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Original scientific paper 
Pronounced flexibility of modern container ships can cause falling into resonance 

with the encounter frequencies of ordinary sea spectrum causing consequently the 
occurrence of springing. In order to adequately capture such physical phenomena, 
hydroelasticity methodology for ship structure design has to be applied including the 
proper definition of the restoring stiffness, being one of the main hydroelastic analysis 
components. This paper deals with three current restoring stiffness formulations – the 
consistent one with distributed mass, the consistent one with lumped masses, and the 
complete one. Formulation of the restoring stiffness via the finite element method is 
developed as a very useful approach for practical utilization of the hydroelasticity 
methodology. The validity of the new developed approach is checked on the case of a 
regular barge. The hydroelasticity of one real life container ship is evaluated and the 
influence of different restoring stiffness formulations is considered. 

Keywords: container ship, finite element method, geometric stiffness, 
hydroelasticity, restoring stiffness 

 
Utjecaj različitih formulacija povratne krutosti na hidroelastični 
odziv velikih kontejnerskih brodova 

Izvorni znanstveni rad 
Izražena fleksibilnost trupa suvremenih kontejnerskih brodova može prouzročiti 

pojavu rezonantnoga gibanja u slučaju uobičajenoga stanja mora i posljedično prouzročiti 
pojavu pruženja. Kako bi se takva fizikalna pojava adekvatno obuhvatila potrebno je 
primijeniti metodologiju analize hidroelastičnosti, uključujući i točnu definiciju povratne 
krutosti koja predstavlja jednu od osnovnih sastavnica analize hidroelastičnosti. Ovaj rad 
obuhvaća tri aktualne formulacije povratne krutosti: konzistentna s distribuiranom 
masom, konzistentna s masom koncentriranom u čvorovima modela i cjelokupna 
formulacija. Prikazana je formulacija povratne krutosti metodom konačnih elemenata, što 
je vrlo korisno za praktičnu uporabu prigodom provođenja analize hidroelastičnosti. 
Vjerodostojnost prikazanoga pristupa provjerena je za slučaj pravilne barže. Za ilustraciju 
je provedena hidroelastična analiza jednoga kontejnerskog broda pri čemu je razmotren 
utjecaj pojedine formulacije povratne krutosti na ukupni hidroelastični odziv. 
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Ključne riječi: geometrijska krutost, hidroelastičnost, kontejnerski brod, metoda 
konačnih elemenata, povratna krutost 

 
1 Introduction 
 

 The continuous growth of international maritime transport resulted in designing 
and building bigger and faster container ships. This development can be characterized as 
continuous increase in capacity and size. Due to optimized structure, the ship hull of 
modern ships is quite flexible. As a result the first natural frequencies of such ships are 
quite low, especially in the case of large container ships due to open cross section and 
consequently reduced torsional stiffness [1], and can easily fall into resonance with the 
encounter frequency in an ordinary sea spectrum [2]. Due to that fact, traditional ship 
strength analysis, based on determination of wave loads on a ship as a rigid body, is not 
reliable enough [3]. Therefore, it is necessary to perform the ship hydroelastic analysis, 
which can be defined as fluid-structure interaction type analysis relating external 
hydrodynamic and internal elastic forces. 
 Methodology of ship hydroelastic analysis, described in [4], includes definition of 
structural model with conventional stiffness, mass distribution, restoring stiffness, added 
mass, damping and wave excitation, and is based on the modal superposition method 
offering in such way a reduction of the number of equations and computing time [5]. 
 The definition of restoring stiffness, as a part of the methodology of hydroelastic 
analysis, was found to be quite complex. There are two basic approaches, a pure 
hydromechanical one and another extended to the structure. In a well-known Price and 
Wu restoring stiffness formulation [6] only the basic hydrostatic pressure term is taken 
into account. Newman extended the definition by giving the necessary hydrostatic 
pressure coefficient [7]. However, these two formulations are not complete, since gravity 
part is missing. The above shortcoming was eliminated by Riggs, specifying new modal 
pressure coefficient and adding the gravity term [8]. However, this formulation is not 
correct due to mixed indices in the restoring stiffness matrix. Similar formulation based 
on the variational principle and virtual displacements was given by Malenica [9]. Molin 
[10] derived the same restoring stiffness formula by converting the wetted surface 
integral into the immersed volume integral in accordance with the Gauss-Ostrogradski 
theorem [11]. However, these formulations do not satisfy ship’s equilibrium in the lower 
wave frequency domain, where rigid body motion is dominant and the restoring stiffness 
plays the main role. The reason is that some terms of stiffness matrix are specified as a 
relation between forces and displacement gradients instead of displacement that follows 
from the stiffness definition. 
 
