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Summary 

 This paper presents a new hybrid concept that increases the overall efficiency of the 

propulsion system on ships. The hybrid concept of the marine propulsion system was examined 

in 1D CFD internal combustion engine model where the turbine and compressor are not 

mechanically connected. Such a configuration makes possible different turbine designs than 

needed in the conventional turbocharger. The advantage is an increased recuperation of energy 

from exhaust gases. By means of computer simulation and optimization, this study proves that 

the hybrid concept significantly increases the propulsion system efficiency and lower emissions 

in maritime environment. 
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1. Introduction 

This is perhaps the most exciting era in the history of the development of internal 

combustion engines, due to increasingly stricter international regulations Hybrid engine; 

exhaust gas recuperation on exhaust emissions and the requirements of users with regard to 

engine performance and reliability. Demands for propulsion system efficiency have fostered 

the progress of both the automobile industry, as the front-runner in the development of engine 

technologies, and the shipbuilding industry applying internal combustion engines for 

propulsion. Over the past decade, a number of new technologies have been introduced into both 

industries, e.g. direct fuel injection, turbo-charging and variable inlet and exhaust valve timing. 

The implementation of these technologies has considerably reduced the operating volume of 

modern engines (downsizing). The engine’s operating points have been preserved within a more 

efficient operation range, thus reducing fuel consumption, increasing engine performance, and 

maintaining exhaust emissions within statutory limits. The constraints of the applied 

technologies include detonation in the cylinder occurring at higher turbocharging pressures, 

high compression ratios and pre-ignition. For instance, such constraints can be found in a design 

of the turbocharger with limited charging pressure that restricts potential recovery of the 

exhaust gas energy. In addition to the above technologies, the focus is on reduction in weight, 

friction and loss of working media when designing the engine and control strategies [1], [2]. 

The hybrid design also represents one of the essential technologies aimed at reducing fuel 
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consumption and exhaust gas emissions [3]. The increase in efficiency of the low speed two-

stroke turbocharged main compression ignition (CI) engine, operating with waste heat recovery 

through combined heat and power production, has been explored by researchers [4, 5], 

including the thermodynamic analysis of the IC engine for the purpose of diagnostics and 

optimisation [6]. Fu and others [7], in their research, explained the combined air cycle concept 

for IC engine supercharging, based on the exhaust gas energy recovery, which can effectively 

improve the efficiency of IC engines. The effect of EGR on NOx emission of methane is higher 

than in other fuels and its effect on IMEP of hydrogen is lower than in other fuels. From the 

viewpoint of emission and power, 10% of EGR seems to be the most desirable amount. The 

most noticeable effect of supercharging is with the gasoline system, while hydrogen concepts 

seem to be affected the least [8]. The supercharging system of the engine which is characterized 

by two turbochargers [9] showed that Air/Fuel ratio and low and high pressure compressor 

pressure ratios were the most influential parameters affecting engine output power and specific 

fuel consumption. 

 

2. Turbine-engine recuperation system (TERS) 

Due to relatively low efficiency of the internal combustion engines and, on the other 

hand, poor autonomy of otherwise very efficient electric-drive transport systems, investments 

have been increasingly placed in the development of hybrid arrangements where internal 

combustion engines are combined with battery and electric motor systems. In this area, 

particular attention is paid to the recuperation of the waste heat that is used to produce heat 

energy or mechanical work. This issue deserves careful consideration because, in internal 

combustion engines, about 50% of the energy produced by fuel is lost as waste heat. Exhaust 

gases alone contain 30% of the waste heat. Therefore, the heat energy contained in exhaust 

gases is particularly suitable to be recovered as energy for utility boiler operation or conversion 

into mechanical work by means of turbo-engines. Owing to the substantial development of 

batteries, the attention of this study has been focused on the concept of converting the waste 

heat energy contained in exhaust gases into mechanical work that drives generators to charge 

batteries. 

