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Summary 

Maritime industries are constantly searching for a method to enhance ship efficiency, 

with increasing concern about the environmental impact and rising fuel prices. Marine 

biofouling is one of the factors that increase ship fuel consumption. However, removing the 

fouling of the ship requires effort for hull maintenance. Due to the trade-off between 

conducting maintenance and performance degradation, this study presents the development of 

a Model-Driven Decision Support System (MD-DSS) to predict the optimum time for 

underwater hull cleaning for biofouling management. Five stages (sub-models) are employed 

to develop a DSS, namely: ship resistance estimation, estimation of additional resistance due 

to biofouling, an iterative-based method for determining the best time to conduct the hull 

cleaning, and an analysis report. The implemented algorithm was validated by comparing its 

result with a manually scheduled maintenance date. The DSS is able to determine the best 

time (date) for maintenance in all given scenarios. By giving two scenarios of different 

maintenance costs and different fuel prices, the optimisation results produce the same number 

of maintenances. Within 60 months, four to five hull cleanings are required. It is also found 

that when the optimal number of maintenances is known, then increasing this number will not 

have any impact on reducing the hull cleaning costs because the reduction in fouling does not 

significantly reduce the costs incurred for maintenance. During several trials of the DSS, it is 

shown that the system can generate maintenance schedules for different time intervals of ship 

operation within an acceptable time. It takes approximately 52 minutes, 12 minutes, and 5 

minutes consecutively to determine the maintenance schedules for ship operation intervals of 

5 years, 2.5 years, and 1 year. 

Keywords: Biofouling; Decision Support System; Maintenance Scheduling; Underwater Hull 

Cleaning 
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1. Introduction 

Digitalisation in the maritime industry has become one of the solutions to increase 

effectiveness and efficiency in the maritime sector, including to support ship operations. 

Digitalisation will allow ship operators to optimise different aspects of the ship, from ship 

maintenance and planning/scheduling to ship operation. Three examples of incorporating 

digitalisation in the maritime industries established by researchers are the optimisation of the 

maintenance schedule for liquid ring primer in the bilge system using spreadsheet modelling 

[1], a decision support system for efficient ship operation using an artificial neural network 

[2], and the development of a weather routing model [3]. 

In ship operation, fuel oil is the largest of the ship’s operational expenses, accounting 

for almost 50% of the cost of a voyage [4]. The use of fossil fuels also produces greenhouse 

gases as by-products. With increasing concern about environmental impacts and fuel prices, 

maritime industry stakeholders are seeking to increase the ship’s fuel efficiency. One factor 

that increases the ship’s fuel consumption is the roughness of the ship’s hull and propeller, 

which is caused by accumulated biofouling on the hull [4]. According to the International 

Maritime Organization (IMO), biofouling has a severe impact both on fuel costs and on 

emissions of air pollutants and greenhouse gases. Biofouling increases fuel consumption by 

up to 20% at the end of one year of operation [5]. Biofouling such as heavy slime and heavy 

calcareous fouling increases the required shaft power by 18% and 76% respectively for 

destroyer class vessels operating at 15 knots [6]. 

A model of biofouling development and the effect of hull roughness on the powering 

requirement have been investigated including the application of biofouling or coating type for 

specific water condition [7]. The mathematical model based on ITTC-1978 combined with 

stochastic modelling of the growth of marine organisms is implemented to evaluate the 

dynamic development of biofouling and its effect on the ship’s powering. The developed 

model is intended to be used to determine the dry-docking schedule of the ship [8]. Biofouling 

not only affects the roughness of the ship's hull but also has an impact on the surface 

condition of the ship's propeller. The combination of these two conditions will have an impact 

on ship performance [9]. One of the attempts made to remove biofouling on ships is to 

conduct underwater hull cleaning and dry-docking. Implementation of both these hull 

cleaning methods have time and cost implications. According to Moore Stephens, the dry-

docking cost for tankers ranges from 18% to 22% of the 5-year operational costs, which is 

approximately equal to the cost of 1 year every 5 years [10]. Hull cleaning that is carried out 

periodically is believed to have an impact on reducing costs due to fuel consumption. Hull 

cleaning carried out in dry-docking will reduce fuel consumption by 17% compared to 9% 

when carrying out underwater hull cleaning [11]. 

