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Summary 

Present work describes a simple dynamical model for riverboat motion based on the 

square drag law. Air and water interactions with the boat are determined from aerodynamic 

coefficients. CFX simulations were performed with fully developed turbulent flow to 

determine boat aerodynamic coefficients for an arbitrary angle of attack for the air and water 

portions separately. The effect of wave resistance is negligible compared to other forces. Boat 

movement analysis considers only two-dimensional motion, therefore only six aerodynamics 

coefficients are required.  The proposed model is solved and used to determine the critical 

environmental parameters (wind and current) under which river navigation can be conducted 

safely. Boat simulator was tested in a single area on the Ljubljanica river and estimated 

critical wind velocity. 

Key words: CFD; quadratic drag law; shallow riverboat; critical wind speed; critical 

current speed; 

1. Introduction 

Determining resistance and seakeeping for different boat types using a CFD approach is 

advancing rapidly and many recent studies acknowledge its importance [1, 2]. Prediction of 

resistance is the oldest application of CFD in ship hydrodynamics and its accuracy has 

improved significantly. Simulations show an average error of 3.3%  (displacement) for 

resistance in both high and low Fr (Froude number) scenarios in recent studies [3]. The use of 

CFD tools is now readily available and puts prediction of resistance and seakeeping within 

reach for most users. In this study, Ansys CFX package served as the simulation platform for 

the calculation of force and moment coefficients. 

The primary goal of this work is to establish a complete and simple mathematical model 

of boat dynamics that can be used in the analysis and estimation of riverboat critical 

environmental parameters for safe river navigation [2, 4-7]. A critical point on the Ljubljanica 

river (Figure 6) was under investigation. Figure 1 illustrates a typical boat on the Ljubljanica 

river. Riverboats are flat bottomed boats with a small keel and draft and a large 

superstructure. The ratio of length to beam compared to sea boats is small. In this study, the 

wave resistance phenomena is not taken into account in the model, because it is assumed that 

predominately the calm water prevails and its magnitude is much smaller compared to the  
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drag force. Wave resistance is only relevant in the xB direction (Figure 2) and does not 

influence dynamics in other directions as friction force (Drag) does. To keep model simple the 

effect of wave resistance force compared to other friction forces can be neglected.  External 

forces such are wind and current are incorporated into the model by using the squared 

resistance law. CFD simulations served to incorporate the effect of the apparent direction of 

external fluid flow on boat direction into the model (Figure 2) and the boat aerodynamic 

coefficients were obtained for rotated boat geometry. For the upper portion of the boat (air), 

boat geometry was rotated by 180o, and for the underwater portion of the boat, boat geometry 

was rotated by 90o. Afterwards, a single spot on the Ljubljanica river called Špička was 

investigated in order to estimate critical wind velocity.   
 

2. Model 

The mathematical model of boat motion makes a few assumptions: (a) the boat is rigid 

body and oscillations are ignored, (b) the boat is symmetrical with respect to its xB axis 

(Figure 1), (c) boat motion is restricted to two-dimensional motion only, and roll and pitch 

oscillations are ignored. Restrictions are possible because of the specific boat geometry, as 

they are much wider than conventional boats. As mentioned in the introduction, the 

foundation of the model is the square drag law: 
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where F is the force exerted on the body by external fluid flow, M is the moment exerted on 

the body by external fluid flow, C is an aerodynamic coefficient depending on the relative 

angle of fluid flow, S is boat frontal cross-sectional area, h is the moment arm from arbitrary 

 

 

Fig. 1 Riverboat 3D figure with corresponding dimensions and boat coordinate system (xB, yB, zB) centred on 

the centre of gravity (CG), designed in SolidWorks. 
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point O to the CG,  is the fluid density (air 1.228 kg/m3, water 1000 kg/m3), and v is the 

relative fluid flow speed in [m/s]. In Figures 4 and 5, aerodynamic coefficient diagrams for 

the air and water portions of the boat are shown. In both diagrams, drag (CD) force, side (CS) 

force, and yaw (CY) moment coefficients depend on the apparent fluid flow direction 

R (Figure 2). The drag force coefficient is an external force component in the direction of the 

Bx axis in the boat coordinate system, the side force coefficient is an external force component 

in the direction the of By axis in the boat coordinate system, and the yaw moment coefficient is 

a moment of external fluid flow acting around the zB axis, with its origin on the boat’s centre 

of gravity (CG). In the simulations of fluid flow motion around the riverboat there is a distinct 

difference between two cases: the upper structure portions and the underwater structure 

portion (Figure 1). The upper structure portion is subject to air flow and the inlet simulation 

velocity was set to 20 m/s. The underwater part is subject to water flow and the inlet 

simulation velocity was set to 2 m/s. These are the typical maximal average velocities for air 

and water on the Ljubljanica river. 

