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Summary 

To evaluate the time-domain positioning performance of arctic marine structures, it is 

necessary to generate an ice load appropriate for the current position and heading of the 

structure. The position and orientation angle of a floating body continuously change with time. 

Therefore, an ice load is required for any attitude in the time-domain simulation. In this study, 

we present a fundamental technique for analyzing ice loads in the frequency domain based on 

data measured at various angles in the ice-water tank experiment. We perform spectral analysis 

instead of general FFT to analyze the ice load, which has the characteristics of a random signal. 

To generate the necessary ice load in the time domain, we must first interpolate the measured 

data in the frequency domain. Using the Blackman-Tukey method, we estimate the spectrum 

for the measured data, then process the data to generate the training set required for machine 

learning. Based on the results, we perform regression analysis by applying four representative 

techniques, including linear regression, random forest, or neural network, and compare the 

results with MSE. The deep neural network method performed best, but we provide further 

discussion for each model. 

Key words: machine learning; regression; ice load, power spectral density; mean 

squared error 

1. Introduction 

Factors that determine ice load are the degree of how well the ice field is managed, ice 

thickness, type of ice, concentration, etc. During the design stage, one must determine the ice 

conditions of the sea area where the offshore structure is to be installed. This survey is then 

reflected in the ice tank test to observe the effects of ice on the structure. For floating structures, 

it is necessary to evaluate the performance related to the station-keeping in the time domain, 

and this requires consideration of the ice load. Mathematical models are mainly used, but there 

is a limit to their use in simulations that consider complex environmental loads that include 

wind, currents, and waves. 

http://dx.doi.org/10.21278/brod74301
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Calculating ice load can be broadly classified into methods based on a numerical model 

and methods based on an empirical formula taken from experiments or data measured in ice 

infested waters. Researchers have developed numerical models such as a finite element method, 

a discrete element method, a particle-in-cell method, a method using computational fluid 

dynamics, and a cohesive element method [1]. There is a well-organized overall survey on this 

topic in [2]. The empirical method derives a correlation between ice load and the parameters of 

ice and hull from experimental or measurement data from ice-covered seas. The advantage of 

this method is its numerical efficiency. For use in real-time simulation, a computation cannot 

take a long time. In addition, the development period and verification process should not be 

complicated, and the processing time should not be long. Numerical model–based methods 

generally do not satisfy these conditions.  

The best way to get the ice load on a floater is to use the test results of a real sea 

experiment. The most widely recognized test was conducted in 2004, as part of the 302 Arctic 

coring expedition of the international ocean drilling program (IODP). One drillship performed 

drilling operations, assisted by two icebreakers. Ice load was measured with sensors and showed 

the difficulty of maintaining a position in the Arctic ocean [3]. Due to heavy costs and the 

impossibility of controlling ice conditions, it is very difficult to obtain data for certain situations.  

Considering these difficulties, Mikulec and Piehl [4] established a full-scale CFD model using 

the test results and verified the results. Tests performed in ice tanks can also generate good data 

to evaluate the ice load on floaters [5]. Representative examples of such tests are the drillship-

related experiments carried out as part of the international joint research project DYPIC 

(DYnamic Positioning in Ice Condition) [6, 7] and the model tests performed by the National 

Research Council (NRC) of Canada [8, 9]. However, such ice tank tests are still costly, and 

they have limitations in reflecting other environmental loads, such as wind, currents, and waves.  

Studies are ongoing to simulate the interactions between ice and structures, considering 

the limitations mentioned above [10]. A method of using machine learning techniques to predict 

ice resistance for ship performance analysis on sea ice is also presented [11].  One such trial 

combines existing commercial software with experimental data from the ice tank test [12]. 

Although it is still difficult to deduce the ice load due to the lack of data sets, the method can 

be used as a framework. In addition, given more data, the accuracy of the model can greatly 

improve. This can make use of methods of storing the characteristics of an ice load as data and 

then randomly generating a signal suitable for the condition. 