 
2 State-of-the art 
 

 Three recent restoring stiffness formulations, presented in Table 1, are written in 
the ship global coordinate system with origin located in the centroid of water plane. Index 
notation is used due to the reason of concise presentation, where  represents mode kH
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components, ,k lH  derivatives of mode components,  components of normal vector to 
the wetted surface directed into the body,  wetted surface, V  structure volume, 

kN
S g  

gravity constant, ρ  water density,  structure density, Sρ Z  depth from the waterplane, 
 mode indices and  stress tensor. ,i j klΣ

 
Table 1 Current formulations of modal restoring stiffness 
Tablica 1 Aktualne formulacije povratne krutosti 
 

Contribution from Notation 
Consistent 

Equation (1) 
[12, 14] 

Complete 
Equation (2) 

[13] 

Unified 
Equation (3) 

[15] 

d3
ji

g H H N Sk kS
ρ ∫∫ d3

ji
g H H N Sk kS

ρ ∫∫ d3
ji

g H H N Sk kS
ρ ∫∫     

(1a) 

     

(2a) 

               

(3a) 

p
C

ij
a) Pressure  

d,
ji

g ZH H N Sk l l kS
ρ ∫∫ d,

ji
g ZH H N Sk l l kS

ρ ∫∫d,
ji

g ZH H N Sk l l kS
ρ ∫∫     

(2b) 

 

(1b) 

              

(3b) 

nh
Cij

b) Normal vector and 
mode  

d3,
ji

g H H VS k kV
ρ∫∫∫    

(1c) 

m
Cc) Gravity load    ij

d,
ji

g ZH H N Sl k l kS
ρ− ∫∫   

(2d) 

0S
k−d) Boundary stress 

(rigid body)    ij

d, ,
ji

H H Vkl m k m lV
Σ∫∫∫d, ,

ji
H H Vkl m k m lV

Σ∫∫∫   

(2e) 

             

(3e) 

G
k  e) Geometric stiffness  ij

f) Boundary stress 
(elastic body) 

SZ
kij−    

d,
ji

g ZH H N Sl l k kS
ρ ∫∫              

(3f) 

g) Structural 
deformation 

m VZ
C kij ij−    ( ) d3, ,3

j ji
g H H H VS k k kV

ρ +∫∫∫  

(3g) 

  
 Development of the current restoring stiffness formulations and their relationship 
are shown in Figure 1. Consistent restoring stiffness, Eq. (1) in Table 1, derived for ship 
structures, is based on variational principle and the method of virtual displacements [12]. 
 Formulation of Huang and Riggs [13], Eq. (2) in Table 1, called complete 
restoring stiffness, takes pressure change into account due to variation of depth and 
direction caused by structure deformation as well as the geometric stiffness based on still 
water stress distribution. The gravity term is indirectly included as a rigid body part of 
geometric stiffness. This formulation is suitable for general off-shore structures where 
geometric stiffness plays a dominant role and it results with symmetric restoring stiffness 
matrix. The Huang and Riggs formula can be transformed and reduced to the form of Eq. 
(1) in Table 1 [14]. 
 



 
 
Figure 1 Current restoring stiffness formulations 
Slika 1 Aktualne formulacije povratne krutosti 
 
 The third formulation of restoring stiffness, Eq. (3) in Table 1, is obtained by 
unifying the consistent restoring stiffness, Eq. (1), and geometric stiffness, Eq. (2e), since 
they have some common terms, [15]. As a result the term , Eq. (3f), occurs instead 

of , Eq. (2d), and also the new term , Eq. (3g), appears. It was found in [16, 
17] that unified restoring stiffness is not applicable in the case of thin-walled structures, 
since mode derivatives 

SZ
ijk−

0S
ijk− m V

ij ijC k− Z

,
j

l kH 3,
j
kH and  are not completely available in that case, Figure 2. 

 Up to now, consistent restoring stiffness has been used for hydroelastic analysis 
of barges in model tests, ship beam model, and for 3D FEM model of real ship structure 
in an appropriate way [18, 19, 20], while the complete one has been employed for barge 
hydroelastic analysis and simplified analysis of the Wigley ship form [21]. Unified 
restoring stiffness has been employed in the analytical solution for restoring stiffness in a 
barge hydroelastic analysis [16, 22, 23]. 
 The objective of this article is to investigate the impact of different restoring 
stiffness formulations on the hydroelastic response of a real container ship structure in 
order to establish the required level of restoring stiffness complexity and to give 
recommendations for further practical usage. The three current formulations that are 
considered here are given in Figure 1 as consistent formulation with distributed mass, 
[12], consistent formulation with lumped mass, and complete restoring stiffness 
formulation [13]. 
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Figure 2 Relation between mode derivatives ( ,z y y z,H H= −  for rigid body) 

Slika 2 Odnos derivacija modalnih pomaka ( ,z y y z,H H= −  za kruto tijelo) 

 

3 Integration of stiffness coefficients 
 

 Integration of stiffness coefficients over the panels of the wetted surface can be 
performed either using the structural or the coarse hydrodynamic mesh, normally applied 
in the hydrodynamic analysis procedure. The latter is preferred due to computing time 
reduction but some difficulties arise since it is necessary to interpolate modal 
displacements from structural nodes to the new panel nodes and to determine 
approximately the corresponding modal derivatives [24]. This is especially pronounced in 
the case of geometric stiffness, where the stress tensor klΣ  in global coordinate system is 
not known explicitly. 
 In order to perform a more reliable and accurate numerical integration of the 
surface and volumetric stiffness coefficients it is necessary to transform all involved 
quantities from the global to local coordinate system, and use shape functions for their 
distribution within the structural finite elements mesh [25]. 
  
