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ABSTRACT 

Data science for engineers is the most recent research area which suggests to analyse large 

data sets in order to find data analytics and use them for better designing and modelling. Ship 

design practice reveals that conceptual ship design is critically important for a successful basic 

design. Conceptual ship design needs to identify the true set of design variables influencing 

vessel performance and costs to define the best possible basic design by the use of performance 

prediction model. This model can be constructed by design engineers. The main idea of this 

paper comes from this crucial idea to determine relational classification of a set of small vessels 

using their hull form parameters and performance characteristics defined by transfer functions 

of heave and pitch motions and of absolute vertical acceleration, by our in-house software 

application based on K-Means algorithm from data mining.  This application is implemented in 

the C# programming language on Microsoft SQL Server database. We also use the Elbow 

method to estimate the true number of clusters for K-Means algorithm. The computational 

results show that the considered set of small vessels can be clustered in three categories 

according to their functional relations of their hull form parameters and transfer functions 

considering all cases of three loading conditions, seven ship speeds as non-dimensional Froude 

numbers (Fn) and nine wave-length to ship-length values (λ/L).  

Keywords: Conceptual ship design; Data Mining; Clustering; K-Means, Database; C# 
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 1. INTRODUCTION 

A product life cycle of the system analysis and design in the domains including Marine 

Systems can be seen in two phases such as “Acquisition Phase” and “Utilization Phase”. It can 

be seen from Fig. 1 that “Conceptual Design Stage (CDS)” is the first part of the acquisition 

phase, and then the following part is called “Preliminary Design Stage”. CDS has been defined 

in several sub-parts which are shown in Fig. 2. The nature of ship design offers complex and 

interactive data evaluations under dynamic and also iterative environment with a large number 

of relational and conflicting parameters. Ship design practice reveals that conceptual ship 

design is critically important for a successful conclusion of Preliminary Design stage and thus 

basic design. CDS constitutes the most delicate design stage among the other stages since the 

critical assumptions and decisions can be made. The greatest impact on ship’s overall economic 

efficiency is made during the conceptual design stage. Conceptual ship design accounts more 

than 80 percent of the ship value, hence an optimal design has a great impact in ship whole life 

cycle [1,2]. Conceptual ship design needs to identify true set of design variables influencing 

vessel performance resulting successful building of performance prediction model on the way 

of defining best possible conceptual design. In the present paper, we focused on a part of 

seakeeping ability of ships surrounded by response amplitude operators (RAO) of vertical ship 

motions. The status of CDS requires knowledge-based approaches since human ability is 

limited to extract relations among the data concerning design variables and performance values. 

The literature offers several studies of knowledge-based and expert systems applied to 

conceptual ship design, however the studies on data mining utilization are quite limited. Chen 

and Yao [3] studied an analysis on ship equipment consumption data using clustering technique 

of data mining. Their data mining procedure used massive ship maintenance support data and 

concluded that an effective classification of equipment consumptions yields important 

references for guarantee department. Li et al. [4] applied data mining technique to ship virtual 

assembly based on rough theory. Li et al. gave gains of data mining model in terms of reducing 

dependence on operational experience of human-being and increasing ship assembly efficiency. 

Mosavi [5] introduced LADTree algorithm, a classification type of data mining, to analyse the 

effect of each design variable to given objectives. Mosavi reported that number variables for 

the optimization diminished in the example of airfoil form optimization. Mosavi also claims 

that the classification based data mining is able to speed up optimization procedures and 

simplify Multiple Objective Optimization and Multiple Objective Decision Making systems. 

The main idea of this paper comes from this crucial idea to determine relational 

classification of a set of small vessels using their hull form parameters and performance 

characteristics defined by transfer functions of heave and pitch motions and of absolute vertical 

acceleration, by our in-house software application based on K-Means algorithm from data 

mining.  The computational results show that the considered set of the vessels can be clustered 

in three categories according to their functional relations of their hull form parameters and 

transfer functions considering all cases of three loading conditions, seven ship speeds as non-

dimensional Froude numbers (Fn) and nine wave-length to ship-length values (λ/L). 