  

    

Fig. 1 Example of dynamic motion analysis with ice and DP modules in the time domain  

with a motion solver [10] 

Figure 1 is a framework for evaluating the station-keeping performance of a floating 

offshore structure for the Arctic region. The movement of the floater is analyzed by connecting 

the module that generates the control input for the dynamic positioning (DP) system and the 

module that creates the ice load to the dynamic analysis software. Connecting the DP module 

is not a difficult task, but estimating the ice load used for time domain analysis is not easy. This 

is because the ice load must be calculated while the position and direction of the floating 

structure are constantly changing. The reason for using commercial software is to consider the 

effects of wind, waves, and ocean currents in addition to the ice load. There are specialized 
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SWs that estimate ice resistance, but they are lacking in terms of environmental loads. Therefore, 

a specialized ice load generation module for precise time-zone motion analysis is required. 

    

Fig. 2 Detailed process of the future ice module 

Figure 2 is the plan for the ice module generating the ice load mentioned in Figure 1. The 

gray boxes are the processes that will be covered in this paper. The Ice module will generate 

signals based on experimental data. Data obtained from experiments performed in ice tanks are 

analyzed in the frequency domain. The results are collected to form a primary database, and the 

database provide basic data for generating the ice weight required by the ice module. More data 

will be acquired and made available as we continue to conduct experiments. With the results 

for more ice conditions, it will be possible to generate ice load for different environmental 

conditions. 

The main objective of this research is to present a basis from which the ice load can be 

derived. The basic idea is to generates a random signal based on the power spectrum at an 

arbitrary angle. However, in the ice tank test, data can only be obtained from a limited number 

of angles. This paper proposes a regression model based on the acquired data to obtain a value 

corresponding to an arbitrary angle. The power spectrum of the ice load is analyzed by using 9 

data sets performed with different orientation angles. From among the machine learning 

methods, we select a supervised linear regression for this application. The four most commonly 

used methods are applied, including linear interpolation, random forest, and artificial neural 

networks.  Four models are applied to the measured data to construct a power spectrum that can 

generate a random signal at the specific angle required for a time-domain simulation. Measured 

data are used to train the models and compare the results between each model. Future usage of 

the output is discussed in the conclusion. 

 

2. Power spectrum of ice load 

2.1 Measuring ice load 

The basic data we use in this paper are the experimental results from the previous research 

[10]. Experiments were performed in the ice tank at KRISO (Korean research institute of ships 

and ocean engineering). Data were collected using a 1:40 model of an FPSO designed for the 

Artic region. As shown in Figure 3, a captive test was performed by installing a 3-axis load cell 

on top of the model ship and maintaining the ice area at a constant angle. The load cell can 

measure  𝐹𝑥 , 𝐹𝑦  and 𝑀𝑧  separately, and the maximum capacities are 4kN, 4kN, and 2kNm, 

respectively. After towing begins from an ice-free area, the ship enters the ice-covered area and 

recording begins when data is reliably acquired. The bow angle was changed from -40 degrees 

to 40 degrees at 10-degree intervals, and we produced data for a total of 9 cases. 
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Fig. 3 Schematics of the captive test  

The ice condition for the experiment is summarized in table 1. Because we assume ice 

breakers manage the target ice field, a level ice sheet is prepared and cut into irregularly 

distributed pieces. 

Table 1  Ice test conditions with a 1/40 model 

 Full scale Model scale (1/40) 

Ice thickness (m) 1.4 0.035 

length of ice floes (m) 12 0.3 

Ice drift speed 1.0 knot 0.081 m/s 

Ice concentration 8/10 

Shape of ice floes irregular 

 

For each case, we acquired 8,000 valid data points at a sampling rate of 100 Hz for a total 

of 80 seconds. Figure 4 shows the measured force and moment values for 𝐹𝑥, 𝐹𝑦 and 𝑀𝑧 acting 

in the x, y and z direction of the hull, respectively. The model ship passed the open water area 

and entered the ice area. Data was recorded after the measurement stabilized, which was at 220 

seconds in this experiment. Excluding the drag component caused by the current in the actual 

measured value, only the pure ice load is displayed. 

Since the body-fixed coordinate is used, 𝐹𝑥 can be interpreted as the load caused by ice 

approaching in the bow direction. The outlier that occurred at about 263 seconds in Figure 4 (a) 

was caused by a problem with the rail and was excluded from the analysis. In the case of 𝐹𝑥 and 

𝐹𝑦, significant fluctuation is generated by ice fragments coming in the direction of the bow. The 

pattern depends on the ice conditions. Since FPSO for the Arctic region was considered, the 

heading angle was limited from -40 degrees to 40 degrees. If the heading angle gets larger than 

that, it is generally assumed that the structure cannot stand against the ice load. This can be 

confirmed in Figure 4 (b). It can be seen that the larger the heading angle, the greater the load. 

