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Summary 

The selection of the suitable propulsion system for LNG carrier highly affects the ship 

capital and life cycle costs. The current paper compares between the available propulsion 

systems for LNG carriers from environmental and economic points of view operated with 

heavy fuel oil (HFO) and marine gas oil (MGO). In addition, the cost-effectiveness for 

emission reduction due to using dual fuel propulsion options using natural gas fuel (NG) is 

calculated. As a case study, large conventional LNG carrier class has been investigated. The 

results show that steam turbine (ST), Ultra-ST, dual fuel diesel engine (DFDE), and combined 

gas and steam (COGAS) propulsion options can comply with NOx and SOx emissions 

regulations set by IMO using dual fuel mode with NG percentages of 87.5%, 82%, 98.5% and 

94%, respectively. DFDE operated with pilot HFO and NG is the most economic propulsion 

option. It reduces the dual fuel costs by 1.37 MUS$/trip compared with HFO cost. The annual 

cost-effectiveness for the most economic and emission compliance propulsion option is 6.07 

$/kg, 6.39 $/kg, and 0.55 $/kg for reducing NOx, SOx, and CO2 emissions, respectively. 

 

Key words:  LNG carriers; Propulsion options; Boil-off gas; Environmental and 

economic analysis; EEDI; Fuel saving cost-effectiveness 

1. Introduction 

The demand on natural gas supply has been increased in the last years to reduce the 

exhaust gas emissions especially the greenhouse gas [1, 2]. Because of these demands, 

liquefied natural gas (LNG) market is increasing with the increased number of LNG vessels 

[3-5]. LNG reduces the gas volume by 600 times using deep cooling of −163 °C at a pressure 

slightly higher than the atmospheric pressure [6, 7].  Boil-off gas (BOG) is one of the main 

characteristics of the LNG tanks [8].  Therefore, the selection of the LNG carrier propulsion 

system is constrained by LNG properties and different economic and environmental factors 

[9]. There is no standard marine power plant for LNG ships [10]. Different propulsion 

systems are installed onboard varying from turbines to internal combustion engines. 

LNG carriers are designed according to the gas code regulations of the international 

maritime organization (IMO). The gas tanks are built using “cargo containment system”. 

http://dx.doi.org/10.21278/brod70304
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They are arranged as spherical (moss), membrane, or prismatic type tanks [11]. BOG occurs 

in these tanks due to the heat transfer from the surrounding environment which results in 

evaporation of the liquefied gases. This evaporation rate is increased during cargo 

transportation [12-14].   

On the other hand, the application of natural gas in marine engines depends on its 

properties. Natural gas is lighter than air, and in the case of leakage it disperses to the 

atmosphere. Evaporation process of the LNG makes it easy to float away unlike other liquid 

fuels which remain near the engine and the bilge. The flammability of NG is only possible 

within a tight mixture with air ranging (5%: 15 %). The properties of NG and conventional 

marine fuel oil are summarized in Table 1 [15-17]. 

 

Table 1 Comparison between NG and marine fuel oil properties 

 

2. Propulsion options for LNG carriers 

The type and the classification of LNG propulsion system are highly affected by the 

generation of the BOG and the emission regulations set by the IMO [12]. Steam turbine (ST) 

based propulsion system was the first system to be used for LNG carriers since 1960 [18]. It is 

allowed for burning the used fuel together with the generated BOG during transportation. In 

2003, internal combustion engines replaced the ST, due to the improvement in their 

performance and efficiency. In addition, the dual fuel diesel engine (DFDE) permits the 

burning of the BOG with the heavy fuel oil [19]. DFDE was started in 4-stroke engine, since 

2003. At present, 2-stroke engines can also use NG as a fuel. This can lead to a dramatically 

change in the LNG propulsion system [14]. The main propulsion systems used in LNG 

carriers are steam turbine, DFDE, slow speed diesel engine, and gas turbine in combined 

cycle.     