The amount of data is increasing very quickly due to the very fast development of 

information technology. The data stored in databases is worthless alone. It is difficult to find 

interesting and valuable information in very large databases. Valuable information can be 

accessed by analysing the data through various statistical methods. Data mining is the process 

of finding significant and unknown knowledge in data. Clustering is an unsupervised learning 

technique for grouping similar data points from data mining techniques. Cluster analysis is 

based on finding information that clusters are objects of groups according to their relationships. 
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Fig. 1. Product Life Cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Sub-Parts of Conceptual Design Stage. 

 

The K-means algorithm is the most widely used clustering algorithm. This algorithm 

partitions a data set into k groups according to similarity. An integer k for a set of small vessel 

data of n data points in N-dimensional space is called the cluster number. The center of the 

cluster is average of points in this cluster. K-means aims to minimize SSE (Sum of Squared 

Error). Selecting particular value of k is important for correct clustering. The Elbow method is 

used for the determination of the true number of k [6,7].  

In Section 2, our vessel database composed of ship size and hull form parameters are 

explained. K-Means algorithm for data mining is introduced in Section 3. Section 4 gives 

information on our in-house software application for K-means algorithm with the Elbow 

method and its interface. Section 5 contains computational results of the analyses which are 

carried out for vessel clustering to remark outstanding consequents of clusters for seakeeping. 

The last section summarizes conclusions and future work of this study. As concluded, cluster 

analysis will be useful to seek and judge significant set of design parameters influencing various 

outputs of interest that enables the naval architect to develop robust and innovative solutions 

based on scientific approaches. 
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 2. VESSEL DATABASE 

Mediterranean fishing vessel data set has values of hull form parameters of the lines plans 

for a set of each fishing vessel. The hull form parameters of the lines plans are geometric 

variables of each fishing vessel. The body plans of the vessels are shown in Fig. 3. Each fishing 

vessel has been evaluated at three different loading conditions: LC1-leaving to the fishing 

ground (100% consumables), LC2-leaving from the fishing ground (full holds and 40% 

consumables) and LC3-arrival to port (full holds and 10% consumables). The set of fishing 

vessels are shown in Table 1. Each three rows in Table 1 is values of the same fishing vessel at 

three loading conditions.  In addition, this data set has motions of vessels in terms of RAOs of 

Heave, Pitch and Vertical Absolute Acceleration at stern. The RAO computations have been 

carried out by means of a two-dimensional computer code based on Frank close-fit method [8, 

9]. The values of motions are based on Froude numbers and λ/L values at loading conditions. 

Froude numbers are 0.00, 0.05, 0.10, 0.15, 0.20, 0.25 and 3.00. λ/L values are 0.50, 0.75, 1.00, 

1.25, 1.50, 1.75, 2.00, 2.50 and 3.00.  For each vessel, 189 cases occur (3 loading conditions 

times 7 Froude numbers times 9 λ/L values). As a result, Mediterranean fishing vessel database 

has a total of 2457 instances (13 hull forms times 3 loading conditions times 7 Froude numbers 

times 9 λ/L values).  
 

 

 
 

Vessel 01 - LC2  (Dinko)
T = 2.775 m

Vessel 02 - LC2  (Cost08)
T = 2.775 m

Vessel 03 - LC2  (Flori)
T = 2.410 m

Vessel 04 - LC2  (Gemma)
T = 2.647 m

Vessel 05 - LC2  (Genova)
T = 2.810 m

Vessel 06 - LC2  (Greben)
T = 2.687 m

Vessel 07 - LC2  (Ligny)
T = 2.906 m

Vessel 08 - LC2  (Tropesca)
T = 3.049 m
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Fig. 3. Hull forms of the vessels.  

 

    Table 1 Hull form parameters. 