The increased heading angle means that more ice fragments approach the long side of the hull. 

Therefore, it is because the ice fragments push the hull together. Since it is impossible to 

maintain the position in this situation in the Arctic sea, the experiment was designed on the 

premise that the -40 to 40 degree of heading angle is maintained with the heading control. The 

moment shows a pattern in which the overall magnitude increases as the angle increases and 

then decreases again. Compared with the force components, low-frequency fluctuations 

appeared more clearly. 
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(a) force measured along the x-axis of the model ship 

 
(b) force measured along the y-axis of the model ship 

 
(c) moment measured along the z-axis of the model ship 

Fig. 4 Selected time series data measure for 𝐹𝑥, 𝐹𝑦 and 𝑀𝑧. Some data sets (heading angles at -30°, -10°, 10°, 

and 30°) are omitted from the figures to show tendencies clearly as the attack angles change.  

2.2 Self-correlation function of random signal and power spectrum 

The Fourier transform in a random process is difficult to define precisely because the 

random signal is different for each measurement and thus cannot itself be precisely defined. 

However, for a stationary process, it is possible to define power as a statistical expected value. 

That is, one can use general concepts such as autocorrelation, cross-correlation, and 

autocovariance. If the autocorrelation function in the random process is subjected to a Fourier 

transform, it becomes power spectral density (PSD), offering useful information related to the 

frequency spectrum. In spectrum analysis, the FFT result is multiplied by a complex component 

to make the amplitude into a real value, then divided by the frequency resolution. The output is 

independent of the frequency resolution, and it is easy to compare the vibration levels of signals 

having different numbers of data. For this reason, we use the power spectrum to characterize 

many random signals. 

Let 𝑥(𝜏) be a stationary random process, then the self-correlation function 𝛾𝑥𝑥(𝜏) can be 

expressed as  
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𝛾𝑥𝑥(𝜏) = 𝐸[𝑥
∗(𝑡)𝑥(𝑡 + 𝜏)], (1) 

where 𝐸[∙]  denotes a statistical average. By applying the Wiener-Khintchine theorem, the 

Fourier transform of the autocorrelation function can provide the power spectrum. This is 

expressed as 

𝛤𝑥𝑥(F) = ∫ γ𝑥𝑥(τ)𝑒
−𝑗2𝜋𝐹𝑡𝑑𝑡

∞

−∞
. (2) 

A time-averaged autocorrelation function generates a power spectrum estimation, as 

expressed by the following equation: 

𝑅𝑥𝑥(𝜏) =
1

2𝑇0
∫ 𝑥∗(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡
𝑇0

−𝑇0
, (3) 

where 2𝑇0  is the observation interval. If the first and second moments (mean and 

autocorrelation functions) of a stationary random process are ergodic random processes, we 

have the following relation: 

𝛾𝑥𝑥(τ) = lim
𝑇→∞

𝑅𝑥𝑥(τ) =   lim
𝑇→∞

1

2𝑇0
∫ 𝑥∗(𝑡)𝑥(𝑡 + τ)𝑑𝑡
𝑇0

−𝑇0
. (4) 

This means that the time-averaged autocorrelation function 𝑅𝑥𝑥(τ)  can serve as an 

estimate of the statistical autocorrelation function 𝛾𝑥𝑥(𝜏). Furthermore, the Fourier transform 

of 𝑅𝑥𝑥(𝜏) becomes an estimate of the power spectrum density 𝑃𝑥𝑥(𝐹), for which the equation 

is 

𝑃𝑥𝑥(𝐹)  =  ∫ 𝑅𝑥𝑥(τ)𝑒
−𝑗2π𝐹τ𝑑τ

𝑇0

−𝑇0

 

=
1

2T0
∫ [∫ 𝑥∗(𝑡)𝑥(𝑡 + τ)𝑑𝑡

𝑇0

−𝑇0
] 𝑒−𝑗2π𝐹τ𝑑τ

𝑇0

−𝑇0
  =

1

2𝑇0
|∫ 𝑥(𝑡)𝑒−𝑗2πFt𝑑t
𝑇0

−𝑇0
|
2

. (5) 

The actual power spectral density is the expected value of the limit of 𝑃𝑥𝑥(𝐹) as time 

𝑇0 → ∞: 