The trend of enforcing restrictions on the harmful exhaust emissions from ships has 

encouraged engine manufacturers to seek alternative solutions. The concept presented in Figure 

1 is one of the possible solutions for the forthcoming development of propulsion systems in 

smaller passenger vessels, patrol boats, workboats and yachts. 
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Fig. 1. Turbine-engine recuperation system (TERS) 

 

The presented hybrid modular drive consists of an internal combustion engine, a 

compressor, a turbine, a set of lithium batteries fitted with rectifiers, two electric motors and a 

power transmission system. The concept features two modes of operation. The first mode of 

operation involves the internal combustion engine that runs during long passages, when the 

power is generated by the turbine and the engine itself. It should be noted that the turbine and 

the compressor are not mechanically connected, thereby allowing better efficiency of the 

turbine and increased energy recuperation from exhaust gases, which is not the case in turbo-

chargers. Hence the internal combustion engine supplies energy to the compressor via the belt 

drive and the turbine conveys the energy to the generator. 

In another mode of operation, the internal combustion engine is shut down and the 

central propeller shaft clutch is disconnected. The vessel is now driven exclusively by electric 

power supplied by lithium batteries. The control can be performed by turning the side screws 

or by using special electronic modules that regulate the power of each individual screw. In the 

mode of battery discharge, the switch before the DC/AC adapter is on. 

The advantage of this hybrid propulsion, compared to conventional marine hybrid 

drives (Figure 2) fitted with a shaft generator on one main propeller shaft, is that the turbine 

makes use of energy which is stored in batteries, making a significant portion of their capacity. 

Maximum charging power is defined by maximum generator power, i.e. the maximum power 

recuperated by the turbine. Another advantage is a wider output range when selecting electric 

motors for this propulsion plant because power can be metered by the internal combustion 

engine. 
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Fig. 2. Conventional hybrid system in the marine propulsion 

 

There is a long tradition of using compression ignition (CI) engines in marine 

propulsion, but spark ignition (SI) engines appear to be more suitable for designing hybrid 

systems due to their high efficiency, low fuel consumption, low harmful gas emission, and the 

electronic regulation of the engine operation which becomes increasingly precise. Because of 

the complexity of such hybrid systems resulting from reliability and safety requirements, as 

well as because of high fuel prices, the application of these systems would be most cost-efficient 

in smaller vessels. These are the reasons for choosing a spark ignition (SI) engine for further 

analysis of the concept. The engine selection was carried out in line with the required power 

for the vessel’s propulsion, which is defined by the admiralty equation. The single-chine V-hull 

is 12 meters in length on the waterline, with 6 ton displacement and the desired speed of 22 

knots. The adequate propulsion for this hull and speed is 160 kW, which matches the naturally 

aspirated four stroke high speed engine with the swept volume of 4.3 litres and electronic 

injection in inlet ports to each of its 6 cylinders. The design and the analysis of the concept has 

been performed in a 1D simulation package intended exclusively for the simulation of processes 

in internal combustion engines. Initially, a naturally aspirated engine model was designed and 

calibrated according to manufacturer’s specifications. It was then fitted with a turbine and a 

compressor. The objective was to maintain the engine’s performance at reduced fuel 

consumption, i.e. to increase the system’s efficiency by using the concept described in Figure 

1. 

 

3. Engine model 

In order to analyse the concept, it is necessary to design a model for a naturally aspirated 

engine, making sure that it is calibrated in line with the performances declared by the 

manufacturer. The model for the inlet and exhaust gates is based on the 1D Navier-Stokes 
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equation, the combustion is based on the single-zone model, while the heat transfer in the 

cylinder is defined by Woschni equation (Figure 3). The modelling and subsequent optimisation 

have been performed using Lotus software package. 