Due to the trade-off between increased operational costs and the maintenance cost, the 

determination of the best time for hull maintenance is key to minimising costs as a result of 

the growth of fouling, whether from the maintenance cost or operational cost. In order to do 

so, it is important to analyse a model for predicting an increase in ship resistance and fuel 

consumption due to fouling. Estimation of ship resistance will be more accurate if detailed 

and accurate measurements as an initial reference for the surface roughness of the hull can 

also be carried out. One of them is by taking measurements during dry-docking or before the 

ship is launched [12]. A Computational Fluid Dynamics based Reynolds-Averaged 

Navier‒Stokes model has been developed to predict the impact of marine coatings and 

biofouling on ship resistance [13]. A novel technique using multiple cameras to obtain three-

dimensional roughness detail has been developed to predict the effect of hull roughness on 

ship resistance [14]. In addition, the use of numerical simulation and laboratory experiments 
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up to full-scale in-situ measurements on the ship's hull can improve the estimation of 

resistance due to the condition of the hull [15]. 

A decision support tool has been developed for the sustainability of hull surface 

maintenance. The tool has been implemented in the Baltic Sea region and developed based on 

several inputs, such as biocide release rate data and fouling growth on coatings under idle 

conditions. By examining different hull maintenance scenarios, the developed tool enables the 

simulation of the emission to water and air, the economic cost and the environmental damage 

cost [16]. In this study, mathematical models are used to do the prediction. The models are 

then used to develop MD-DSS as a tool to assist personnel in determining the optimum 

schedule/date for hull cleaning.  

The MD-DSS is developed using five stages (sub-models): resistance estimation [17], a 

simplified time-dependent biofouling growth sub-model [18], hull-propeller matching, an 

iterative-based optimisation algorithm, and an analysis report. The DSS takes the ship 

schedule, ship dimensions, engine properties, and propeller properties as input. The first stage 

or sub-model comprises ship resistance estimation. Basically, there are two ways for the MD-

DSS to conduct this stage. First, ship resistance data are obtained from model test results, 

since the estimation of ship resistance using this method is the most precise. Shipping 

companies that own ships as well as those with an interest in implementing the MD-DSS will 

certainly have the data from the model test results. To anticipate the unavailability of model 

test data, however, this system also provides a ship resistance estimation model. The 

resistance of merchant ships can generally be predicted using the Guldhammer‒Harvald 

method or the Holtrop‒Mennen method. However, in this current developed system, the 

method used for estimating ship resistance is the Guldhammer‒Harvald method, although 

there are limitations in the use of this method. The range of parameters suitable for the 

Guldhammer‒Harvald method is the value of the Froude number, Fr to 0.33, the value of the 

block coefficient, CB in the range of values from 0.55 to 0.85; the length‒beam ratio in the 

range 5.0‒8.0 and the length‒displacement ratio in the range 4.0‒6.0 [19]. In stage two, 

additional resistance caused by fouling is estimated using the time-dependent biofouling 

growth model. The third stage aims to find equilibrium between the load and propulsion 

system using a hull‒propeller matching process. The fourth stage is an optimisation done 

iteratively to determine the number of underwater hull cleanings that gives the minimum cost. 

The fifth stage aims to provide a report comprising the ship data, engine data, propeller data, 

voyage schedule, fuel price, and ship schedule, which will be presented along with the output 

or analysis result (maintenance date, fuel expenses, and maintenance expenses). The DSS 

process is validated by comparing the result given by the system with a manually calculated 

combination of dates of hull cleaning. This paper is organised as follows: in section 2, the 

modelling approach is presented. In section 3, the validation of the optimisation algorithm is 

elaborated. Finally, section 4 discusses the results of the study together with the assumptions 

and limitations. 