3.1 Pressure coefficient, Eqs. (1a, 2a) 
 

 The pressure coefficient expressed in index notation can be presented in matrix 
notation as 
 

  d

i
x

p i
ij x y z y z

iS
z

H
C g N N N H H

H
ρ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

∫∫ j S .            (4) 

 
By applying the well known finite element relations using transformation matrix, (A2), 
and shape functions [25], after some rearrangement the pressure coefficient can be 
expressed as 
 



,

, ,
1 1

,

  d

i
x kM M

p i
ij x y z y k z l k l

k l i S
z k

H
C g N N N H H

H
ρ

= =

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

∑∑ ∫∫j Sφ φ ,           (5) 

 
where  and l  are nodal indices. The shape functions, k  and kφ lφ , are defined in the local 
coordinate system and can be integrated analytically for simple panels or numerically by 
Gauss points [25]. All the other quantities in (5) are related to the global coordinate 
system. 
 
3.2 Normal vector and mode coefficient, Eqs. (1b, 2b) 
 

 This coefficient can be presented in matrix notation as follows 
 

    d

i j
x x

nh i j
ij x y z y y

i jS
z z

H H
C g Z N N N H H

X Y Z
H H

ρ
⎧ ⎫ ⎧ ⎫

∂ ∂ ∂⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬∂ ∂ ∂⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

∫∫ S .          (6) 

 
By taking into account basic finite element relations, the shape functions can be grouped 
in the integrand 
 

[ ]
,

T
, , , ,

1 1
,

    d

l

i
x kM M

nh i j j j l
ij x y z y k x l y l z l k

k l i S
z k

l

xH
C g N N N H H H H c Z

y
H

z

φ

φρ φ

φ
= =

⎧ ⎫∂
⎪ ⎪∂⎧ ⎫ ⎪ ⎪
∂⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬∂⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎪ ⎪∂
⎪ ⎪
∂⎩ ⎭

∑∑ ∫∫ S .        (7) 

 
3.3 Boundary stress coefficient, Eq. (2d) 
 

 This coefficient written in matrix notation reads 
 

0     d
x

S i i i j j j
ij x y z x y z y

S
z

X N
k g Z H H H H H H N S

Y
N

Z

ρ

∂⎧ ⎫
⎪ ⎪∂ ⎧ ⎫⎪ ⎪
∂⎪ ⎪ ⎪ ⎪− = − ⎨ ⎬ ⎨ ⎬∂⎪ ⎪ ⎪ ⎪

⎩ ⎭∂⎪ ⎪
⎪ ⎪∂⎩ ⎭

∫∫ .          (8)  

 
By taking into account finite element relations, and after some rearrangement one finds 
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[ ]
,

T0
, , , ,

1 1
,

    d

l

j
x lM M

S j i i i l
ij x y z y l x k y k z k k

k l j S
z l

l

xH
k g N N N H H H H c Z

y
H

z

φ

φρ φ

φ
= =

⎧ ⎫∂
⎪ ⎪∂⎧ ⎫ ⎪ ⎪
∂⎪ ⎪ ⎪ ⎪− = − ⎨ ⎬ ⎨ ⎬∂⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎪ ⎪∂
⎪ ⎪
∂⎩ ⎭

∑∑ ∫∫ S .     (9)  

 
3.4 Coefficient of gravity load, Eq. (1c) – distributed mass 
 

 The ship structure is modeled with shell finite elements of thickness h, so the 
volume integral in Eq. (1c) is reduced to the surface one, which can be written in matrix 
notation 
 

  dm i i i
ij S x y z z

S

X

C g h H H H H
Y

Z

ρ

∂⎧ ⎫
⎪ ⎪∂⎪ ⎪
∂⎪ ⎪= ⎨ ⎬∂⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂⎩ ⎭

∫∫ j S .          (10) 

 
If the mode displacements are expressed by nodal displacements and shape functions 
[25], one obtains 
 

[ ]T, , , ,
1 1

  d

l

M M
m i i i j l
ij S x k y k z k z l k

k l S

l

x

C gh H H H H c
y

z

φ

φρ

φ
= =

⎧ ⎫∂
⎪ ⎪∂⎪ ⎪
∂⎪ ⎪= ⎨ ⎬∂⎪ ⎪

⎪ ⎪∂
⎪ ⎪
∂⎩ ⎭

∑∑ ∫∫ Sφ .        (11) 

 
3.5 Coefficient of gravity load, Eq. (1c) – lumped mass 
 

 Concentrated mass elements are commonly used for modeling of ship cargo and 
equipment and they have to be taken into account within the volumetric integral of 
gravity load coefficient. Eq. (1c) expressed in expanded form [26], 
 

j j j
m i i iz z
ij x y z

H H HC gm H H H z

X Y Z
⎛ ⎞∂ ∂ ∂

= + +⎜ ⎟∂ ∂ ∂⎝ ⎠
 ,          (12) 
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takes into account modal displacements, rotations and strain. By neglecting strain 
deformation terms and taking into account only the rotation component, the coefficient of 
gravity load for lumped mass can be expressed as 
 

( ) ( )1 1
2 2

m i i
ij x y y y x xC gm H Hα β α⎡= − − + +⎢⎣ ⎦

β ⎤
⎥ ,         (13) 

 
 are angles of rotation about x and y axis respectively, Figure 3. where , ,  andxα xβyα yβ

 
 