Γxx(F) = lim
𝑇0→ ∞

E[𝑃𝑥𝑥(𝐹)] =  lim
𝑇0→ ∞

E [
1

2𝑇0
|∫ 𝑥(𝑡)𝑒−𝑗2πFt𝑑t
𝑇0

−𝑇0
|
2

]. (6) 

2.3 Estimation of power spectrum using Blackman & Tukey method 

To simplify the analysis, we hereafter replace observation time 𝑇0 with T/2. The overall 

procedure is from [13]. The auto-correlation function of the time series data 𝑥(t) measured 

during time 𝑇 can be expressed as 

𝑅(𝜏) = 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)] =
1

𝑇
∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡
𝑇/2

𝑇/2
,     τ ≥ 0. (7) 

The auto-energy density spectrum can be defined as  

S(ω) =
1

2𝜋
∫ 𝑅(τ)𝑒−𝑗ωτ𝑑τ,      − ∞ ≤ ω ≤
∞

−∞
∞. (8) 

The inverse Fourier transform for Equation (8) above is 

𝑅(𝜏) = ∫ 𝑆(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔
∞

−∞
. (9) 

Since the above auto-correlation function and auto-energy density spectrum are even 

functions with respect to time and frequency, respectively, the one-sided auto energy spectrum 

and auto-correlation function are respectively expressed as follows: 
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𝑈(𝜔) =
1

𝜋
∫ 𝑅(𝜏)𝑐𝑜𝑠𝜔𝜏 𝑑𝜏
∞

0
, (10) 

𝑅(𝜏) = ∫ 𝑈(𝜔)𝑐𝑜𝑠𝜔𝜏 𝑑𝜏
∞

0
. (11) 

Therefore, the autocorrelation function can be arranged in the following discretized form: 

𝑅𝑝 =
2

𝑁−𝑝
∑ 𝑥(𝑡𝑖) ∙ 𝑥(𝑡𝑖 + 𝑝∆𝜏)
𝑁−𝑝
𝑖=1 . (12) 

In equation (12), ∆𝜏 = ∆𝑡 , 𝑇 = 𝑁∆𝜏 , 𝜏 =  𝑝 ∆ 𝜏 , 𝑝 = 0,1,2,…𝑚,  and 𝑚  indicates the 

maximum lag number, decided by the guideline stated below. The number 2 in the numerator 

reflects the symmetry of the autocorrelation function. Therefore, equation (12) gives m+ 1 

discrete and evenly spaced values. In equation (7), the integration over time t is taken over the 

sample length 𝑇 − 𝜏 = (𝑁 − 𝑝)∆𝑡. Therefore, the denominator becomes 𝑁 − 𝑝. When 𝑝 = 0, 

the autocorrelation function is the variance of 𝑥(𝑡).  

To estimate the one-sided spectral density, equation (10) is discretized with 𝑚 + 1 evenly 

spaced autocorrelation coefficients: 

∆𝜔 =
𝜔𝑐

𝑚
=

𝜋

𝑚∆𝜏
, (13) 

where 𝜔𝑐 is the Nyquist frequency. By using 𝜔 =  ℎ ∆𝜔 and equation (13), we have 

𝜔𝜏 = (ℎ∆𝜔)(𝑝 ∆ 𝜏) =
𝜋𝑝ℎ

𝑚
. (14) 

After applying the trapezoidal formula to integrate equation (10), the raw spectral density 

is expressed as follows: 

𝐿ℎ =
1

𝑚∆𝜔
[𝑅0 + 2∑ 𝑅𝑝𝑐𝑜𝑠

𝜋𝑝ℎ

𝑚
+ 𝑅𝑚𝑐𝑜𝑠𝜋ℎ

𝑚−1
𝑝=1 ] ,    ℎ = 0,1,2, … ,𝑚. (15) 

The above raw spectral density is smoothed by a moving weighted average, and the 

Hamming process is applied. 

𝑈(ℎ∆𝜔) = 𝑈ℎ ≡ ∑ 𝑎ℎ,𝑖𝐿ℎ
𝑚
𝑖=1 ,       ℎ = 1,2, … ,𝑚 − 1 (16) 

{
 

 
𝑎ℎ,ℎ−1 = 0.23

𝑎ℎ = 0.54
𝑎ℎ,ℎ+1 = 0.23

𝑎ℎ,𝑖 = 0.00   for   𝑖 ≠ ℎ − 1, ℎ or    ℎ + 1.