2. Development of DSS for Ship Fouling Maintenance 

2.1 General overview 

This paper aims to discuss the development of a DSS that can be used by ship operators 

to determine the best time for conducting hull cleaning. To achieve these goals, five stages 

(sub-models) are used to develop the DSS, namely, resistance estimation, fouling growth 

estimation, hull‒propeller matching and speed iteration, an iterative-based optimisation 

algorithm, and an analysis report. The first sub-model is used to estimate resistance in the 

clean hull condition, the second sub-model is used to estimate the increase of resistance due to 

hull fouling, the third stage is a hull‒propeller matching sub-model to verify the speed of a 
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ship, the fourth sub-model is used to predict the date for maintenance, and the last sub-model 

is an analysis report including the cost calculation for the recommended alternative 

maintenance schedule or date. The developed models are explained in detail in the following 

sections. 

2.2 Resistance estimation sub-model 

For estimating total resistance, the sub-model employed the method described in ITTC-1957, 

as in [17], the Harvald resistance diagram [20], and Mumford formula. The system allowed 

the user to input measurement data as a source to estimate the ship resistance. The total 

resistance, RT, can then be calculated by the following equation: 

 (1) 

where CT is the total resistance coefficient, while  , S, and V are the water density, wetted 

surface area and ship speed, respectively. As recommended in ITTC-1978 [21], the total ship 

resistance coefficient is formulated as 

 (2) 

where CF is the frictional resistance coefficient, CA is the incremental resistance coefficient, 

CAA is the air resistance coefficient, and CR is the residual resistance coefficient. The frictional 

resistance coefficient in accordance with the ITTC-1957 formula is formulated as 

 (3) 

where Re is the Reynolds number. When ∆ is the ship displacement, the incremental resistance 

coefficient is estimated using the expression described by [17] as follows: 

 (4) 

The air resistance coefficient value depends on the ship type and size, as shown in Table 1 

[17]. The residual resistance coefficient values are taken from Harvald curves for the residual 

resistance coefficient as a function of the length displacement ratio, prismatic coefficient, and 

Froude number [17]. For reading the graph, each line is regressed into a polynomial function. 

The value will then be corrected by B/T correction described in equation (5): 

 (5) 

Table 1 CAA value according to ship type and size [17]  

Categories 103 CAA 

Small tanker 0.07 

Handysize tanker 0.07 

Handymax tanker 0.07 

Panamax tanker 0.05 

Aframax tanker 0.05 

Suezmax tanker 0.05 

VLCC 0.04 

Container vessel 0.28 TEU-0.126 and ≥ 0.9 
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Table 2 Antifouling coating performance parameter for each type of fouling [18] 

Type Location t0  

A 
Equatorial 379.4 187.2 

Mediterranean 726.4 129.7 

B 
Equatorial 271.4 73.11 

Mediterranean 383.5 124.4 

C 
Equatorial 87 37.08 

Mediterranean 271.9 99.31 

 

The wetted surface area, S, can be estimated by using Mumford’s formula described below: 

 (6) 

where LPP is the length between perpendiculars, CB is the ship block coefficient, and T is the 

ship draft. 

 

2.3 Fouling growth sub-model 

To predict the increase of ship resistance due to fouling, two models proposed by [18] 

are used in the DSS. The first prediction model calculates the biofouling growth rate FR and 

total fouling rating over the period of operation time FRtot, as given in (7) and (8). The second 

model is used to predict calcareous type fouling surface coverage as a function of time, the 

effect of which is not considered in the first model. The calcareous type fouling growth rate 

SC and its accumulated growth rate SCtot during the total operation, as in (9) and (10), are 

predicted using antifouling coating performance parameters for each type of fouling and 

constants of logistic curves. The antifouling coating performance parameters are given in 

Table 2, while the constants of the logistic curves are presented in Table 3 [18]. 

