly supported RBFs when applied 
in global context.

Figure 7 shows the MQRBF descriptions of the tanker test-
section, without camber, and standard point distribution of the 
bilge.

Figure 7 Bilge and bilge transition description with MQRBF de-
scribed by standard point distribution

Slika 7 Uzvoj i prijelaz s uzvoja na ravni bok opisan pomoću 
MQRBF sa standardnim rasporedom točaka

It can be seen from Figure 7 that the quality of description is 
not good enough, with low Err

max
 value. Two additional points 

are added to improve the section description, on heights: 0.041 
and 2.493, as shown in Figures 8 and 9 below. 

After that, the representation has improved to required Err
max

 
and RMSE values with better quality of the circle arc description 
of the bilge. 

It can be seen that the RBF description of conic sections 
depends on the number and position of the input points and is 
not natural property like in NURB splines. The required accuracy 
cannot be obtained in the curved part of the section with the 
transition to straight parts, without local adjustments of shape 
parameter c. So, in order to obtain a higher accuracy, parameter 
c should be changed from global to local parameter, but that is 
out of the scope of this paper.

Once the required accuracy is obtained, scaling can be used 
to transform the RBF description to the actual bilge radius.
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Figure 8 Bilge and bilge transition description with MQRBF de-
scribed by standard point distribution and additional 
two points

Slika 8 Opis uzvoja i prijelaza na ravni bok opisan MQRBF sa 
standardnim točkama i dvije dodatne točke

10 Example of RBF representations of other 
ship frame

The above presented examples of frame description are fo-
cused to the accuracy of the description of some rounded bilge 
and to the transition to the fl at of the side. The following example 
of frame description will show RBF description capabilities of 

Figure 9 Bilge zoom description, with MQRBF and 2 additional points added, and the discrepancy from ideal bilge 
                circle arc by the bilge curve length
Slika 9 Uvećani uzvoj, opisan sa MQRBF sa 2 dodane točke, s odstupanjem od idealnog luka kružnice po duljini 
               krivulje uzvoja

Figure 10 MQRBF generalization with b = 3/2, c = 0.001 of multiple 
curved aft frame with camber and bulb

Slika 10 Opis višestruko zakrivljenog krmenog rebra sa prelukom 
i bulbom MQRBF poopćenjem sa b = 3/2  c = 0,001
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multiply curved frame with camber. Figure 10 shows RBF de-
scription of the aft frame of the general cargo test ship with high 
curvature, bulb and camber. 

This example shows the capability of RBF networks in 
very accurate global description of multiple curved frames with 
camber, and therefore it can be assumed that RBF networks are 
suitable for 2D ship frames description.

11 Conclusion

The RBF interpolation is applicable in 2D ship geometry 
description, extended with polynomial terms of minimal degree, 
when conditionally positive defi nite radial functions are used.  

The high accuracy required can be obtained by input point 
data set adjustment, with less effort needed than in spline based 
methods. The transition from the rounded bilge to the fl at of the 
side is comparable to NURB and B-splines, with possible adjust-
ments using added points in order to achieve required smoothness 
of the rounded part, and fl atness of the straight part of the section. 
The same can be concluded for the description of knuckles where 
the adjustment of input data set must be performed, too.

The bijection problems overall can be solved by geometric 
transformations, satisfying C continuity requirements.

Overall conclusion is that RBF interpolation procedures are 
comparable to those based on B-splines and NURB splines, and 
the effort should be done to further improve RBF representation 
of straight and rounded parts and to extend this work to corre-
sponding 3D representations of the hull form.
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