 
Fig. 3. Model of four stroke high speed 4.3l engine in Lotus 

 

The Lotus software was used for modelling a naturally aspirated engine with six 

cylinders, two inlet manifolds, each serving three cylinders, and one exhaust collector. The 9.4 

compression ratio is suitable for turbocharged engines, which comes in handy for further model 

upgrade with a turbo-compressor. Each cylinder houses four valves, two inlet and two exhaust 

valves. Load regulation is performed through butterfly flaps. Combustion is modelled using a 

single Vibe function with a coefficient m=2 over the equation (1). 

𝑚𝑓𝑟𝑎𝑐 = 1 − 𝑒𝑥𝑝
−𝐴(

𝜃

𝜃𝑏
)

𝑀+1

                                   (1) 

Where 𝑚𝑓𝑟𝑎𝑐 is the fraction of burned fuel mass, 𝐴 and 𝑀 are coefficients of the Vibe 

function, 𝜃 is the crankshaft angle and 𝜃𝑏 is the combustion period. The heat release profile is 

shown in Figure 4. 
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Fig. 4. Heat release for selected coefficients of the Vibe function 

 

The combustion period (burn duration) is presented empirically by the expression [10]: 

10 − 90% (𝑑𝑒𝑔) = 20 (
Bore

Stroke
) + 0.6 (

Speed∙Stroke

30
− 11)                     (3) 

The convective heat transfer in the cylinder is modelled through the relation: 

𝑑𝑄 = 𝐴 ∙ ℎ ∙ (𝑇𝑔𝑎𝑠 − 𝑇𝑤𝑎𝑙𝑙)                                   (4) 

 

where the heat transfer coefficient ℎ is defined by Woschni relation: 

ℎ =
𝐴𝑝0.8

𝑇0.55𝐷𝑐𝑦𝑙
0.2 (𝐵𝑈̅𝑝𝑖𝑠𝑡𝑜𝑛 + 𝐶𝑈̅𝑠𝑤𝑖𝑟𝑙 + 𝐷

𝑇𝑆𝑂𝐶𝑉(𝑝−𝑝𝑚𝑜𝑡𝑜𝑟)

𝑝𝑆𝑂𝐶𝑉𝑆𝑂𝐶
)

0.8

      (5) 

 

where A, B, C and D are Woschni coefficients, 𝑝 is the cylinder pressure, 𝑇 cylinder 

temperature, 𝑉 cylinder volume, 𝑈̅𝑝𝑖𝑠𝑡𝑜𝑛 mean piston speed, 𝑈̅𝑠𝑤𝑖𝑟𝑙 mean swirl speed, 𝑇𝑆𝑂𝐶 

temperatures at the start of combustion, 𝑝𝑆𝑂𝐶 pressure at the start of combustion, 𝑉𝑆𝑂𝐶 volume 

at the start of combustion, and 𝑝𝑚𝑜𝑡𝑜𝑟 is the motoring pressure. 

 

The swirl ratio is defined as: 

 

𝑈̅𝑠𝑤𝑖𝑟𝑙 =
𝑁𝜋∙𝐵𝑂𝑅𝐸∙𝑆𝑟𝑎𝑡

30
                                                  (6) 

 

where 𝑆𝑟𝑎𝑡 is the Woschni swirl ratio. 
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Preservation of the mass, energy and the sum of forces resulting from the pressure in 

pipes are modelled through the equation of continuity, moment and energy preservation. The 

collectors are based on a zero-dimensional calculation which, instead of the variable of length, 

operates with values of pressure, temperature, mass and volume. Friction is calculated with the 

aid of Howard Barner Moss model [11] which is applied exclusively in spark ignition (SI) 

engines. From operating parameters lambda was set to 0.9 and throttle fully opened. The 

cylinder geometry was known through geometrical parameters. The geometry of pipe, volumes 

and valve was estimated. The throttle diameter and flow coefficient were tuned together with 

flow coefficients from intake and exhaust ports to get the required filling for torque build up. 

Since no indication data was available, the Woschni and combustion parameters were kept to 

default values typical for gasoline engines. 