Vessel L 
(m) 

L/B 
(-) 

B/T 
(-) 

L/1/3 
(-) 

CWP 
(-) 

CVP 
(-) 

CWPA 
(-) 

CWPF  
(-) 

CVPA 
(-) 

CVPF 
(-) 

LCF/L 
(-) 

LCB/L 
(-) 

V_011 21.38 3.171 2.582 3.955 0.857 0.490 0.965 0.621 0.513 0.583 0.392 0.463 

V_012 21.38 3.171 2.458 3.827 0.874 0.505 0.979 0.635 0.535 0.589 0.393 0.456 

V_013 21.38 3.171 2.846 4.234 0.807 0.468 0.909 0.591 0.479 0.570 0.400 0.479 

V_021 25.74 3.677 2.646 4.200 0.841 0.574 0.846 0.663 0.608 0.670 0.406 0.488 

V_022 25.74 3.677 2.541 4.103 0.864 0.576 0.871 0.673 0.613 0.701 0.399 0.482 

V_023 25.74 3.677 2.769 4.312 0.796 0.587 0.804 0.654 0.611 0.696 0.426 0.494 

V_031 25.00 3.472 3.158 4.216 0.832 0.610 0.834 0.698 0.635 0.689 0.436 0.494 

V_032 25.00 3.472 2.988 4.091 0.853 0.617 0.868 0.703 0.638 0.701 0.427 0.488 

V_033 25.00 3.472 3.398 4.386 0.770 0.630 0.744 0.690 0.675 0.674 0.468 0.499 

V_041 26.35 3.513 2.914 4.144 0.813 0.621 0.852 0.666 0.626 0.715 0.427 0.489 

V_042 26.35 3.513 2.833 4.083 0.823 0.625 0.868 0.668 0.628 0.720 0.423 0.486 

V_043 26.35 3.513 3.158 4.327 0.771 0.624 0.789 0.659 0.635 0.698 0.447 0.497 

V_051 25.00 3.125 2.835 3.692 0.875 0.628 0.882 0.668 0.710 0.757 0.397 0.472 

V_052 25.00 3.125 2.752 3.634 0.890 0.629 0.890 0.674 0.719 0.763 0.393 0.468 

V_053 25.00 3.125 3.000 3.802 0.819 0.651 0.800 0.658 0.753 0.760 0.423 0.477 

V_061 20.50 2.941 2.766 3.852 0.804 0.521 0.845 0.559 0.511 0.614 0.435 0.492 

V_062 20.50 2.941 2.585 3.691 0.834 0.533 0.879 0.574 0.530 0.622 0.429 0.484 

V_063  20.50 2.941 3.066 4.117 0.742 0.512 0.769 0.536 0.495 0.597 0.451 0.503 

V_071 25.00 3.125 2.835 3.631 0.898 0.644 0.891 0.690 0.719 0.746 0.398 0.467 

V_072 25.00 3.125 2.753 3.576 0.903 0.651 0.894 0.696 0.732 0.747 0.398 0.463 

V_073 25.00 3.125 3.001 3.739 0.860 0.652 0.852 0.679 0.723 0.743 0.413 0.473 

V_081 27.25 3.733 2.547 4.118 0.782 0.650 0.799 0.669 0.661 0.747 0.440 0.501 

V_082 27.25 3.733 2.394 3.989 0.818 0.642 0.836 0.679 0.657 0.750 0.426 0.495 

V_083 27.25 3.733 2.700 4.243 0.753 0.654 0.746 0.661 0.674 0.740 0.452 0.507 

V_091 21.00 2.770 2.627 3.514 0.861 0.540 0.844 0.672 0.515 0.652 0.424 0.481 

V_092 21.00 2.770 2.406 3.332 0.887 0.563 0.881 0.697 0.556 0.663 0.424 0.472 

V_093 21.00 2.770 2.756 3.619 0.831 0.537 0.816 0.660 0.572 0.643 0.433 0.486 

Vessel 09 - LC2  (Aus25)
T = 3.150 m

Vessel 10 - LC2  (Mazara)
T = 3.080 m

Vessel 11 - LC2  (Nt28)
T = 2.970 m

Vessel 12 - LC2  (Russo)
T = 2.885 m

Vessel 13 - LC2  (Ubcbig)
T = 3.055 m
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V_101 30.80 2.962 3.870 4.061 0.766 0.662 0.873 0.544 0.718 0.695 0.388 0.424 