 (7) 

 (8) 

 (9) 

 (10) 

 

Table 3 Logistic curve constants [9] 

Equatorial Mediterranean 

P 100 P 0.00517 

b 16 b 10 

c 0.0407 c 40 

d 3.5 d 50 

f 10.32 f 32.81 

g 0.7759 g 0.04715 

p 3.101 p 0 

 

Then, the equivalent sand roughness value is estimated using the regression function, as in 



AAB Dinariyana, Pande Pramudya Deva,   Development of Model-Driven Decision Support System  

I Made Ariana, Dhimas Widhi Handani                to Schedule Underwater Hull Cleaning 

26 

 (11) 

 (12) 

It is important to note that if the SCtot is higher than 5% SC, ks(t) is calculated as in (12).  

Several studies have been published for predicting the effect of fouling on ship 

resistance and powering. Granville similarity law scaling is one of many methods to predict 

the effect of roughness on the frictional resistance of flat plates of ship lengths by providing 

the roughness function of fouling [22]. In this fouling growth sub-model, an added resistance 

diagram (Figure 1) as provided in [23] is used to convert the equivalent sand roughness into 

the added resistance coefficient due to fouling. The added resistance diagram is converted into 

a regression function and, by using interpolation, that function is used to convert the ship 

length, ship speed, and equivalent sand roughness height into the increase of resistance due to 

fouling. For calculation, this model requires the ship schedule or idle time data, ship speed, 

and ship length as input. 

 

 
Fig. 1 Added resistance diagram for ships with heavy calcareous fouling [18] 

 

As in [23], similarity law scaling is used to generate the resistance diagram that predicts the 

roughness effects of coatings and biofouling on ship frictional resistance, shown in the figure 

below. Each condition represents fouling according to the NSTM rating shown in Table 4. 

Table 4 A range of representative coating and fouling conditions [23] 

Description of condition NSTM rating ks (µm) 

Hydraulically smooth surface  0  0  

Typical as applied AF coating  0  30  

Deteriorated coating or light slime  10-20  100  

Heavy slime  30  300  

Small calcareous fouling or weed  40-60  1000  

Medium calcareous fouling  70-80  3000  

Heavy calcareous fouling  90-100  10000  
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Therefore, in the case of a ship having an equivalent sand roughness value higher than 1000, 

after maintenance, it is assumed that the equivalent sand roughness value taken to represent 

the ship roughness is 1000. Otherwise, if the ship with equivalent sand roughness value below 

1000 is cleaned, it is assumed that the cleaning will result in a deteriorated hull condition or 

equivalent sand roughness value of 100. For dry-docking cleaning, the ship is assumed to 

return at the initial condition (equivalent sand roughness height value of 30), because it is 

assumed that in dry-docking cleaning the ship will also be repainted. In the DSS, the user is 

able to input the increase of ship resistance over time as well as to estimate the growth of 

fouling.  

 

2.4 Hull‒propeller matching sub-model 

In this model, hull‒propeller matching is used to find the ship speed. Speed equilibrium 

is maintained between the load or resistance and thrust generated by a propeller at a specific 

propeller or engine speed and draft condition by utilising iteration. The ship’s required thrust 

and the propeller thrust will be estimated using the following equation. The advance number 

(J) can be described as  

 (13) 

where Va is the average speed of flow into the propeller, N is the propeller speed, and D is the 

diameter. The value of Va can be estimated using the equation described by [17] as follows: 

 (14) 

where w is the wake fraction estimated by using British Ship Research Association (BSRA) 

wake data regression [24] and given as follows: 

 (15) 

where B is the breadth, ∇ is the volume displacement, and D is the propeller diameter. Using 

both equations, the advance number can be estimated and used to calculate the value of the 

propeller thrust coefficient, torque coefficient, and efficiency by employing the propeller open 

water diagram given in [25] [26]. 

Dimensional analysis and propeller coefficients describe the relation between different 

physical variables related to propellers, such as the propeller thrust coefficient [24], torque 

coefficient, and efficiency, which are described as 

 (16) 

 (17) 

 (18) 

The thrust deduction factor shows the relation between thrust and resistance [24], which can 

be defined using (19) and estimated as in (20): 

 (19) 

 (20) 
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where LCB is the longitudinal centre of buoyancy and P/D is the propeller pitch diameter 

ratio. 