As it can be observed in Figure 5, the peak model power corresponds to the maximum 

power of the real-life engine, amounting to 160 kW. The brake medium effective pressure 

(BMEP) is also real, as is the brake specific fuel consumption (BSFC). Information on the real 

engine’s torque is not available. Simulations have been carried out at full load with the engine 

speed ranging from 1000 to 5000 rpm. The local peak occurs due to pressure pulsations in the 

intake runners. The pulsation creates pressure increase at a specific pressure pulsation 

frequency which is defined by pipe length intake manifold volume size. This results in the 

increase in delivery ratio at the region of 3500 rpm for this case. 

 

 
Fig. 5. Simulation results of the four stroke high speed 4.3l engine model 

 

4. Concept validation  

In standard turbochargers the turbine part is designed to meet the power required in the 

compression part of the turbocharger with the least possible impact of the backpressure at the 

exhaust. The energy potential that can be delivered to the turbine remains unused due to low 

expansion features of the turbine, defined by the design of the bypass or exhaust valves, aimed 

at protection against excessive compression pressure at the inlet part of the engine (wastegate, 

blowoff). By separating the turbine from the compression part and by connecting it to the 

generator, it is now possible to use, in a more efficient way, the energy potential of the turbines 

having even higher compression ratios. As the turbine gets larger, compared to conventional 
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sizes, the influence of the backpressure in the exhaust line gets larger as well, and this causes 

engine’s throttle, i.e. loss of power. The power loss can be reduced through the optimisation of 

turbine parameters and by mounting an adequate compressor. A conceptual description of this 

solution will be presented afterwards.  

 

Fig. 6. Engine model with an independent turbine 

 

Figure 6 presents the basic model for a naturally aspirated engine fitted with an available  

turbine connected to the exhaust line and a 6-litre exhaust manifold. Figure 7 features the 

turbine efficiency map with regard to the mass flows of exhaust gases and the corrected speed. 

Since no hotbench data was available the turbine map was taken from the existing library and 

scaled so that the surgeline mass flow value under map defined expansion ratios matches the 

cylinders filling demand at the engine full load operation, avoiding maximum torque limits. 
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Fig. 7. Turbine efficiency map vs mass flow 

 

The x axis shows the corrected speed 𝑛𝑐𝑜𝑟 that indicates the ratio of the turbine wheel 

speed and the root of the turbine’s inlet temperature [10]: 

 𝑛𝑐𝑜𝑟 =
𝑛𝑡𝑢𝑟

√𝑇𝑖𝑛𝑙
                     (7) 

where 𝑛𝑡𝑢𝑟  is the turbine wheel speed and 𝑇𝑖𝑛𝑙 is the temperature of exhaust gases at the 

turbine’s inlet. 

The y axis shows the corrected mass flow through the turbine [10], equal to: 

𝑚̇𝑡𝑢𝑟 =
𝑚̇𝑡𝑡∙√𝑇𝑖𝑛𝑙

𝑝𝑖𝑛𝑙_𝑎𝑏𝑠
                                                                   (8) 

where 𝑚̇𝑡𝑡 is the theoretical mass flow through the turbine, while 𝑝𝑖𝑛𝑙_𝑎𝑏𝑠 is the absolute 

pressure at the turbine’s inlet. 

Figure 8 features the turbine efficiency map with regard to pressure ratios and mass 

flows of exhaust gases. 

 

The pressure ratio [11] is defined as: 

𝑃𝑅 =
𝑝𝑖𝑛𝑙_𝑎𝑏𝑠

𝑝𝑜𝑢𝑡_𝑎𝑏𝑠
                                                     (9) 

where 𝑝𝑜𝑢𝑡_𝑎𝑏𝑠 is the absolute pressure at the outlet of the turbine. 