V_102 30.80 2.962 3.402 3.811 0.783 0.688 0.884 0.567 0.759 0.688 0.392 0.418 

V_103  30.80 2.962 4.132 4.199 0.756 0.648 0.862 0.533 0.700 0.689 0.386 0.428 

V_111 20.00 3.061 2.633 3.967 0.799 0.495 0.734 0.666 0.495 0.509 0.428 0.486 

V_112 20.00 3.061 2.455 3.787 0.824 0.514 0.754 0.691 0.527 0.520 0.430 0.478 

V_113  20.00 3.061 2.901 4.239 0.738 0.484 0.667 0.636 0.474 0.487 0.447 0.497 

V_121 27.30 4.015 2.729 4.275 0.884 0.636 0.831 0.784 0.663 0.651 0.447 0.485 

V_122 27.30 4.015 2.484 4.072 0.915 0.648 0.866 0.806 0.679 0.663 0.444 0.480 

V_123 27.30 4.015 2.941 4.447 0.841 0.642 0.785 0.765 0.665 0.642 0.461 0.490 

V_131 28.00 3.060 3.386 3.825 0.854 0.663 0.903 0.699 0.658 0.770 0.428 0.488 

V_132 28.00 3.060 2.995 3.599 0.885 0.680 0.939 0.707 0.685 0.788 0.416 0.477 

V_133 28.00 3.060 3.704 4.003 0.823 0.657 0.859 0.694 0.650 0.755 0.442 0.496 

Min 20.00 2.770 2.394 3.332 0.738 0.468 0.667 0.533 0.474 0.487 0.386 0.418 

Max 30.80 4.015 4.132 4.447 0.915 0.688 0.979 0.806 0.759 0.788 0.468 0.507 

 

3. K-MEANS ALGORITHM 

In general, the initial points of K-Mean algorithm are randomly chosen. In this study, 

choosing of the points is not randomly because it may not always give the clusters correctly 

(see subsection 3.1). The data set is divided k cluster. Then the middle point of each group is 

the center point of the cluster it belong to. The steps of the algorithm are given below: 

Step 1. Calculate the Euclidean distance from each object to each cluster: Each object is 

assigned to the closest cluster. The Euclidean distance is calculated by Equation (3.1). N is 

number of attributes of data set. 

22

22

2

11 ||...||||),( jNiNjiji xxxxxxjid   (3.1) 

Step 2. Calculate the sum of squared error of clustering: The assignment mechanism of K-

means algorithm allows all data to be in only one cluster. The Sum of Squared Error- SSE- is 

widely used determination of number of cluster and evaluation. The clustering which has the 

lowest value of SSE gives the best result. The sum of the square from objects to central points 

of the cluster can be calculated by Equation (3.2).  The algorithm will try to determine the part 

k to reduce SSE [6]. 


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k

i CX
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2 ),(    (3.2) 

Where d is the Euclidean distance, M is the mean vector, X is any instance of each cluster.  

 

Step 3. Determine a new center point for each cluster: The mean vector is recalculated each 

time and members of a cluster can be changed. 

 

Step 4. Repeat step 2, 3 and 4 until the members of clusters are not changed. 
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3.1. ESTIMATION OF THE TRUE K NUMBER OF CLUSTERS IN K-MEANS 

ALGORITHM 

The performance of a clustering algorithm is affected by the chosen value of k. Estimation 

of k is important for the correct clustering.  K-means algorithm acts to try to find a minimum 

for SSE. The oldest method for determining the true number of clusters in a data set is 

inelegantly called the Elbow method [10]. 

The steps of Elbow Method are in the following: 

Step 1. Apply K-means algorithm for different values of k. The number of k can takes value of 

from 1 to the number of instances. 

Step 2. Calculate SSE for each cluster and the total of SSE 

Step 3. Plot line chart of the total of SSE each value of k. 

Step 4. Choose a small value of k that still has a low SSE. 

 

4. SOFTWARE APPLICATION 

In this study, we have implemented a in-house self-coded software application for K-

means algorithm with the Elbow method and its interface is given in Fig. 4. During the 

implementation, every case is considered to allow for the user’s selection and then the clustering 

can be triggered.   
 