Figure 3 Angles of rotation about x and y axis 
Slika 3 Kutovi zakreta oko x i y osi 
 
3.6 Geometric stiffness, Eq. (2e) 
 Geometric stiffness, as well as the other restoring stiffness coefficients, represents 
energy which does not depend on the chosen coordinate system. Hence, the local 
coordinate system is used in this case due to easier derivation of geometric stiffness of 
finite element. The corresponding equation (2e) for an element written in matrix in the 
local coordinate system notation takes the form 
 

[ ]{ }, , dG i j
ij m k kl m l

m S

k h h hσ= ∑∫∫ S ,           (14) 

 
where klσ  are elements of stress matrix due to preloading in calm sea and m indicates 
mode components in x, y and z direction. After some rearrangement by applying finite 
element and well known mathematical relations [16, 25, 27] the geometric stiffness 
coefficient takes the final form 
 

{ } { } { }( )
( )

1 1

11 21 12 22                                                  ,

M M
G ij ij ij
ij kl kl klx yx y z

k l

kl kl kl kl
xx yx xy yy

k h c H c c H c c H c

I I I Iσ σ σ σ
= =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⋅ + + +

∑∑ z        (15) 

 
where 
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11

21

12

22

d ,

d ,

d ,

d .

kl k l

S

kl k l

S

kl k l

S

kl k l

S

I S
x x

I S
y x

I S
x y

I S
y y

φ φ

φ φ

φ φ

φ φ

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂

∫∫

∫∫

∫∫

∫∫

             (16)  

 
 If the local coordinate system coincides with the global one, directional 
coefficients ( ) ( ) ( )cos , cos , cos , 1x X y Y z Z= = =

)kl

, while the remaining coefficients for 
combined axis are zero, expression (15) is reduced to the simpler form 
 

( )(, , , , , , 11 21 12 22
1 1

M M
G i j i j i j kl kl kl
ij x k x l y k y l z k z l xx yx xy yy

k l
k h H H H H H H I I I Iσ σ σ σ

= =

= + + + + +∑∑ . (17) 

 
Three terms exist in the first bracket and if one considers a finite element in xy plane, 
then the first two terms include membrane (in plane) displacements in x and y direction, 
while the third term is related to the element deflection in z direction. Hence, the third 
term is related to the ordinary geometric stiffness used in stability analysis, and therefore 
is not sufficient alone for hydroelastic analysis [16, 26]. The formulation of all derived 
coefficients for the case of three node triangular, four node rectangular, and two node 
beam elements is given in [16, 17]. 
 
4 Description of the computer program 
 

 The program is developed for the ship hydroelastic analysis which is based on the 
modal superposition method, in order to reduce the number of differential equations of 
motion of the discretized structure and wetted surface. The dry natural modes of ship 
structure are used and they are determined by solving the eigenvalue problem formulated 
by the finite element method 

[ ] [ ]( ){ } { }2 0K M H−Ω = ,            (18) 

where [ ]K  is the stiffness matrix, [ ]M  is the mass matrix,{ }H Ω is a mode vector and  
is a dry natural frequency. 
 The modal differential equation of ship hydroelastic analysis in frequency domain 
reads 

[ ] [ ]( ) [ ] ( )( ) [ ] ( )( ){ }{ } ( ){ }2k C i d B m A Fω ω ω ω ξ ω+ − + ⎡ ⎤ − + ⎡ ⎤ =⎣ ⎦ ⎣ ⎦ ,      (19) 
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where  is structural stiffness matrix, [ ]k [ ]d  structural damping matrix, [  structural 

mass matrix, [  restoring stiffness matrix, 

]m

]C ( )B ω⎡ ⎤⎣ ⎦  hydrodynamic damping matrix, 
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( )A ω⎡⎣ ⎤⎦  added mass matrix, { }ξ  modal amplitude vector, { }F  wave excitation vector 
and ω  encounter frequency. 
 The integrated program for ship hydroelastic analysis consists of several modules.  
NASTRAN [28] is applied for 3D modeling of ship structure and calculation of dry 
natural vibrations, i.e. natural frequencies and modes, Eq. (18). This program is also used 
for ship strength calculation in calm water in order to determine the membrane stresses in 
geometric stiffness matrix. Newly developed software, RESTAN, is applied for the 
calculation of modal restoring stiffness. For determination of hydrodynamic coefficients, 
i.e. modal added mass, damping and wave excitation program HYDROSTAR [29] is 
used and final modal ship motion equation (19) is solved using program MFRT. 
 Program RESTAN (REstoring STiffness ANalysis) is used for calculating the 
restoring stiffness coefficients according to the formulae worked out in the previous 
section. Hence, there are two types of formulae; one set obtained by volume integration 
over the ship structure, and another over the wetted surface. For the integration needs the 
necessary data generated by NASTRAN are used: node ordinary number and coordinates, 
ordinary number and nodes of the finite elements, material characteristics, components of 
modal displacements, stress components for ship in calm sea, etc. The wetted surface 
panels are taken from the 3D FEM model. Only wetted part of the panels intersected by 
the waterline is included in the wetted surface model. 
 