The overall efficiency of the turbine [5] is calculated through the equation: 

𝜂 =
∆ℎ𝑢_𝑖

∆ℎ𝑃𝑅
                                              (10) 

where ∆ℎ𝑢_𝑖 is the real enthalpy drop across the turbine, while ∆ℎ𝑃𝑅 is the isentropic 

enthalpy drop across the turbine, directly proportional to the pressure ratio. 

The following paragraphs describe the performed simulation of the operation of the 

engine fitted with a turbine that provides power for driving generators. 

The brake power and fuel consumption compared to an engine without a turbine is shown 

in Figure 8. 
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Fig. 8. Brake power and specific fuel consumption comparison 

 

The brown and green colours present the achieved brake power and fuel consumption in 

the engine fitted with a turbine, whereas the results of the conventional engine are shown in 

blue and red colours. It can be noted that the engine power decreases due to throttling caused 

by the turbine, while the consumption increases considerably. 

Considering the loss in the engine itself amounting to around 60 kW due to throttling 

and the significantly increased consumption, it can be concluded that fitting a turbine to the 

exhaust line is not an optimal solution, because of significant increase in specific consumption, 

reduced performance and the overall loss of around 30 kW in the engine-turbine system. Hence 

it is logical to increase the compression potential of the engine by providing a belt-driven 

compressor. The latter increases charging pressure, volumetric efficiency and overcomes 

additional backpressure caused by the turbine on the exhaust line. 

 

5. Modelling of the TERS and the turbine optimisation 

Mounting a compressor at the inlet part would increase the potential of the inlet mixture 

to the engine, which would reduce the throttling effect in the engine and increase the work in 

the turbine. The compressor is designed to enable the engine maintain power on the output shaft 

equal to the power in the standard naturally aspirated engine, with an increase in specific 

consumption kept as low as possible. In this way, the power achieved in the turbine would be 

added to the power on the shaft, which would make the system more cost-efficient and would 

considerably increase the overall system efficiency. 

Figure 9 presents the model for an engine fitted with a turbine and an engine belt-driven 

compressor. The system also features a modelled charge air cooler. 
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Fig. 9. Engine model with a compressor and a turbine 

 

After performing simulations of the engine model with a compressor and a turbine, the 

results of the achieved power and consumption have been compared with the conventional 

engine, the engine fitted only with a turbine, and the engine with both the compressor and 

turbine at full load (Figure 10). 

 

 

Fig. 10. Comparison of the three powertrain combinations 
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Green lines indicate the diagrams of power and consumption in a conventional engine; 

blue lines show these values in a turbine-engine; red lines show these values in an engine fitted 

with a compressor and a turbine. The diagram proves that the combination with a compressor 

and a turbine is optimal, given the fact that the power is maintained at higher loads and increased 

at lower loads, compared to the standard naturally aspirated engine. It is true that this 

combination involves an increased specific consumption, but the specific consumption 

calculation takes into account just the power on the outlet shaft. By increasing consumption by 

approximately 50 g/kWh, compared to the naturally aspirated engine, the initial power of the 

naturally aspirated engine is maintained, while the power in the turbine exceeds 50 kW. If the 

power in the turbine is included in the calculation of specific consumption, this results in the 

total specific consumption of 244 g/kWh which is lower than the specific consumption in the 

naturally aspirated engine. It can be concluded that the system fitted with the standalone 

compressor and turbine provides 50 kW more useful power while the specific consumption 

remains the same, which means that this system is more efficient. 

The power achieved by the turbine exceeds 55 kW at 5000 rpm engine speed. This 

power would be otherwise released into the environment in its thermal and kinetic form. 

However, it is now possible to further use this power for battery charging or direct distribution 

to the consumers through electric motors. 

In order to make the system more cost-effective, it is necessary to optimally use the 

work of the turbine and to minimise the effect of engine throttling, i.e. it is necessary to optimise 

the turbine operation parameters.  