2.1 Steam turbine propulsion (ST) 

 

Steam turbine is the first propulsion system used for LNG carriers because of the boiler 

flexibility to burn the natural BOG from the cargo. This propulsion system normally consists 

of two boilers each produces steam with a rate of 80-90 ton/hr at 60-70 bar and 520 oC [20]. 

The total power of the plant is 35-45 MW produced through high, intermediate, and low 

pressure turbines. For speed reversal, the low pressure turbine incorporates a stern turbine on 

the same rotor shaft. The electric power demand onboard is supplied by two steam turbines 

generators and one medium-speed diesel generator. The estimated overall thermal efficiency 

of 30 MW conventional steam power plant powered by Mitsubishi is 35% [21]. In order to 

improve the thermal efficiency of the steam power plant, reheating of the high pressure steam 

turbine is incorporated [14, 22]. This improved cycle is called Ultra Steam Turbine (UST) as 

shown in Fig. 1a. The modified cycle saves 15% of the fuel consumption compared with the 

conventional steam power plant with an overall fuel efficiency of 41%. This can be 

Property  Marine fuel oil  Natural gas 

Ignition temperature, °C  250  600  

Density, kg/m3@ 1 bar  850  0.74 

LCV, MJ/kg  42  50  

Carbon contents (%)  84.7  70  

Hydrogen contents (%)  12  20  
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considered as a competitive to the DFDE power plant from fuel consumption point of view 

[23-25]. 

2.2  Dual fuel diesel engine (DFDE) 

 

Medium speed diesel engines can be considered as an alternative to the conventional 

steam turbines with low fuel efficiency. They can burn both the liquid and gas fuels in the 

dual fuel mode. The BOG is used in the gas mode operation with lean air to fuel ratio on the 

principle of the Otto cycle with pilot diesel fuel injection in the cylinder for ignition. The 

engine is operated using a completely liquid fuel, marine diesel oil (MDO) or heavy fuel oil 

(HFO), when the amount of the BOG is insufficient. In this case, the BOG is burned in the 

gas combustion unit (GCU) with the disadvantage of the energy loss. This loss associated 

with the losses of the electrical components of the used propulsion system can be ranged from 

6% to 8%, when comparing DFDE with other marine power plants. Fig. 1b shows the DFDE 

propulsion plant for an LNG carrier. This system uses electric propulsion where the electrical 

power for both the propulsion and the cargo handling are in altered operating time phase 

which reduces the net power requirement compared with the mechanical propulsion plant. On 

the other hand, this propulsion system requires a complex control system especially air to fuel 

ratio controller [2, 26].        

 

2.3 Slow speed diesel engine (SSDE) 

 

Slow speed diesel engines are used for LNG carrier propulsion especially for large 

capacities over 200,000 m3 and the long distance tradeoff ships. It is the most efficient 

propulsion engine used onboard ships, at the moment. The main advantages of slow speed 

diesel engine are the high efficiency, low maintenance and operating costs, and the possibility 

of burning low-quality cheap fuels [27]. This propulsion system uses both the gas combustion 

unit (GCU) and the reliquefaction plant for the naturally generated BOG as shown in Fig. 1c. 

The reliquefaction plant converts the generated BOG into a liquid and this reduces any loss in 

the transported cargo. In case of any breakdown in this system or during any maintenance 

procedures, the GCU is used to burn the BOG to avoid any damage in the LNG tanks because 

of the increase in the storage pressure [14]. The auxiliary and electric powers in this 

propulsion system are provided using 4-stroke diesel generators. In case of twin screw 

propellers, shaft disconnecting devices are used in each shaft line to immediately disconnect 

the failed engine from the propulsion shaft line and continue the ship voyage [28, 29].  