The previous equation is utilised for hull‒propeller matching, the result of which is used 

to estimate the engine power and fuel oil consumption. Starting from total resistance, the 

estimated engine power is calculated by taking the different components of the total 

propulsion system efficiencies into account as described below:  

 (21) 

where ηo is the open water propeller efficiency, ηRR is the relative rotative efficiency, (1-t)/(1-

h) is the hull efficiency, ηs is the shaft efficiency, and ηg is the gearbox efficiency. From the 

estimation of the engine power, ship speed, and trip duration, the amount of fuel oil 

consumption (FOC) can be predicted using the following equation: 

  (22) 

where SFOC is the specific fuel oil consumption, T is the duration of travel, and P is the 

engine power. 

2.5 Iterative-based algorithm sub-model 

The optimisation algorithm is used to find the optimum date for maintenance. This 

optimisation is done iteratively by calculating different selected maintenance schedules. The 

maintenance schedule (time of hull cleaning) that gives the minimum cost will be considered 

as the best solution. As a limitation to the model, one maintenance per month is the fastest 

frequency of maintenance that is applicable in the system, although doing multiple 

maintenances in a short period of time is not practicable. Validation is conducted by 

comparing the result given by the system to the date selected as the maintenance date. This is 

to show that the algorithm can predict the maintenance schedule in terms of the practical or 

operational point of view. 

This model is developed by the logic that doing maintenance at the beginning and end 

of the analysed duration or near to dry-docking is a waste, because doing multiple 

maintenances in a short period of time serves no purpose. In short, doing multiple 

maintenances in a short period of time is like cleaning a non-dirty hull, bringing no benefit but 

inducing a cost. Figure 2 is used to illustrate this statement. The y axis represents the cost, and 

the x axis represents the time, while the function used in the figure is y = 2x. As there is extra 

FOC due to fouling growth over time and it only decreases if the ship is cleaned, the lines in 

the figure will be used to represent extra FOC due to fouling. The red lines represent the ship 

condition with no maintenance or cleaning, whereas the blue, green, and orange lines 

represent the cleaned or maintained ship.  
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Fig. 2 Illustration of hull cleaning schedule selection 

 

The calculation of the total cost over time in each condition is the total area under the 

line. The example given shows that the area/cost of a ship without maintenance is 144, while 

the area/cost of a ship that is maintained at the beginning (x = 2) is 104, the area/cost of a ship 

that is maintained at the end (x =11) is 122, and the area/cost of a ship that is maintained in 

the middle (x = 6) is 72. This illustration shows that doing a hull cleaning in the middle of the 

duration is more beneficial than at the beginning or at the end or close to another hull 

cleaning. The maintenance penalty and schedule may cause the optimum time not to be 

precise in the middle of the duration, so a range in the selection is employed. The maintenance 

penalty is employed to address practical issues in conducting the hull cleaning. For cleaning 

soft fouling, the fouling can be removed completely (to be able to see the hull paint), but for 

cleaning hard fouling, the fouling cannot be removed completely (around 1–2 mm will 

remain). The equivalent sand roughness height value is taken based on the NSTM standard as 

well as information gathered from the company. In the case of dry-docking maintenance, a 

similar approach is used. But the user will need to input the date when the dry-docking is 

conducted and up to five dry-docking maximums at a time (one analysis is up to 60 months 

duration). As the maximum combination for dry-docking is small, all combination/cases will 

be calculated. 

2.6 Development of user interface and analysis report 

In this model, the fuel price and the maintenance price are set as user input data and are 

assumed to be constant. This model calculates the fuel cost by multiplying the extra fuel oil 

consumption due to fouling with the fuel price, and also calculates the maintenance cost by 

multiplying the number of maintenances with the maintenance price. A DSS user interface 

(UI) was developed using the Excel visual basic application. Several functions will be fitted 

into the UI, such as input or editing data and analysis. The result of the analysis will also be 

exported into .pdf file format.  