The first optimisation cycle consists of optimising the dimensions of the turbine’s inlet 

and outlet gates with the purpose of achieving the least possible resistance and pressure 

variations. The objective function involves the minimum deviation of the power curve from the 

previous simulation of the engine with the separate turbine and compressor (Figure 11, red 

curve indicating power). The first optimisation variable is the turbine’s inlet diameter with 

limited or boundary values, i.e. the minimum diameter being 30 mm, maximum diameter being 

90 mm, and inspection step being 20 mm. The second optimisation variable is the turbine’s 

outlet diameter with limited or boundary values, i.e. the minimum diameter being 60 mm, 

maximum diameter being 120 mm, and inspection step being 20 mm. 

Optimum results have been obtained after performing 16 cycles of 2D optimisation. The 

optimisation implies pairing up each of the given variables in every possible combination. A 

simulation of the engine at full load across the engine speed range is conducted for each of the 

combinations. The optimal results are shown in Figure 11. 
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Fig. 11. Results of the optimisation 

 

The optimisation results produce a power curve that indicates the least deviation of the 

engine power from the objective function. The optimal results include the turbine inlet diameter 

of 50 mm and the outlet diameter of 80 mm. 

The optimised values of the turbine inlet and outlet gates produce the peak power of 59 

kW in the turbine in relation to the engine speed (Figure 12). 

 
Fig. 12. Peak turbine power vs engine speed 

 

Definition of operating turbine parameters in reference to the engine speed provides an 

insight into the relation of all operating parameters of the turbine, which has to be taken into 

consideration when selecting or designing the turbine. 

 

The isentropic efficiency in relation to the engine speed at full load is shown in Figure 13. 
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Fig. 13. Turbine isentropic efficiency vs engine speed at full load 

 

The power at the outlet turbine shaft in reference to the engine speed at full load is shown 

in Figure 14. 

 
Fig. 14. Turbine power vs engine speed at full load 

 

 

6. Conclusion 

The innovative turbine-engine recuperation concept (TERS) achieves higher efficiency 

of the propulsion system and lower harmful emissions. Simulations and optimisation of the 

engine and turbine models were performed, indicating that the increase in efficiency of the 

hybrid system implies the reduced specific consumption, without compromising the consumers’ 

need for energy. The increased recuperation of energy from exhaust gases is used for charging 

batteries or supplying onboard consumers. The electric power stored in batteries is intended for 

electric propulsion in coastal waters where an internal combustion engine runs at low loads, 

hence outside optimal range, and where stricter international regulations on exhaust emissions 

are applied. The innovative hybrid concept of TERS system will be a preferable solution for 

future marine propulsion systems.  
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𝑝𝑖𝑛𝑙_𝑎𝑏𝑠 absolute pressure at the turbine inlet 

𝑝𝑚𝑜𝑡𝑜𝑟   motoring pressure 

𝑝𝑜𝑢𝑡_𝑎𝑏𝑠 absolute pressure at the turbine outlet 

𝑝𝑆𝑂𝐶   pressure at the start of combustion 

PR  planetary gear reducer 

R gear reducer 

𝑆𝑟𝑎𝑡  Woschni swirl ratio 

𝑇 cylinder temperature 

T consumer 

𝑇𝑖𝑛𝑙  exhaust gas temperature at the turbine inlet 

𝑇𝑆𝑂𝐶    temperature at the start of combustion 

𝑈𝑠𝑤𝑖𝑟𝑙    mean swirl speed 

𝑈𝑝𝑖𝑠𝑡𝑜𝑛  mean piston speed 

𝑉 volume in the cylinder 

𝑉𝑆𝑂𝐶  volume at the start of combustion 

Greek letters 

∆ℎ𝑢_𝑖  real enthalpy drop across the turbine 

∆ℎ𝑃𝑅 isentropic enthalpy drop across the turbine, directly proportional to the pressure ratio 

𝜂 overall turbine efficiency 

𝜃 crankshaft angle 

𝜃𝑏 combustion period 
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