 

Fig. 4. Vessel Clustering Application’s Interface. 
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For instance, any specified case can be selected; for example Loading Condition as LC1 

(100% consumables), Fn as 0.20, λ/L as 1.50 and the motion as heave. During the clustering, 

before applying K-Means, we have to determine true number of k for the motion of heave by 

Elbow Method. After the estimation of the true value, the application can continue to cluster 

the vessels and finally gives the results for clusters.   

5. COMPUTATIONAL RESULTS  

The results are organised in two goals. The first goal in subsection 5.1 is to cluster the 

vessels by our application and the second in subsection 5.2 is to discuss these clusters about 

their outstanding consequents of clusters for seakeeping.  

 5.1. VESSEL CLUSTERS 

As mentioned before that 189 cases occur in the Mediterranean fishing vessel database. 

The K-Means algorithm can be applied to each case or all. Furthermore, our database used by 

the algorithm is based on 12 hull form attributes which came from Table 1, the 13th attribute is 

used for heave, the 14th attribute for pitch and the 15th attribute for absolute vertical 

acceleration. According to the users’ requests, any motion can be used for the clustering process 

in addition to all motions. In this subsection, we are going to give the results in two parts: in 

subsection 5.1.1 the determination of the true number of k is given and in subsection 5.1.2 the 

application of K-Means algorithm is shown.  

5.1.1. DETERMINATION OF THE TRUE NUMBER OF K 

The true value of k by Elbow method can be in the range of 1 and 13 for the database of 

Mediterranean Fishing Vessels. The total SSE can be different for each case. That’s why, the 

total SSE is the average of SSE of each case. For each motion, line charts are shown in Fig. 5 

and Fig. 6.  

The line chart for all motions (Heave- Pitch-Vertical acceleration) is shown in Fig. 5. The 

total of SSE goes down rapidly the number of k from 1 to 2, and from 2 to 3. Then, it goes down 

slowly after the number of k is 3. We reach the true number of k is 3 for all of motion. 

 

Fig. 5. The line chart of the true number of k for Heave- Pitch-Vertical acceleration. 

 The line chart for the heave motion only is shown in Fig.6.  The total of SSE goes down 

rapidly until 3. After that, it goes down slowly. The true number of k is 3 for the motion. 
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Fig. 6. The line chart of the true number of k for the heave motion. 

The true numbers of k for pitch and vertical acceleration motions were obtained and they 

were also found similarly equaled to 3.  As a result, we reach the same true number of k for 

each motion and all motions for the Mediterranean fishing vessel data set. However this method 

may not show the true number clearly for different data sets but it was very obvious for the 

Mediterranean fishing vessels.  

5.1.2. APPLICATION OF K-MEANS ALGORITHM  

This application involves four tests to cluster the vessels. The first test in (a) is done for 

all motions, the second in (b) for heave, the third for pitch and the last for vertical accelaretion 

to find the vessel clusters based on similarity.   

a) CLUSTERING FOR ALL MOTIONS: The results of clustering for all motions  are 

displayed in Fig. 7. Vessel2, Vessel3, Vessel5, Vessel7, Vessel8, Vessel12 and Vessel13 belong 

to Cluster 0 (abbreviated as C0). But some case Vessel5, Vessel7, Vessel13 belong to different 

case. Vessel1, Vessel6, Vessel9 and Vessel11 belong clearly to Cluster 1 (C1). Vessel10 

belongs to Cluster 2 (C2). 

 

Fig. 7. Clusters for all of motions (Heave, Pitch, Vertical acceleration) with the true number of k as 3. 

b) CLUSTERING FOR HEAVE : The results of clustering for the heave motion are shown 

in Fig. 8. Vessel2, Vessel3, Vessel5, Vessel7, Vessel8, Vessel12 and Vessel13 belong clearly 

to Cluster 0. Vessel1, Vessel6, Vessel9 and Vessel11 belong clearly to Cluster 1 and Vessel10 

belongs to Cluster two. 
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Fig. 8 Clusters for Heave motion only with the true number of k as 3. 