In order to elaborate on the dynamical model of boat motion, boat kinematic equations 

describe the motion of about the boat’s centre of gravity CG: 
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where: 

,B Bx y   boat CG coordinates in the inertial coordinate frame (x, y). 

v , vx y
  boat velocities in the boat coordinate frame (xB, yB).  

   angular boat velocity centred on CG. 

   boat course with respect to the inertial coordinate frame (x ,y).   

 

Fig. 2 External forces with defined angles and relative direction in the boat coordinate system (xB, yB). 
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Velocities can be determined using the following set of Newton-Euler equations: 
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where: 

; , ,A W P

x D D xF F F F   external and propulsion forces in the xB direction in the boat 

frame. 

; , ,A W P

y S S yF F F F  external and propulsion forces in the yB direction in the boat 

frame. 

; , , ,A W P

y P

RM M M M F x  external and propulsion moments in the boat frame, where 

Px  is the distance to CG from the stern midpoint (propeller 

coordinate). 

0J   boat inertial moment.   

 

Index A stands for air, W for water, R for rotation, and P for propulsion. All forces and 

moments are calculated from the apparent flow velocity and direction. Boat motion and 

environmental flows are merged into apparent flow variables (velocity and direction) called 

the external force and moment. There is distinction between two types of external effects: air 

and water. The rotational moment RM  requires extra words to clarify its origin. It comes 

from the boat’s rotation about its centre of gravity (zB axis in Figure 1), causing rotational 

resistance. There is another distinction between the two sides of the boat for the rotational 

moment. The forward portion (F) is the portion of the boat where the y component of the 

apparent velocity v ( v y ) has the opposite direction with respect to boat rotation. In this case,  

 
Fig. 3 Diagram of wind vector (vA), current vector (vW), and propulsion vector (vP) with appropriate distances 

from the vector origin to the boat’s centre of gravity (xA, xW, xP). 
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the total velocity acting on the side of the boat is the sum of v y  and x , where ω is boat 

angular velocity and x is the distance from its centre of gravity CG. The backward portion (B) 

is the opposite side from the F portion, where the apparent velocity acts in the same direction 

as boat rotation and the total velocity is the difference of  v y  and x . In cases with high 

apparent velocity, the moment can also change signs. Thus, it is a need to distinguish between 

two cases for the back side. When the y component of apparent velocity is below the maximal 

tangential velocity ( / 2L ) at the extreme boat bow or stern, and above the maximal 

tangential velocity, the following set of equations defines the boat rotational moment: 

 
Fig. 4 Boat air drag aerodynamic coefficients. CD, CS, and CY are drag, side force coefficient, and yaw moment 

coefficient. 𝜑 is the apparent wind direction. Cross markers show data obtained from CFD  simulations and 

curves show plots of Eq. (9) 
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 where R

SC  is the side force coefficient at 90R  . The set of Equations (2)-(4) determines 

the complete boat motion in two dimensions. In addition to Equations (2)-(4), there must be 

specified the value of external (apparent wind and current) and propulsion forces, and their 

moments, according to the apparent flow velocity and direction specified in Eq. (1), as 

explained at Figure 2. In order to determine the apparent velocity, vR, the next equation must 

be solved (explanation in Figure 2): 

 E B R R E B    v v v v v v  (5) 

and the apparent velocity magnitude of external fluid flow is 

    
22

v v cos v v sin vR E E x E E y      (6) 

with direction: 
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The environmental fluid direction E  (explanation in Figure 2) is calculated from the true 

flow direction E  and boat direction    as: 
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Adjustments are made for wind and current direction E . Wind direction is defined as from 

where it blows, and current direction is defined as where it acts. The difference from 180  

must be taken into account in Eq. (8). External forces and moments in Equations (3)-(4) are 

calculated using Eq. (1), where the aerodynamic coefficients are calculated from Equations 

(9) and (10), with corresponding diagrams in Figures 5 and 6. Apparent velocity ( vR ) is the 

velocity defined in Eq. (6), and apparent angle ( R ) is defined in Eq. (7).  