     

2.4 Gas Turbines in combined cycle (COGAS) 

 

The combined cycle is an unusual propulsion system for LNG carriers, because it does 

not provide a good flexibility especially for auxiliary power generators. Although gas turbines 

(GT) have many advantages such as good reliability, high power to weight ratio, compact 

size, and quick response to power demand, ship owners do not prefer using it because of the 

low fuel efficiency. Most of the applications of the gas turbines in the marine field are used in 

their combined cycle especially for naval and offshore industry [30-32]. Fig. 1d shows a 

combined gas and steam turbines (COGAS) propulsion power arrangement for LNG carrier. 

The gas turbine provides the propulsion torque after using a reduction gear. The exhaust gas 

boiler is operated using the heat lost in the exhaust gases generated from the gas turbine. It is 
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coupled to a generator which provides a mechanical power through the reduction gear to the 

ship propeller during cruise. At port, both turbines are stopped and three power generators are 

used for power generation during cargo loading and uploading operations [19, 33].   

 

  

a) Ultra Steam Turbine (UST) b) Dual fuel four stroke Diesel Engines (DFDE) 

  

c) 2-stroke diesel engine  d) Combined gas and steam (COGAS) 

 

Fig. 1 Different LNG propulsion options 

 

The current paper aims to compare between the available propulsion systems for LNG 

carriers from environmental and economic points of view. The comparison will be performed 

for the most used marine fuels in LNG carriers’ propulsion options. The used fuel for all 

propulsion options is the heavy fuel oil (HFO) except COGAS operates with marine gas oil 

(MGO) and DFDE uses both HFO and MGO [2, 14, 22, 34]. In addition, the cost-

effectiveness for emission reduction due to using the dual fuel propulsion systems is 

investigated for large conventional LNG carrier. 

 

3. Large conventional LNG carriers case study 

 

LNG carriers can be classified into five main classes based on its volumetric capacity of 

LNG in m3. These classes are small, small conventional, large conventional, Q-flex, and Q-

mass. They range from small volumes up to 90,000 m3 for the small class and more than 

260,000 m3 for Q-mass class. One of the most common classes, which is selected for the 

current case study, is the large conventional. The average particulars for this class can be 

listed in Table 2 [35]. The maximum design draft is limited to 12 m due to the available port 

facilities. This results in quite high beam to draft ratio above 4.0. For this case, twin-screw 

propulsion system will reduce the required main engine power up to 9.0% compared with the 

single screw system. In addition, most of the LNG carrier propulsion engines are designed to 
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use BOG from the cargo. The case study ship is assumed to export the LNG from Qatar, the 

largest exporter in the world, to Japan, the largest importer of LNG in 2017 [36, 37]. The 

average distance from Qatar to Japan is 6347 nautical miles. The tip time will be 26 days and 

10.0 hours, using ship speed of 20.0 knots [38]. The number of trips per year is assumed to be 

10.0.       

Table 2 Large conventional LNG carrier using twin-screw propeller average particulars 

 

LNG carrier item Particulars 

Type  Membrane Type  

Ship size, LNG capacity  150,000 m3 

Scantling draught  12.3 m 

Length overall 288.0 m 

Length between pp 275 m 

Breadth 44.2 m 

Design draught  11.6 m 

Average design speed  20.0 Knots 

Power (MCR) 2x14,900 kW 

 

4. Environmental and economic modeling 

 

The emission of pollutant (j) over a complete ship trip in tones (me,j) can be calculated 

using Eq. (1) [39, 40]. 

jje EFTLPm =,  (1) 

where, P is the engine power in kW with its load factors (L), T is the trip time in hours, and 

EFj is the emission factor of the pollutant (j) expressed in ton/kWh. Table 3 shows the 

different emission factors (EFj) for gas turbine (GT), steam turbine (ST), slow and medium 

speed marine diesel engine (SSDE and MSDE) operating on heavy fuel oil (HFO), marine gas 

oil (MGO), and natural gas (NG) [14, 40-45]. 

  

NG can be used in a dual fuel mode in LNG carriers. The emission factor in case of 

using dual fuel engine (EFDF,j) for each pollutant emission can be calculated using Eq. (2). 