Last two tests were done for pitch and veritcal accelaration motions and the similar results 

were estimated. To generalise, results of the tests are summaried in Table 2 below:  
Table 2. General Results of Clusters for all motions, each motion of heave, pitch and vertical acceleration. 

 
 

5.2. OUTSTANDING CONSEQUENTS OF CLUSTERS FOR SEAKEEPING 

Ship motions or seakeeping performance of ships in various conditions of real seaway 

environment are crucial problems that the following objectives are required to reach an 

optimized ship design based on seakeeping. 

1. Minimize amplitudes of vessel motions, velocity and accelerations  

2. Minimize frequency of occurrences of seakeeping phenomena such as deck 

wetness, slamming, local accelerations 

3. Optimal hull form, load distribution and speed of advance that enable not stiff but 

tender and/or acceptable oscillating motions such as heave, pitch and vertical 

acceleration motions. 

In order to reach and satisfy these objectives, the ship designer needs to have a detailed 

information among the data of hull form parameters and ship motion performance. The design 

principle is that the rational consideration of potential seakeeping behavior from the beginning 

of the design process in real leads the design economical. The beginning of the design process 

is so-called conceptual design stage, as generally accepted, requires simplicity in use while 

assuring sufficient accuracy in prediction.  

Cluster 0 in Table 3 contains eight vessels and three loading conditions for each, totally 

24 hull variants. On the other hand, Cluster 1 in Table 4 has four vessels, those are Vessel 01, 

Vessel 06, Vessel 09 and Vessel 11, and the three loading conditions of each, 12 hull variants 

of these four vessels. It is worthwhile to underline that the hull variants remained also in the 

same cluster because of the parametric relation of hull form variables. 
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Table 3. Cluster 0. 

Vessel 02 Vessel 03 Vessel 04 Vessel 05 

V_021, V_022, V_023 V_031, V_032, V_033 V_041, V_042, V_043 V_051, V_052, V_053 

Vessel 07 Vessel 08 Vessel 012 Vessel 013 

V_071, V_072, V_073 V_081, V_082, V_083 V_121, V_122, V_123 V_131, V_132, V_133 

 

Table 4. Cluster 1. 

Vessel 01 Vessel 06 Vessel 09 Vessel 11 

V_011, V_012, V_013 V_061, V_062, V_063 V_091, V_092, V_093 V_111, V_112, V_113 

 

The correlation analysis among the vessels in Cluster 1 (Vessel 01, 06, 09 and 11) for 

heave motion has showed a highly close approximation compared to the output of Simple 

Model  [8, 9] which was obtained by the correlation analysis of all 39 vessel variants, for 13 

vessels with three loading conditions. In Simple Model, the ship motions were represented in 

function of hull form parameters of length to beam ratio, beam to draught ratio, length to volume 

ratio (LPP/B, B/T, L/1/3), speed to length ratio (Froude number, Fn) and wave length to ship 

length ratio (/L). It should be noted that while the Simple Model used in our previous study 

[8] was applied to the database of all vessels in Table 1, here we applied the same model to two 

different Clusters, Cluster 0 and Cluster 1. A detailed comparison study has been carried for 

several vessels in order to show the approximation level of Cluster 1 that was represented by a 

database of 13 vessels. Our computations have shown that Cluster 1 gives relatively higher 

correlation level for all motions. Fig. 9 shows the correlation values for both Simple Model in 

our previous study [8] and the Cluster 1. The computed and approximated values of the transfer 

functions of heave, pitch and vertical acceleration for the vessels that reflect the general 

accuracy of the Cluster 1 with respect to computed responses shown in Fig. 10-12. However, 

the approximation for vertical acceleration is relatively far from the level of approximation 

obtained for other motion responses of heave and pitch. The figures showed that a group of 

twelve vessels of Cluster 1 in the vessel database is able to predict ship transfer functions in an 

acceptable level by means of L, B, T,, Fn and /L comparing with the computed data that 

used whole geometry of the vessels. It can be concluded that a meta-model using the database 

defined by Cluster 1 is capable to offer satisfying predictions for conceptual design purposes. 