 

Fig. 5 Boat water drag aerodynamic coefficients. CD, CS, and CY are drag, side force coefficient, and yaw 

moment coefficient. 𝜑 is the apparent current direction. Cross markers show data obtained from CFD 

simulations and curves show plots of Eq. (10) 
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Diagrams in Figures 5 and 6 are obtained via CFD simulations in Ansys CFX system. 

The underlying turbulent model was set to standard k- Menter’s model with tunnel boundary 

conditions (BC) (inlet, outlet, side, bottom and top). Inlet-outlet BC is standard, bottom BC 

was set to no-slip and top and sides BC were set to symmetry BC. 

Results shown in Figures 5 and 6 illustrate air and water external forces and moments 

obtained via a fitting procedure [8]. The air aerodynamic coefficients have the functional form 

defined in Eq. (9) and the water aerodynamic coefficients have the functional form defined in 

Eq. (10). The argument x in Equations (9) and (10) represents the apparent flow angle defined 

in Eq. (7), measured in radians. It is defined over the interval  ,  . In Figures 5 and 6, the 

CFD simulation results with plus symbols used as markers of the same colour as the 

coefficients they reference are displayed. The form of the fitting functions in Equations (9) 

and (10) is chosen such that R2, the coefficient for statistical determination, is close to 1. For 

the air coefficients, asymmetry in the results reflects the fact that the superstructure does not 

respect rotational symmetry. The underwater boat geometry is nearly rotationally symmetric, 

and the model functions for water aerodynamic coefficients were to reflect this.  
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A system of ODEs (2)-(3) was integrated with an explicit Runge-Kutta scheme of 

orders two and four [8]. The time increment was set to 0.01t  . In time integration the 

instabilities are observed when environmental effects were strong and the time increments 

were too high. A time-adaptive scheme would be more appropriate for such a system.  
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3.  Results 

In Section 2, the mathematical model of riverboat dynamics is described with external 

reactions described by aerodynamic coefficients depending on the external flow direction. In 

order to calibrate the boat model Equations (9)-(10), one must perform CFD simulations of 

fluid flow around the desired boat. In this case, the most common shape of a riverboat was 

constructed that can be found on the Ljubljanica river. An example boat with all its 

dimensions and a 3D view is presented in Figure 1. Its physical properties are described in 

Table 1. Fluid flow was calculated for two different boat portions: the underwater portion 

described by water fluid flow and the upper boat portions described by air fluid flow. In both 

cases, the boat geometry was rotated in increments of 10 . For the air flow, the angle interval 

ranged from 0  to 180 , and for the water flow, the angle interval ranged from 0  to 90 . In 

order to calculate the external forces from Eq. (1) on the cross sectional area, the density and 

moment arm must be known and can be obtained from Table 1, where all the parameters 

needed to initialize the boat simulation are presented. 

 The set of Equations (2)-(3) are solved using an explicit Runge-Kutta numerical 

scheme of the fourth order. Tests of the second order were performed but no obvious 

differences were observed. In order to have a stable integration procedure, a small time 

interval must be used when strong environmental flows are present.  

 

Fig. 6 Critical point on the Ljubljanica river – Špička. Intersection of the Grubar channel and Ljubljanica. 

Table 1 Simulation and boat geometry parameters. 