5 Test example 
 

 The application of the developed finite element formulation of restoring stiffness 
coefficients is tested in the case of a prismatic thin-walled barge, since in this case the 
restoring stiffness for rigid body modes can be determined analytically in order to verify 
the analysis procedure. The main particulars of the barge are the following: 

Length  L = 150 m 

Breadth  B = 24 m 

Draught  T = 6 m 

Depth  D = 15 m 

Displacement  Δ  = 22140 t 

Gz =Vertical position of center of gravity   7.5 m 

WLA = 2Waterplane area   3600 m

ρ = 3 1.025 t/mWater density  

 
 As shown in Figure 4, the inner barge structure consists of three longitudinal and 
24 transverse bulkheads, and four decks. Thickness of all structural elements is 10 mm. 
The barge mass distribution is determined by specifying the density of the structural 
elements. In order to impose some vertical bending of the barge in calm sea, the density 
for elements in the aft and fore region of 36 m length is set to 1 0.260427ρ =  t/m3, while 
in the middle region of 78 m length the density is set to 2 0.781277ρ =  t/m3. 



 
 
Figure 4 Thin-walled barge structure 
Slika 4 Struktura tankostijene barže 

 
 The finite element mesh coincides with the topology of the barge structure in 
order to minimize local deformations vs. girder ones. Longitudinal strength in calm water 
is performed by program NASTRAN. The barge still water sagging with the associated 
stress distribution is shown in Figure 5. The maximum stress occurs in the bottom and 
upper deck at the midship section, 
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max 137.5σ = ±  N/mm2. 

 
Figure 5 Stress distribution in calm sea, prismatic barge 
Slika 5 Raspodjela naprezanja na mirnoj vodi, prizmatična barža 

 
 The free vibration calculation is also performed by NASTRAN for the same mass 
distribution as specified above. The natural frequencies of the first four vertical, 
horizontal, and torsional modes are listed in Table 2.  
 

ΩTable 2 Natural frequencies of prismatic barge, , [Hz] 
ΩTablica 2 Prirodne frekvencije prizmatične barže, , [Hz] 

 

Mode Vertical Horizontal Torsional 

1 1.4611 2.1674 2.9425 

2 3.1266 4.5227 5.4358 

3 5.3028 7.5194 7.4517 

4 7.7376 10.8088 9.5297 

 



 The first mode of each vibration type is shown in Figures 6, 7 and 8. No coupling 
between horizontal and torsional vibrations is encountered in this case, since the torsional 
and gravity centre are the same point. 
 
 
 

 
 
Figure 6 The first vertical mode, prismatic barge 
Slika 6 Prvi vertikalni prirodni oblik vibriranja, prizmatična barža 
 

 

 
Figure 7 The first horizontal mode, prismatic barge 
Slika 7 Prvi horizontalni prirodni oblik vibriranja, prizmatična barža 
 

 

 
 
Figure 8 The first torsional mode, prismatic barge 
Slika 8 Prvi tozijski prirodni oblik vibriranja, prizmatična barža 
 
 Three numerical calculations of restoring stiffness are performed. The first one is 
for the consistent stiffness with distributed structural mass, Eq. (1). The second 
calculation is also performed for the consistent stiffness, but the gravity coefficient, , 
Eq. (1c), is determined by employing the fully lumped masses (without the rotational 
components). The third calculation deals with the complete restoring stiffness, Eq. (2). 
The calculated coefficients and the resulting stiffness are listed in Table 3. The following 
units are used in all calculations: N, m, s, kg. 

m
ijC
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Table 3 Restoring stiffness coefficients of prismatic barge, C 
Tablica 3 Koeficijenti povratne krutosti prizmatične barže, C 
 

( )%εp
ijC nh

ijC m
ijC 0S

ijk− G
ijk total

ijC an
ijCMotion Formulation         

Consistent dist. 
mass 0.0 0.0 0.02573.6199 10⋅
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     73.6199 10⋅   
Consistent 

lumped mass 
73.6199 10⋅  0.0     73.6199 10⋅  0.025  

Heave 73.6190 10⋅  i=j=3 

0.0 0.02573.6199 10⋅Complete      73.6199 10⋅   
Consistent dist. 

mass 0.0 0.0 0.01087.6018 10⋅      87.6018 10⋅   
Consistent 

lumped mass 
87.6018 10⋅  0.0       

Roll 87.601 10⋅  i=j=4 

0.0 0.00787.6018 10⋅ 92.2805 10⋅ 92.2806 10− ⋅ 87.6015 10⋅  Complete       
Consistent dist. 

mass 0.0 0.0 0.009106.6896 10⋅      106.6896 10⋅   
Consistent 

lumped mass 
106.6896 10⋅  0.0       

Pitch 106.6890 10⋅  i=j=5 

0.0 0.009106.6896 10⋅ 92.2805 10⋅ 92.2806 10− ⋅ 106.6896 10⋅ Complete       

 

33
pC For heave only pressure coefficient  is relevant. Almost the exact value is 

obtained in all three calculations, 0.025%ε = . For roll motion, the pressure coefficient 

44
pC  has the main contribution. Since reference point coincides with the centre of gravity, 

the coefficients  and  are zero. The value of  for roll is very close to the exact 

value, 
44
nhC 44

mC 44
totC

0.01%ε = . In the complete restoring stiffness it is obvious that  as 

it is expected since that expression has to compensate  which is equal to zero. 
Discrepancy of the total coefficient, 