Cluster 0 is also capable to give almost the same success of the approximation as Cluster 1. Fig. 

13 shows a typical approximation of Cluster 0 for the heave motion in comparison with Simple 

Model. 
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/L 

Fig. 9. Correlations (R2) for Simple Model [8] and Cluster 1 for heave motion for each /L. 

 

 

 

Fig. 10. Heave motion (z/a) RAOs of Vessel 061, Vessel 062 and Vessel 061 at Froude numbers 0.0, 0.20 and 

0.30, Legend: Continuous line: Strip theory calculation, SM: Simple Model [8], C1: “Cluster 1”. 

Computed SM  C1 @ Fn=0  Computed SM  C1 @ Fn=0.20  

Computed SM  C1 @ Fn=0.30  Computed SM  C1 @ Fn=0.20  

Computed SM  C1 @ Fn=0.20  Computed SM  C1 @ Fn=0.30  



Determination of relational classification among hull form parameters                  Ayla Sayli 

and ship motions performance for a set of small vessels                              Ahmet Dursun Alkan, Merve Aydın 

13 

  

Fig. 11. Pitch motion (/) RAOs of Vessel 062 at Froude numbers 0.0 and 0.25, Cluster 1 vessels. 

  

Fig. 12. Vertical acceleration (a/g) RAOs of Vessel 112 at Froude numbers 0.0 and 0.30 Simple Model Cluster 1. 

  

  

Fig. 13. Heave motion (z/a) RAOs of Vessel 051 at Froude numbers 0.0, 0.10, 0.20 and 0.30., Continuous line: 

Strip theory calculation, SM: Simple Model, C0: Cluster 0. 

Computed SM  C0 @ Fn=0.20  Computed SM  C0 @ Fn=0.30  

Computed SM  C0 @ Fn=0.00  Computed SM  C0 @ Fn=0.10  

Computed SM  C1 @ Fn=0.00  Computed SM  C1 @ Fn=0.30  

Computed  C1 @ Fn=0.00  Computed  C1 @ Fn=0.25  
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The clustered databases are used to model ship motions also with more hull form parameters, 

for this purpose, Enhanced 2 Model in our past study in [8] was taken into consideration. 

Enhanced 2 Model is a further extension of Simple Model parameters with water plane area 

ratio and prismatic coefficients for aft and forward parts of the hull body, those are LPP/B, B/T, 

L/1/3, CWPA, CWPF, CVPA, CVPF, respectively. The calculations based on the databases of Cluster 

1 and the Cluster 0 do not make any significant change in the approximation scored in [8]. 

It is noteworthy to comment that though Vessel 10 was remained alone in Cluster 2, the hull 

can be evaluated in one of Clusters based on the experience and tuition of ship designer. 

6.CONCLUSION 

As a conversion tool from data into knowledge, cluster analysis based on data mining can be 

applied  to ship hull forms to determine relational classification of a hull geometry parameters 

and performance characteristics defined by transfer functions (RAO) of heave and pitch 

motions and of absolute vertical acceleration. Roll motion and MSI index which are different 

topics are also under the consideration of the authors for further researches. Our analysis 

defined three clusters for conceptual design purposes and cluster analysis is a useful tool for 

ship designers, especially she/he has a large number of hull and performance data, who can 

classify alternative ship designs based on their relational data composed of hull geometry and 

performance measure(s). The cluster analysis concluded that though a vessel has three loading 

conditions as design variants remained in the same cluster without detaching from their main 

hull, for example Vessel X_01, Vessel X_02, Vessel X_03 remained in the same cluster. We 

propose that the cluster analysis is useful during conceptual design tasks where the designer 

tries to set up a reliable meta-model and thus to perform decision based optimization studies 

[5], keeping in the mind that a sufficient number of comparable statistical data are needed to 

allow common principles of the statistics. In such problems, cluster analysis will be useful to 

seek and judge significant set of parameters influencing various outputs of interest that enables 

the ship designer to develop robust and innovative solutions based on scientific approaches. 
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