NGNGmmjDF EFxEFxEF +=,  (2) 

where, xm and xNG are the percentages of the main fuel and the NG fuels in dual-fuel engine 

(DFE), EFm and EFNG are the emission factors in g/kWh for the main and the natural gas 

engines. 

 

The percentage of the BOG in the dual fuel mode during one trip can be calculated 

using the boil-off rate (BOR). It represents the quantity of the evaporated LNG per day 

expressed as a percentage of the total cargo (%/day) [46, 47]. BOR can be calculated using 

Eq. (3). 

ocLHlatent VH

Q
BOR

arg2

100
243600












=  (3) 
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where,  Q is the heat exchange in LNG tanks in kW , ρ is the density of LNG in kg/m3, and 

Hlatent is the heat of vaporization in kJ/kg. The average BOR values  for new LNG tankers 

range from 0.10 to 0.15% /day for loaded voyage  and from 0.06 to 0.10 %/day for ballast 

voyage [48-50].  

 

Table 3 Emission factors for different LNG propulsion options in g/kWh 

 

Engine type Fuel used Emission factors (g/kWh) 

NOx SOx CO2 

SSDE HFO (2.7%S) 17 12.9 550 

 

MSDE 

HFO (2.7%S) 14.00 11.24 677.91 

MGO (0.1%S ) 13.20 0.40 646.08 

NG 2.16 0.0 548.2 

COGAS MGO (0.1%S ) 14 0.0 590 

 NG 0.9 0.0 510 

ST HFO (2.7% S) 11.0 1.0 930 

NG 0.4 0.0 241 

UST HFO (2.7% S) 8.25 0.75 697.5 

NG 0.3 0.0 180.75 

 

The emission factors for LNG ship should be compared with the required IMO emission 

rates for NOx, SOx and CO2.  For NOx emissions, the emission limit equations, expressed in 

g/kWh, of the applicable Tier III values, only for NECA (NOx Emission control areas ), based 

on the rated engine speeds in rpm are shown in Eq. (4) [28, 40, 44, 51-53].   
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SOx emissions are limited by the sulfur percent in the used marine fuel. For 2020 IMO 

SOx regulations, the permitted sulfur percent in the fuels is 0.5% [40, 51, 54-56]. On the other 

hand, greenhouse gas (GHG) emissions especially CO2 emissions are limited by IMO through 

introducing Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational 

Indicator (EEOI)  [57]. The calculated EEDI should be compared with the reference values 

for EEDI in three phases according to the ship type. For LNG ship, the reference and the 

calculated values for the EEDI are based on the ship deadweight (DWT) as expressed in Eqs. 

(5) and (6) [46, 47, 58-62].  

474.0
. 7.2253 DWTEEDI ref =  (5) 

 

( )

( )
DWTVf

SFCCSFCCP

DWTVf

SFCCSFCCP
EEDI

refc

fuelAEfuelFpilotAEpilotFAE

refc

fuelMEfuelFpilotMEpilotFME
cal



+
+



+
=

,,,,

,,,,
.

 (6)    



Environmental and cost-effectiveness comparison of dual fuel propulsion                                    Nader R. Ammar                                     

options for  emissions reduction onboard LNG carriers  

 

67 

 

where, PME is the is the main engine power, it can be calculated using Eq. (7). PAE is the 

auxiliary power required to operate the accommodation of crew and the main engine, Vref  is 

the reference ship speed in knots, CF is the fuel conversion factor to CO2 emissions.  IF LNG 

carrier uses reliquefaction plant, PAE will include PAE,Reliq for the EEDI calculation, COPReliq. and 

COPcooling are the coefficients of performance for the reliquefaction and cooling plants, 

respectively as expressed  in Eqs. (8) - (10) [47, 63, 64]. 