0
44 44 0S Gk k− + ≈

44
mC

0.007%ε = , is very small. Pitch restoring is not as 
sensitive as that of roll, so discrepancies in all three cases are considerably smaller. 
 Hydroelastic response of the considered barge is determined for the case of 
heading angle 150χ = 0χ = °°  (following waves ). A large number of wave frequencies 
in the range from 0.1 to 1.5 rad/s, with step 0.02ωΔ =  rad/s is taken into account. 
 In the following figures transfer functions of sectional forces are shown. Moments 
are related to the midship section, while shear forces are determined at the aft section 
0.25L, where it is expected to have maximum values. The RAO of the vertical bending 
moment, Figure 9, achieves peak value at 0.605ω =  rad/s. The response curves for all 
three restoring stiffness formulations are the same. RAO of vertical shear force, Figure 
10, manifests peak at 0.63ω =  rad/s. The response curves are very close to each other.  



 
 

150χ = °Figure 9 Transfer function of vertical bending moment at midship section, prismatic barge,  

150χ = °Slika 9 Prijenosna funkcija vertikalnog momenta savijanja na sredini, prizmatična barža,  
 

 
 

37.5x =150χ = ° ,  m Figure 10 Transfer function of vertical shear force, prismatic barge, 

37.5x =150χ = ° ,  m Slika 10 Prijenosna funkcija vertikalne smične sile, prizmatična barža, 
 
 The RAO of the horizontal bending moment is shown in Figure 11. The 
maximum peak occurs at 0.78ω =  rad/s. There are some differences of the response 
curves at the first peak at 0.52ω =  rad/s, while elsewhere in the frequency region the 
response is the same. That is similar for the RAO of the horizontal shear force, Figure 12. 
In ship hydroelastic analysis the most interesting RAO is that of torsional moment. In the 
considered case maximum value occurs at 0.575ω =  rad/s, and response curves 
determined by different restoring stiffness formulations follow each other very well, 
Figure 13. 
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150χ = °Figure 11 Transfer function of the horizontal bending moment at midship section, prismatic barge,  

150χ = °Slika 11 Prijenosna funkcija horizontalnog momenta savijanja na sredini, prizmatična barža  
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Figure 12 Transfer function of the horizontal shear force, prismatic barge, 150χ = ° ,  m 37.5x =
37.5x =150χ = ° ,  m Slika 12 Prijenosna funkcija horizontalne smične sile, prizmatična baža, 



 
 

150χ = °Figure 13 Transfer function of the torsional moment at midship section, prismatic barge,  

150χ = °Slika 13 Prijenosna funkcija momenta uvijanja na sredini, prizmatična baža,  
 

6 Illustrative example 
 

 The application of the developed finite element formulation of restoring stiffness 
coefficients is illustrated in a case of a real container ship whose main particulars are the 
following: 
 

Length over all   = 349.00 m Loa

Length between perpendiculars   = 333.44 m Lpp

Breadth  B = 42.80 m 

Draught  T = 13.10 m 

Depth  D = 27.30 m 
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Displacement  Δ  = 125604 t 

ρ = 3 1.025 t/mWater density  

Capacity  9415 TEU 

Speed  v =  25 kn 

 
 General arrangement of a 9415 TEU container ship is shown in Figure 14. 3D 
FEM model, consisting of 84893 elements and 16966 structural nodes, was generated in 
program NASTRAN with the purpose of performing the ship still water strength and free 
vibration analysis. Container cargo was modeled using the concentrated mass elements 
rigidly connected with the surrounding structural nodes. In such a way sectional cargo 
mass is lumped in its center of gravity. 



 
 
Figure 14 General arrangement of a 9415 TEU container ship 
Slika 14 Opći plan kontejnerskog broda kapaciteta 9415 TEU 
 
 The ship hogging in calm sea with stress distribution is shown in Figure 15. 
Natural frequencies of the first six dry natural modes are listed in Table 4, while the first 
two coupled horizontal and torsional modes and the first vertical mode are shown in 
Figures 16 and 17 respectively. 

 
Figure 15 Von Mises stress distribution in calm sea, a 9415 TEU container ship 
Slika 15 Razdioba von Mises naprezanja na mirnom moru, kontejnerski brod kapaciteta 9415 TEU 
 

ΩTable 4 Natural frequencies of a 9415 TEU container ship, , [Hz] 
Tablica 4 Prirodne frekvencije kontejnerskog broda kapaciteta 9415 TEU, Ω  [Hz] 
 

f
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Mode no. Description i, [Hz] 
[[[Hz]

1 H1+T1 0.415 

2 H1+T2 0.588 

3 V1 0.676 

4 H2+T3 1.018 

5 V2 1.384 

6 H3+T4 1.391 

 



 
 
Figure 16 The first and the second coupled torsional and horizontal mode shapes (lateral and bird’s view), a 9415 
TEU container ship 
Slika 16 Prvi i drugi spregnuti horizontalni i torzijski prirodni oblik vibriranja (bočni i ptičji pogled), kontejnerski 
brod kapaciteta 9415 TEU 
 

 
 
Figure 17 The first vertical mode, a 9415 TEU container ship 
Slika 17 Prvi vertikalni prirodni oblik vibriranja, kontejnerski brod kapaciteta 9415 TEU 
 
 Three numerical calculations of restoring stiffness are performed, as described in 
section 5. Validation of the calculations can be checked in the case of heave, roll and 
pitch since the restoring stiffness for these three motions can be determined analytically 
using the well known seakeeping restoring stiffness expressions [3]. The calculated 
coefficients and the resulting stiffness are listed in Table 5. The following units are used 
in all calculations: N, m, s, kg. 