When the user launches the system, he/she can choose between using the existing 

propeller open water diagram and fouling estimation method or creating/editing a 

new/existing propeller open water diagram and fouling estimation method. The system also 

makes it possible for the user to add new ship data and the voyage schedule in addition to 

available ship data and voyage schedules that have already been inputted as a database in the 

system. However, the user may also make changes to the data to update the database. For 

estimation and calculation, the user can select the method of analysis, whether to select 

manual input of the date of maintenance or to select the best maintenance schedule or the date 

recommended by the system. The process of creating/editing a new/existing propeller open 
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water diagram and fouling estimation method is accommodated in the sheet “Graph Input” 

shown in Figure 3. This figure shows that, through this UI, users can create digital data from 

KQ, KT, and J open water diagrams. For example, for the KT diagram, the x-axis represents 

the value of J and the y-axis is KT. By reading the data from the open water diagram on a 

certain type of propeller at a certain P/D, the Kt value for each J is inputted into the cell’s x 

value and y value. This data will be recorded as a database in DSS in tabulated form. 

Adding new or editing existing ship data is done using the form shown in Figure 4. 

Several ship data can be added and saved as the ship database, such as the name, type, the 

principal dimensions including the block and prismatic coefficient, volume displacement and 

ship capacity. The user is also able to input the main engine data (power and rpm), propeller 

data (propeller series/type, diameter, pitch‒diameter ratio, number of blades, and area ratio), 

and gear box data through this UI. The overall UI, giving information on the selected ship and 

its corresponding schedule, input for cost calculation, the option for the fouling estimation 

method, and the output cost calculation of the maintenance schedule policy, can be seen in 

Figure 5. This figure also shows the additional fuel oil consumption in tons after the 

beginning of the cycle of operation period. As seen in the graph shown on the UI, the fuel oil 

consumption tends to increase during the ship's operating time up to the period when hull 

cleaning is carried out. 

 

 

 

Fig. 3 DSS user interface for graph input 
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Fig. 4 DSS user interface for ship database 

 

 

Fig. 5 DSS user interface for ship fouling maintenance 
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3. Result and Analysis 

This section discusses the results of the system, giving several scenarios of the 

operational time of the ship. The ship data is provided by a shipping company operating in 

Indonesia. A container ship with a length of 120 m and a capacity of 558 TEUs with a MAU 

Series type of propeller and diameter of 3.909 m is simulated. Four scenarios of the 

operational time of the ship are considered. The same route with a duration of 10 days and 

operational time varying between 60 months, 30 months, 12 months, and 9 months + 1.5 

months idle time repeated until 30 months, respectively, is considered as scenario 1 to 

scenario 4. All scenarios have the same route, Surabaya – Pontianak (546 Nm). The draft is 

set to be 5 m and 4.5 m, respectively, for the outward trip (Surabaya – Pontianak) and the 

return trip (Pontianak – Surabaya). The allocated port time is 18 hours for both ports. The 

outward trip starts every 10 days while the return trip starts directly after the outward trip and 

port time. The engine is operated at a speed of 610 rpm. Some values are assumed, such as the 

gearbox efficiency and shaft efficiency (98%), sea water temperature (25oC), sea water 

density (1023 kg/m3). All calculations were done on a computer with the specification of Intel 

i7-7700HQ CPU @ 2.80GHz and 8GB RAM. It took approximately 52 minutes for the DSS 

to find the optimum underwater hull cleaning time for 5 years making the voyage, 12 minutes 

for 2.5 years making the voyage, and 5 minutes for 1 year making the voyage. 

The selection of the maintenance date was based on the number of planned 

maintenances within the operational time of the ship considered in each scenario. For a 60-

month operational period, the date of the one-time maintenance strategy will be selected 

between the 1st month and the 60th month. The dates for the two-times maintenance strategy 

will be selected in months 20 ± 7 and 40 ± 7, where 7 is a range between the midpoints (20 

and 40). For the three-maintenance strategy, the maintenance date will be selected in months 

15 ± 3, 30 ± 3, and 45 ± 3. The same logic is also used for other scenarios of the operational 

times. However, the definition of ranges between midpoints may vary according to the 

operational time of the ship. It is shown that in the same period of ship operation, more 

maintenance for cleaning the fouling will result in lower additional fuel costs. This is as a 

result of reducing the roughness of the hull, which means less required engine power for the 

same ship speed. Table 5 shows the result given by the system for all the scenarios of 

operating time and number of maintenances. 