MCRPME = 75.0  (7) 

.Re,250025.0 liqAEAE PMCRP ++=  (8) 

.Rearg.Re, liqocliqAE COPBORVP =  (9) 

cooling

latentLH
liq

COP

H
COP




=

360024

2

.Re


 (10) 

The cubic capacity correction factor (fc), used in Eq. (6), equals 1.0 except for direct-

diesel-driven LNG carrier. It can be calculated using Eq. (11), where R is the ship deadweight 

divided by the cargo capacity.  

56.0−= Rfc  (11) 

From economic point of view, the annual cost for installation each propulsion system 

(AC) depends on the capital cost value (CC), the average expected working years (n), and the 

interest rate (i) [65]. AC can be calculated using Eq. (12).  

( )

( ) 11

1

−+

+
=

n

n

i

ii
CCAC  (12) 

In addition, the annual fuel saving cost due to using NG (FSNG) in dual fuel mode 

onboard LNG carrier can be calculated using Eq. (13).  

( ) ( )nDFDONG PICCFS −= 1  (13) 

 

where, CDO and CDF are the diesel fuel and the dual-fuel costs, respectively. (PI) is the annual 

fuel price change percent over the working years (n) of the ship life cycle. 

 

Finally, the annual cost-effectiveness of each propulsion system (ACE) for reducing a 

pollutant emission (j) after using dual fuel engine can be calculated using Eq. 14 [40, 42]. 

j
j

ER

OCAC
ACE

+
=  (14) 

where, OC is the operating and maintenance costs for the propulsion system in $/year. ERj is 

the annual emission reduction in (j) after using dual fuel engine expressed in ton/year.   

5.  Results and discussion 

In this section, the environmental results for different LNG carrier propulsion options 

using HFO and MGO are discussed. In addition, the economic and cost-effectiveness analysis 

for the dual fuel operated propulsion options, using NG, are calculated. 
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5.1 Environmental results 

 

Fuel efficiency not only affects the operating costs of the marine propulsion power plant 

but also extremely influence the emitted exhaust gas emissions. Although the efficiency of 

steam power plant is lower than internal combustion engines, UST with reheating has 

improved the efficiency of the steam cycle to a comparative level. Typical efficiencies of 

157,000 m3 LNG carrier using ST, UST, SSDE with reliquefaction plant, dual fuel MSDE, 

and COGAS power plants are 35%, 41%, 40%, 42%, and 50%, respectively [2, 29, 66]. UST 

emission factors are reduced by 25% compared with the simple GT cycle [14]. LNG carrier 

propulsion systems can fulfill the required levels of NOx and SOx emission levels set by IMO 

depending on the used plant and the fuel type. Fig. 2 shows the relative NOx and SOx 

emissions from the five most used marine power plants for LNG carriers using HFO and 

MGO. Any observed power plant satisfies IMO standards (for both SOx and NOx) if the 

relative emissions are 100% or lower. In order to calculated the emission levels set by IMO, 

the average rpm for ST, SSDS, DFDE, GT is assumed to be 3500 rpm, 85 rpm, 750 rpm, and 

3600 rpm, respectively [67-69]. It can be noted from Fig. 2 that all power plants could comply 

with IMO-SOx emission levels using MGO. In contrast, all power plants cannot achieve these 

levels using HFO. On the other hand, all power plants cannot fulfill the required IMO-NOx 

emission levels. 

 

  
Fig. 2 NOx and SOx emissions comparison using HFO and MGO 

 

Due to the strict IMO regulations that limit the exhaust gas emissions from ships, it is an 

important factor to consider using the BOG as a secondary fuel in LNG carriers during the 

design process. This will help in reducing the exhaust gas emissions. From section 2, SSDE 

propulsion option use BOG either in a reliquefaction plant or in GCU. Thus, it is not included 

in the dual fuel mode. Fig. 3 shows NOx and SOx emissions from LNG propulsion plants 

using HFO and MDO in dual fuel mode using BOR of 0.15%/day for the loaded voyage [48-