33
pC For heave only pressure coefficient  is relevant. Almost the exact value is 

obtained in all three calculations, 1.067%ε =  for the fist and third formulation, and 
0.638%ε =  in the case of the second one. 

 Slightly larger disagreement between calculated and analytical value is obtained 
in the case of roll, i.e. 1.575%ε = − 1.457%ε = for consistent, and  for consistent 
formulation with lumped masses. Special attention has to be given to the restoring 
stiffness coefficient in the case of complete formulation, since boundary stress 
coefficient, , and geometric stiffness coefficient, , are two close values that cancel 
each other [16, 17] and in the case of ship structure they are for one order of magnitude 
greater than the pressure coefficient. Also, due to high complexity of the geometric 
stiffness coefficient calculation and its dependence on the ship strength analysis it is not 
possible to achieve close values of those two coefficients, i.e. the real value obtained in 
the case of roll is  , which is only 3% larger comparing to the value of 
the boundary stress coefficient. Therefore, even a small difference between these two 
coefficients causes significant error in the value of the total restoring coefficients and 

44
Gk0

44
Sk

10
44 2.9902 10Gk = − ⋅
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consequently making the complete formulation, although physically correct, numerically 
unstable. To enable adequate comparison of the achieved results the final value of the 
geometric stiffness coefficient in the case of complete formulation was calibrated with 
respect to roll in order to cancel the contribution of the boundary stress coefficient. 
 
Table 5 Restoring stiffness coefficients of a 9415 TEU container ship, C 
Tablica 5 Koeficijenti povratne krutosti kontejnerskog broda kapaciteta 9415 TEU, C 
 

( )%εp
ijC nh

ijC m
ijC 0S

ijk− G
ijk total

ijC an
ijCMotion Formulation         

Consistent 
dist. mass 1.06781.2027 10⋅
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     81.2027 10⋅   
Consistent 

lumped mass 
81.1976 10⋅      81.1976 10⋅  0.638  

Heave 81.1900 10⋅  i=j=3 

1.06781.2027 10⋅Complete      81.2027 10⋅   
Consistent 
dist. mass 1.575−91.7209 10⋅ 73.9588 10− ⋅ 71.9863 10− ⋅  *   91.6614 10⋅   
Consistent 

lumped mass 
91.7346 10⋅  0.0  72.1990 10− ⋅    91.7126 10⋅  1.457  

Roll 91.6880 10⋅  i=j=4 

0.355−91.7209 10⋅ 73.9588 10− ⋅ 102.9021 10⋅ 102.9026 10− ⋅ 91.6820 10⋅Complete      *  
Consistent 
dist. mass 1.487118.3199 10⋅ 81.3976 10⋅ 82.7184 10⋅     118.3240 10⋅   
Consistent 

lumped mass 
118.1667 10⋅  0.0  72.1990 10⋅    118.1669 10⋅  0.428−  

Pitch 118.2020 10⋅  i=j=5 

1.283118.3199 10⋅ 81.3976 10⋅ 102.8805 10⋅ 102.9322 10⋅ 118.3073 10⋅ Complete       

 *Calibrated value 
 Except that, special care has to be taken in the case of gravity coefficient, . It 
can easily be shown that in the case of rigid body modes and when the center of gravity is 
taken as the reference point, Eq. (1c) yields zero value. This condition is easily achieved 
in the case of simpler structures like prismatic barge [16] and it is also approximately 
satisfied in the case of a complex structure with continuous or lumped mass. Some 
problems arise with the combined continuous and lumped mass approach, making the 
gravity coefficient very sensitive to mass modeling. Due to that fact, the value of gravity 
coefficient was also calibrated by correcting the vertical position of the center of gravity 
of the chosen concentrated cargo. In such way, the original value of  
was reduced to , which is negligible, comparing to the value of 
pressure coefficient, , Table 5. Restoring stiffness in the case of pitch is 
not as sensitive as in the case of roll, and all the achieved values are close to the 
analytical ones. 

44
mC

8
44 1.714 10mC = − ⋅

7
44 1.9863 10mC = − ⋅

9
44 1.7209 10pC = ⋅

 Hydroelastic response of the considered container ship was determined for the 
case of heading angle 150χ = 0χ = °°  (following waves ) and for the same range of 
frequencies as in the case of regular barge. Moments are related to the midship section, 
while shear forces are determined at the aft section 0.25L, where it is expected to have 
maximum values. RAO of the vertical bending moment, Figure 18, achieves significant 
peak value at 0.72ω =  rad/s. The response curves for all three restoring stiffness 
formulations are the same. RAO of vertical shear force, Figure 19, manifests the first 
peak at 0.78ω =  rad/s. The response curves are very close to each other. RAO of 
horizontal bending moment is shown in Figure 20. The significant peak occurs at 

0.91ω =  rad/s with good agreement between all formulations. That is similar for the 
RAO of the horizontal shear force, Figure 21. In the case of torsional moment RAO, 



Figure 22, the first significant peak occurs at 1.25ω =  rad/s, and response curves 
determined by different restoring stiffness formulations follow each other very well. 