The algorithm is validated by comparing the results of different combinations of the 

months selected for conducting maintenance. For one-time maintenance, the results of 

scenarios 1 to 4 can be seen in Figures 6 to 9, respectively. The vertical axis shows the extra 

FOC due to hull fouling and the horizontal axis shows the month when maintenance is done. 

These graphs show that doing cleaning near the beginning and near the end is not the best 

solution. This condition is given by the four scenarios used in this study. For all scenarios, the 

best time for conducting maintenance for hull cleaning is located near the mid-point (scenario 

1: month 31, scenario 2: month 16, scenario 3: month 7, and scenario 4: month 13) and the 

best solution is within the ranges of calculation. 
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Table 5 Result given by the system for all scenarios 

Scenario 
Number of 

maintenances 

Date 

(month) 

Extra FOC (ton) Calculation time 

(minutes) 
Optimised Not optimised 

1 

1 2 Jul 2023 (31) 1681.7 1703.5 35 

2 
7 Jul 2022 (19) 

1095.6 1067.0 44 
1 Jan 2024 (37) 

3 

1 Apr 2022 (16) 

927.1 930.9 90 2 Jul 2023 (31) 

4 Oct 2024 (46) 

2 

1 4 Jan 2022 (16) 448.03 456.14 8 

2 
2 Nov 2021 (11) 

372.83 372.83 10 
5 Sep 2022 (21) 

3 

1 Aug 2021 (8) 

333.22 340.33 39 1 Apr 2022 (16) 

4 Nov 2022 (23) 

3 

1 2 Jul 2021 (7) 113.78 11.82 1 

2 
3 May 2021(5) 

86.11 89.40 1 
3 Sep 2021 (9) 

3 

3 Apr 2021 (4) 

75.59 74.83 1 2 Jul 2021 (7) 

3 Oct 2021 (10) 

4 
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Fig. 6 FOC over time for hull cleaning (scenario 1) 

 

 
Fig. 7 FOC over time for hull cleaning (scenario 2) 

 

Fig. 8 FOC over time for hull cleaning (scenario 3) 

 

Fig. 9 FOC over time for hull cleaning (scenario 4) 

For the two-times maintenance, the result of a manually calculated maintenance date 

selected is presented partially in the heat map from Figures 10 to 13 for scenarios 1 to 4, 

respectively. The vertical and horizontal axes represent the months to conduct the first and the 

second maintenance. The lighter the colour in the pixel/block, the more optimum (lower cost 
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or FOC) it is in comparison to the darker colour. The result shows that the best decision for 

conducting hull cleaning is near the midpoint, and the optimum solution is within the ranges 

of calculation. These indicate the same effect or phenomenon as the one-time maintenance. 
 

 

Fig. 10 Heat map of FOC over time for hull cleaning 

(scenario 1) 

 

 

Fig. 11 Heat map of FOC over time for hull cleaning 

(scenario 2) 

 

 

Fig. 12 Heat map of FOC over time for hull cleaning 

(scenario 3) 

 

 

Fig. 13 Heat map of FOC over time for hull cleaning 

(scenario 4) 

The findings from the results of one-time and two-times maintenance show that the 

graph has two local minima. This is because there are two types of penalty used in the model. 

This causes a break or jump of value after month 19 in scenarios 1 and 2 and after month 16 

in scenario 4. For two-times maintenance, this is shown by the jump in value if the first 

maintenance in scenario 1 is later than month 19. This also happens in scenario 1 if the range 

or delay between the first and second maintenance is equal to or higher than 19 months. These 

findings show that after specific months the ship will have calcareous fouling and will have a 

higher penalty which results in a higher cost. 