50]. The share percentages of these BOG in LNG propulsion fuel is calculated based on the 

fact that each cubic meter of diesel oil consumption is equivalent for 1197 m3 of NG [44]. In 

addition, the volume of NG is reduced by 600 times when converted to the liquid state [40, 

70]. The percentages of BOG in dual fuel mode range from 55.47% to 79.49% using ST and 

COGAS, respectively for the case study. Using BOG, both NOx and SOx emission rates 

cannot be complied with IMO regulations, using different LNG propulsion options, as shown 

in Fig. 3.  
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Fig. 3 NOx and SOx emissions comparison using the main-engine fuel and BOR of 0.15%/day 

 

From Fig. 3, NG percent can be increased in the dual fuel mode to reduce the exhaust 

gas emissions to the accepted rates set by IMO for NOx and SOx emissions. The minimum 

NG percentages in dual fuel mode for the different propulsion options are 87.5%, 82%, 98.5% 

and 94% to achieve the required IMO values for NOx and SOx emissions using ST, UST, 

DFDE, and COGAS, respectively as shown in Fig. 4. The shares of BOG in these percentages 

are 55.47%, 65.0%, 66.67%, and 79.49%, respectively. Moreover, using dual fuel will reduce 

CO2 emissions because of the reduced carbon content in NG compared with liquid marine 

fuels. Fig. 4 shows the relative CO2 emissions of different LNG carrier propulsion systems 

using dual fuel propulsion systems with the accepted NOx and SOx emission levels set by 

IMO. CO2 emissions from ships are one of the major concerns of the IMO due to its bad 

influence on the global warming. The highest and the lowest CO2 emission reduction 

percentages are achieved by the ST and the COGAS with percentages of 64.83% and 12.75%, 

respectively. These reductions in CO2 emissions will improve the energy efficiency of the 

ship through calculating EEDI and EODI [62].  

 
Fig. 4 CO2 emissions comparison for different LNG propulsion options 

CO2 emissions presented in Fig. 4 have to be complied with the required IMO 

regulations. In addition, the newly built LNG carriers should be designed to be energy 

efficient to reduce carbon dioxide emissions through calculating the energy efficiency design 

index (EEDI). It depends on the type of the ship, the main and auxiliary engines, the 

construction, and the used fuel. It calculates the amount of CO2 emissions per unit distance of 

cargo transportation. Fig. 5 shows the permitted CO2 emissions set by IMO in gCO2/ton-NM 

(Required EEDI). The values of the EEDI for LNG carriers depend on the ship deadweight 

presented in three phases according to the ship built year. The base line values will be reduced 
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by 20 and 30 percentages in the second and the third phases in the years 2020 and 2025, 

respectively.  

 
Fig. 5 EEDI values for LNG carriers recommended by IMO in three phases 

 

5.2 Economic and cost-effectiveness results 

 

The economic feasibility of LNG carrier propulsion options can be judged using the 

total costs for each option and its environmental impact assessment. The total costs include 

the initial installation and operational costs. The initial costs per unit power for ST, DFDE, 

SSDE, and COGAS are 136 $/kW, 667 $/kW, 940 $/kW, and 1410 $/kW, respectively [47, 

71, 72]. For LNG carrier of 150,000 m3 capacity, the initial installations costs for ST, DFDE, 

SSDE, and COGAS propulsion systems are 4.05 MUS$, 1.99 MUS$, 2.80 MUS$, and 4.20 

MUS$, respectively. On the other hand, the fuel consumption cost is the highest percent of the 

operating costs over the life cycle of the propulsion power plants [47]. The prices of HFO, 

MGO, and NG are 556$/m3, 882 $/m3, and 0.3047 $/m3, respectively [73-75]. The cost of 