Parameter name Symbol Value Unit 

Cross sectional area - air SA 15 m2 

Cross sectional area - water SW 2.5 m2 

Density air A  1.225 kg/m3 

Density water W  1000 kg/m3 

Boat mass m 5000 kg 

Boat moment of inertia (z axis) 0J   23 000 kg m2 

Maximal boat velocity vmax 2.7 m/s 
Moment arm (set to unit) h 1 m 
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Such a system does not require extensive computational resources and can be solved 

implicitly, or with an adaptive scheme, in order to achieve stability in numerical calculations 

across the wide range of external action magnitudes. Stability of the present ODE model is 

currently under investigation for both the explicit and implicit scheme, and will be 

incorporated into a future model. The algorithm was coded in the C++ programming language 

and can be obtained from the author upon request. The case study was performed with boat 

geometry similar to that found in Špička region of the Ljubljanica river  (Figure 1). Maximal 

boat velocity is always set to 5 knots, and is reached within 7 seconds at full ahead power. All 

simulations are performed at maximal boat velocity. In the calculation, the yaw moment 

coefficient arm h must be also specified as noted in Eq. (1). CFD simulation results already 

account for the moment arm, providing the actual yaw moment as the result, and h is set to a 

unit value of 1m. 

The first test of the boat simulation algorithm was a turning manoeuvre test, which was 

performed with varying rudder angles. The results are presented in Figure 7. The typical 

opposite trajectory motion was observed immediately following the rudder turn in the region 

[{0, 25}-{0, 35}]. The same effect, but magnified, is seen in Figure 8 immediately after the 

coordinate system origin.  It is seen that the turn radius extends from approximately 160m for 

a rudder angle of 10°, to 25m for a rudder of angle 40°. The second test was performed in a 

domain similar to the Špička region shown in Figure 6, in order to estimate critical wind 

velocity. The results are presented in Figure 8. On left side of the Figure 8, it can be seen the 

results for the following simulation scenarios: 12s full ahead, rudder angle 0°, boat azimuth 

45°; 10s full ahead, rudder angle -30°; 20s full ahead, rudder angle 0°. The current velocity 

was set to 1m/s for all simulations and the wind ranged from 0-60 m/s. Without the 

intervention of a skipper, the boat could run ashore within a few meters depending on the 

wind speed. On the right side of Figure 8, the boat throttle was also full ahead, but after a time 

period of 20s the rudder angle was changed to avoid collision with the shore by as much as 

 

Fig. 7 Turn test for rudder angles 10°, 20°, 30°, and 40° at a boat speed of 5 knots. The boat has dimensions of 

L=10m and B=5m. 
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possible (skipper intervention). In the case with a wind speed of 60 m/s, the boat manoeuvre 

was pushed to its limits in order to avoid shore collision. Boat dimensions must be taken into 

account for this simulation. It can confidently state that the wind velocity limit is 

approximately 60 m/s in this scenario, but this is as a very strong wind that rarely occurs on 

the Ljubljanica river. In the event of such strong wind gusts, river traffic should be forbidden 

by the local maritime authority. 

 

4. Conclusions 

The squared resistance law used in boat motion modelling shows promising results for 

the prediction of critical environmental reactions for safe river navigation. The proposed 

model is simple, but contains all the relevant physics responsible for regulating the motion of 

a riverboat [2, 4-6]. With the inclusion of wave resistance effects, similar to those shown in 

[9], the present boat model could be improved to account for higher velocities. The model can 

be easily extended for arbitrary boat shapes. The only changes required would be to update 

the parameters defined in Table 1 and in Equations (9) and (10).  

Our riverboat model incorporates the asymmetric behaviour of the superstructure 

portion of the boat and the symmetrical behaviour of the underwater portion. Additionally, 

few complex simulations with very strong winds and currents were calculated. In some cases 

with strong wind, the boat became unable to turn any further into the wind due to a strong 

yaw air moment balancing against the propulsion moment. This example demonstrates the 

  
 

Fig. 8 Wind and current effects on boat motion in a narrow river region. Current velocity was set to 1m/s and 

wind velocity was changed as shown in the plot legend. Arrows on the path indicate boat direction. 
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extreme conditions a boat may encounter at sea, or perhaps in certain rivers. The inability to 

turn any further into the wind severely compromised boat manoeuvrability. 

Integration of the ODE system was performed in an explicit manner with a constant 

time increment. This is not a comprehensive technique, and it should be replaced with an 

adaptive time integration scheme in order to achieve simulation stability across a wide range 

of environmental parameters.    

 A simulation in an area similar to the Špička region showed that the wind velocity limit 

is approximately 60 m/s for the type of boat most commonly used in that region. Such wind 

gusts do occur occasionally on the Ljubljanica river. The use of this kind of simulation tool 

makes it possible to analyse the environmental parameters required for safe river and sea boat 

navigation.    
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