It is important to know that the maintenance or hull cleaning has to be conducted within 

a certain period of ship operation. This section discusses two conditions, with different hull 

cleaning costs and different fuel prices. Figure 14 shows the number of maintenances during 

60 months with two different maintenance or hull cleaning costs, US$ 25,000 and US$ 

50,000. When the cost is US$ 25,000, hull cleaning is conducted five times and when the hull 

cleaning cost is US$ 50,000, the hull cleaning is conducted four times. Figure 15 shows that 

the number of hull cleanings is five when the fuel price is US$ 600 and four when the fuel 
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price is US$ 400. All scenarios are conducted for a hull cleaning cost which is US$ 25,000. It 

can be concluded that the fuel price and maintenance cost do affect the optimum number of 

maintenances during 60 months of the ship operation. When the optimal number of 

maintenances is known, then increasing this number will not reduce the hull cleaning costs 

because the reduction in fouling does not significantly reduce the costs incurred for 

maintenance. 

 

  
Fig. 14 Total cost for number of hull cleanings during 

60 months for different hull cleaning costs 
Fig. 15 Total cost for number of hull cleanings during 

60 months for different fuel prices 

4. Discussion and Conclusions 

A model-driven DSS has been developed to help the ship operator to schedule 

underwater hull cleaning and to define the number of hull cleanings during a certain period of 

time. The DSS was developed by implementing five sub-models. The first sub-model was 

developed based on ITTC 1957, the Harvald resistance diagram, and Mumford formula, as 

that model is sufficient to be used to estimate ship resistance. The alternative of using 

measurement data was also provided, as using measurement data is more accurate than using 

the estimation method. The second sub-model was developed based on a time-dependent 

biofouling growth model. The DSS has been developed only for self-polishing coating type 

antifouling, which means this model cannot be applied to ships using other types of 

antifouling. Although in the DSS there was an alternative of using user measurement or trend 

data of increasing resistance over time, it still has the limitation that it cannot be used in every 

ship or condition. 

The third sub-model was developed based on the hull‒propeller matching process. It 

uses iteration (Newton‒Raphson method/ Excel Goal Seek) for searching for the matching 

condition. The iteration itself cannot exactly match the load thrust and propeller thrust, but the 

average deviation of 10-8 % is small enough to be ignored. The fourth sub-model is the 

optimisation algorithm that is used to find the optimum date for maintenance. This 

optimisation is done iteratively by calculating different selected maintenance schedules. The 

maintenance schedule (time of hull cleaning) with the minimum cost will be considered the 

best solution. The result of the fourth model is compared into the manually calculated cases. 

Comparing both results, the fourth sub-model indeed gives the optimum result among the four 

scenarios. Although a higher number of maintenances (more than three) is not calculated, it is 

projected that at a higher number the findings will be similar, due to the recurrence of the 

optimum solution near the mid-point for one to three maintenances. The fifth sub-model 

comprises the economic analysis as well as an analysis report on the given input for 

calculation. 

By detailing different scenarios of the ship operation period, it is found that the fuel 

price and maintenance/hull cleaning cost do affect the optimum number of maintenances 
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during the operation period. It is also found that once the optimal number of maintenances is 

known, then increasing that number will not reduce the hull cleaning costs because the 

reduction in fouling does not significantly reduce the costs incurred for maintenance. 

It is important to note that the model is only compared for a specific scenario or specific 

data input. These scenarios certainly do not exactly represent all possible scenarios or 

combinations of input data. However, each scenario represents a general condition of ships 

constantly operating for different durations. In future work, there is still a need to validate the 

DSS algorithm in different scenarios. The main advantage of the developed DSS is that the 

model can predict the optimum maintenance date using relatively simple and general data. It 

can be applied to different types of ship in different operating conditions or routes. This DSS 

still makes certain assumptions and has some limitations due to the lack of data and the 

impracticality of modelling the effect on hull maintenance or biofouling. The ideal fouling 

model should be observed in more detail, as well as the data that show the effect of 

underwater hull cleaning, whether this is the effect of underwater hull cleaning on the ship 

surface or roughness or the effect on the antifouling paint efficiency. As in [27], there is a re-

fouling rate, which multiplies the rate of fouling growth for each consecutive underwater hull 

cleaning until a certain threshold is reached. This effect should be taken into consideration in 

future studies. 
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