HFO consumptions per trip are 2.99 MUS$, 2.55 MUS$, 2.49 MUS$, and 2.62 MUS$ for the 

case study propulsion options using ST, UST, DFDE, and SSDE, respectively. On the other 

hand, the costs of MGO fuel per trip are 3.94 MUS$ and 3.31 MUS$ for DFDE and COGAS, 

respectively. Based on 2018 fuel oil and NG prices using dual fuel engines will save in the 

fuel consumption due to the low price of NG compared with the diesel oil prices. Fig. 6 

illustrates the fuel saving cost per trip for different LNG propulsion options operated with 

dual fuel engines with different NG percentages. The highest fuel saving cost is 2.79 

MUS$/trip for DFDE propulsion system operated with MGO. In contrast, the lowest fuel 

saving cost is 1.0 MUS$/trip for UST operated with dual HFO and NG fuels.        
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Fig. 6 Fuel saving cost per trip using dual fuel propulsion options for LNG carrier 

 

The economic assessment for LNG carrier propulsion options complied with IMO 

regulations using dual fuel mode can be evaluated using the total annual costs for each option. 

Fig. 7 shows the total annual costs and emission reduction percentages for ST, UST, DFDE, 

and COGAS propulsion options operated in dual fuel mode. The total annual costs for ST, 

UST, and DFDE, propulsion options operated with HFO-NG dual fuel are 15.05 MUS$, 

15.90 MUS$, and 13.38 MUS$, respectively. The reduction percentages in NOx emissions for 

these options compared with the HFO operated engines are 84.32%, 79.02%, and 83.3%, 

respectively. For SOx emissions, the reduction percentages will be 87.5%, 82%, 98.5%, 

respectively. On the other hand, the total annual costs for MGO-NG dual fuel operated 

COGAS propulsion system is 17.38 MUS$ with zero SOx emissions and 87.96% NOx 

emission reduction percent. 

 
Fig. 7 Total annual costs and emission reduction percentages for dual-fuel propulsion options 

 

From Fig. 7, DFDE operated with dual HFO and NG is the most economic and emission 

compliance propulsion option for large conventional LNG carrier. The annual costs for capital 
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cost recovery and the annual fuel saving costs for DFDE, compared with the HFO operated 

engine, are presented in Fig. 8.  The annual costs are calculated over the assumed ship life 

cycle of 28 years [40, 76]. The annual costs for capital cost recovery and fuel saving, at the 

end of the ship life cycle, will be 2.14 MUS$ and 23.80 MUS$, assuming annual interest rate 

of 10% and fuel price increment of 2%, respectively.  

   

  

 

Fig. 8 Annual costs for DFDE propulsion option over LNG carrier life cycle 

 

In order to combine the environmental benefits and the economic analysis for the four 

propulsion options for LNG carriers achieved IMO emission requirements, the cost-

effectiveness for each reduction in pollutant emissions is calculated. It assesses the economic 

benefits for the total costs of each propulsion option in terms of its environmental 

consequences. The cost effectiveness is calculated for the three most economic propulsion 

options achieved IMO NOx and SOx emission requirements. Fig. 9 compares the cost-

effectiveness for reducing NOx, SOx, and CO2 emissions after using dual fuel propulsion 

options for DFDE, UST, and COGAS at annual interest rate of 10%. On the Fig. 9 the lower 

value is better. The most economic propulsion option is the DFDE operated with dual HFO 

and NG fuels. It reduces NOx, SOx, and CO2 emissions with annual cost-effectiveness of 6.07 

$/kg, 6.39 $/kg, and 0.55 $/kg, respectively.  

 
Fig. 9 The annual cost-effectiveness for reducing NOx, SOx and CO2 emissions 



Environmental and cost-effectiveness comparison of dual fuel propulsion                                    Nader R. Ammar                                     

options for  emissions reduction onboard LNG carriers  

 

73 

 

6. Conclusions 

Environmental, economic and cost-effectiveness analysis for the available LNG carrier 

propulsion options operated with heavy fuel oil (HFO), marine gas oil (MGO), and dual fuel 

(with natural gas) were investigated. These options include steam turbine (ST), ultra steam 

turbine (UST), dual fuel diesel engine (DFDE), slow speed diesel engine (SSDE), and 

combined gas and steam (COGAS) propulsion systems. The used fuel for all the propulsion 

options is the HFO except COGAS operates with MGO and DFDE uses both HFO and MGO. 