 
 
Figure 18 Transfer function of vertical bending moment at midship section, a 9415 TEU container 
ship , 150χ = °  
Slika 18 Prijenosna funkcija vertikalnog momenta savijanja na sredini, brod za prijevoz kontejnera kapaciteta 
9415 TEU , 150χ = °  
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Figure 19 Transfer function of vertical shear force, a 9415 container ship , 150χ = ° ,  m 85x =
Slika 19 Prijenosna funkcija vertikalne smične sile, kontejnerski brod kapaciteta 9415 TEU 



 
 
Figure 20 Transfer function of horizontal bending moment at midship section, a 9415 TEU container 
ship , 150χ = °  
Slika 20 Prijenosna funkcija horizontalnog momenta savijanja na sredini, kontejnerski brod kapaciteta 9415 
TEU , 150χ = °  

 
 

 

 

299

Figure 21 Transfer function of horizontal shear force, a 9415 TEU container ship , 150χ = ° ,  m 85x =
Slika 21 Prijenosna funkcija horizontalne smične sile, kontejnerski brod kapaciteta 9415 TEU , 150χ = ° , 

 m 85x =

 
 
Figure 22 Transfer function of torsional moment at midship section, a 9415 TEU container ship , 150χ = °  

Slika 22 Prijenosna funkcija momenta uvijanja na sredini, kontejnerski brod kapaciteta 9415 TEU , 150χ = °  

 



 In Figures 23 to 28 transfer functions of sectional forces determined by the 
ordinary procedure for rigid body motion and hydroelastic analysis with consistent 
restoring stiffness and distributed mass are shown. The rigid body values at resonant 
motions are somewhat lower than those of the elastic body. Resonances of elastic 
response are captured in the area of higher encounter frequencies where the ordinary 
procedure based on a ship as rigid body is not applicable. 
 

 
 

150χ = °Figure 23 Transfer function of vertical bending moment for rigid and elastic ship at midship section,  

150χ = °Slika 23 Prijenosna funkcija vertikalnog momenta savijanja na sredini za kruti i elastični brod,  
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Figure 24 Transfer function of vertical shear force for rigid and elastic ship, 150χ = ° ,  m 85x =
Slika 24 Prijenosna funkcija vertikalne smične sile za kruti i elastični brod, 150χ = ° ,  m 85x =



 
 
Figure 25 Transfer function of horizontal bending moment for rigid and elastic ship at midship section, 

150χ = °  

150χ = °Slika 25 Prijenosna funkcija horizontalnog momenta savijanja na sredini za kruti i elastični brod,  
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Figure 26 Transfer function of horizontal shear force for rigid and elastic ship, 150χ = ° ,  m 35x =
Slika 26 Prijenosna funkcija horizontalne smične sile za kruti i elastični brod, 150χ = ° ,  m 35x =

 
 

150χ = °Figure 27 Transfer function of torsional moment for rigid and elastic ship at midship section,  

150χ = °Slika 27 Prijenosna funkcija momenta uvijanja na sredini za kruti i elastični brod,  
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7 Conclusion 
 

One of unwanted physical phenomena related to modern container ships is 
springing, characterized as resonant motion, which manifests as periodic response to 
wave excitation. Adequate analysis of such physical phenomenon is provided by 
hydroelastic analysis that extends traditional seakeeping analysis to elastic modes. 

 Mathematical hydroelastic model consists of structural, hydrodynamic and 
hydrostatic models, and it is possible to formulate it on different levels of complexity, 
depending on a particular purpose. Restoring stiffness formulation, enclosed in the 
hydrostatic model, represents special problem due to disagreements related to certain 
restoring stiffness components definition and to the methodology of restoring stiffness 
analysis. Therefore, in order to ensure reliable problem description, it is necessary to 
develop mathematically and physically transparent restoring stiffness formulation. 

This paper presents the theoretical improvement and formulation of restoring 
stiffness via finite element method, which is very useful for practical utilization because 
it enables the usage of 3D FEM model as integration domain within the hydrostatic 
model. The validity of the numerical procedure was demonstrated in the case of a 
prismatic barge with very good agreement between numerical and possible analytical 
values. 

Restoring stiffness of ship structure was determined by program RESTAN using 
the modal displacements and stress distribution determined via commercial program 
NASTRAN. Total geometric stiffness was also determined by program RESTAN which 
comprises three parts related to both translatory and membrane displacements. The effect 
on the hydroelastic response was examined for three restoring stiffness formulations: 
consistent with distributed mass, consistent with lumped masses, and complete one. A 
good agreement was found between all results of the three formulations. Also, good 
agreement of the results was achieved in the case of rigid body modes where numerical 
and analytical values exist. The only exception is numerical instability of complete 
formulation in the case of roll. 

 Finally, it can be concluded that the restoring stiffness analysis using complete 
formulation is, although physically correct, very complex and extensive and does not 
result with expected accuracy improvement. Due to that fact this formulation is not 
suitable for the practical usage in shipping industry. On the other hand, consistent 
formulation with lumped mass is much simpler and gives very good results. Therefore, it 
can be recommended for the further utilization. 
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