The main conclusions for large conventional LNG carrier with a capacity of 150,000 m3 are: 

 

• From environmental point of view, ST, UST, DFDE, and COGAS propulsion options 

can fulfill the required IMO values for NOx and SOx emissions using NG percentages 

in dual fuel mode with percentages of 87.5%, 82%, 98.5% and 94%, respectively. The 

shares of boil off gas (BOG) in these percentages are 55.47%, 65.0%, 66.67%, and 

79.49%, respectively. The highest CO2 emission reduction percent is achieved by the 

UST with a reduction percent of 64.83% from the same cycle without NG.  

• From economic point of view, Using BOG as fuel will save the cost of fuel 

consumption by 19.08%, 22.35%, 22.9% and 46.62% for ST, UST, DFDE and 

COGAS propulsion options, respectively. Increasing NG percentages to achieve the 

NOx and the SOx emission rates set by IMO for ST, UST, and COGAS propulsion 

options will save the dual fuel cost by 1.53 MUS$/year, 1.0 MUS$/year, and 2.02 

MUS$/year, respectively. On the other hand, DFDE operated with dual HFO and NG 

is the most economic propulsion option with total annual costs of 13.38 MUS$ and 

emission reduction percentages of 83.30%, 98.50%, and 18.85% for NOx, SOx and 

CO2 emissions, respectively. 

• From cost-effectiveness point of view, the total annual costs for ST, UST, and DFDE, 

propulsion options operated with HFO-NG dual fuels are 15.05 MUS$, 15.90 MUS$, 

and 13.38 MUS$, respectively. On the other hand, the total annual costs for MGO-NG 

dual fuel operated COGAS propulsion system is 17.38 MUS$. DFDE operated with 

HFO and NG fuels is the most economic and IMO emission compliance propulsion 

option. It reduces NOx, SOx, and CO2 emissions with annual cost-effectiveness of 6.07 

$/kg, 6.39 $/kg, and 0.55 $/kg, respectively. 

 

Nomenclature Abbreviations 

 

AC Annual cost for installation, $/year BOG Boil-off gas 

BOR Boil-off gas rate, %/day CO2 carbon dioxide 

C Annual fuel cost, $/year COGAS Combined gas and steam 

CF Fuel conversion factor to CO2 emissions DFDE Dual fuel diesel engine 

COP Coefficient of performance GCU Gas combustion unit 

EEDI Energy Efficiency Design Index, gCO2/ton-NM GT Gas turbine 

EF Engine emission factor, kg/kWh HFO Heavy fuel oil 

ER Emissions reduction percentage,% IMO International Maritime Organization 

FS Fuel saving cost, $/year LNG Liquefied natural gas 

FSE Fuel saving cost-effectiveness, $/ton MGO Marine gas Oil 

i Annual interest rate, % MSDE Medium speed marine diesel engine 

L Engine load percent in ship modes NG Natural gas 

LCV Lower calorific value, kJ/kg NOx Nitrogen Oxides Emissions 
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m Mass, kg S Sulfur 

MCR Maximum continuous rating of the engine, kW SSDE Slow speed marine diesel engine 

n Expected ship working years  SOx Sulfur Oxides Emissions 

P Engine power at maximum continuous rating, kW ST Steam turbine 

PI Annual fuel price change percent, % UST Ultra steam turbine 

SFC Specific fuel consumption, g/kWh   

T Engine running time, h   

Vref Reference ship speed, knots   

x Fuel percentage in dual fuel engine   

Subscript   

DF Dual fuel diesel engine   

DO Diesel oil   

j Type of pollutant, SOx, NOx or CO2   

m Engine main fuel   

NG Natural gas    

Reliq. Reliquefaction   
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