 (17) 

Therefore, the overall smoothed estimates are 

{

𝑈0 = 0.54𝐿0 + 0.46𝐿1
𝑈ℎ = 0.23𝐿ℎ−1 + 0.54𝐿ℎ + 0.23𝐿ℎ+1, ℎ = 1,2, … ,𝑚 − 1

𝑈𝑚 = 0.46𝐿𝑚−1 + 0.54𝐿𝑚.
 (18) 

2.4 Power spectral density 

Figure 5 shows the PSD values for 𝐹𝑥 at intervals of 10 degrees from +40 degrees to -40 

degrees of the hull. Since the Nyquist frequency is 50 Hz, we analyzed it up to about 314 rad/s. 

After 50 rad/s, however, the value converges to almost 0 and is omitted. The same approach is 

applied to next analyses.  

The distribution of PSD can be analyzed in relation to Figure 4. In the case of 𝐹𝑥 and  𝐹𝑦, 

a peak value is shown at a frequency of about 17 rad/sec in common in all attack angles. The 
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peak value appears in relation to the operating speed of the model ship and the degree of ice 

density. In the case of  𝑀𝑧, this difference does not appear significantly, and there is a dominant 

feature in the low frequency band. Considering that the hull is a fixed coordinate system, it can 

be seen that the effect of the ice approaching in the direction of the bow acts differently on the 

force elements. As shown in Figure 4 (c), the overall magnitude of the moment indicates a 

pattern that gradually increases as the heading angle increases and then decreases again. That 

is because the model ship has a long shape in the x-axis direction, so the tendency to return to 

the original direction of less resistance (the heading angle of 0) becomes stronger up to a certain 

angle. As the angle becomes larger than a certain angle, this tendency becomes smaller again. 

Accordingly, the power in the low-frequency region gradually increases and then decreases 

again. Also, the degree of fluctuation is slightly weaker than the 𝐹𝑥 and  𝐹𝑦 components. The 

period of significant vibration appears at about 1 second, all power spectrum values are 

concentrated within 5 rad/sec. Therefore, as shown in the figure, the magnitude of power 

appears very small at frequencies greater than 5 rad/sec. 

 

 

   
(a) PSD values (N2/s) for 𝐹𝑥  

 

   
(b) PSD values (N2/s) for  𝐹𝑦 

 

   
(c) PSD values (N2 m2/s) for  𝑀𝑧 

Fig. 5 Power spectral density values for 𝐹𝑥, 𝐹𝑦, and 𝑀𝑧 at selected heading angles of 0, 20 and 40 degrees  
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3. Model setup and preparation of the training set 

3.1 General procedure and regression models for supervised learning 

This paper applies supervised learning using 4 regression methods. This is a regression 

analysis technique that models the correlation between the dependent variable and one or more 

independent variables. The use of regression aims to predict the ice load required for real-time 

simulation based on the data measured in the ice tank test. Regression analysis in machine 

learning consists of three main steps: preparing data for regression analysis, training the model, 

and predicting new data. We use support vector machines, the random forest method, and the 

neural networks method, along with basic linear interpolation. The overall sequence for 

applying machine learning is as follows: 

 

1: (Load) Load ice load experiment data 

2: (Build) Build machine leaning model (Linear regression, Support Vector  

            Machine, Random Forest, Neural Networks) 

3: (Fit) Fit the model 

4: (Train) Start train 

5:   angles = [-40, -30, -20, -10, 0, 10, 20, 30, 40] 

6:              for ang in angles do 

7:            predict(ang); 

8: (Test) Start test 

9:              angles = [-40, -39, -38, -37, ..., 37, 38, 39, 40] 

10:              for ang in angles do 

11:                      predict(ang); 

 

Linear interpolation is the most basic regression method for finding the relationship 

between input and output. It assumes linearity between variables. This paper applied linear 

regression using the least squares method. For the Build and Fit stages, we use the experimental 

measurement angles and PSD values for those angles for training. This method creates a linear 

relationship for each frequency by comparing two PSD values for each angle. For example, 

with PSD values corresponding to -40 degrees and -30 degrees, it stores linear interpolation 

equations for each frequency. This recurs for a total of 8 repetitions, up to sets corresponding 

to 30 and 40 degrees. Afterwards, in the test step, for a given input angle, the method finds a 

corresponding section among the 8 sections divided in the training step and obtains an 

interpolation of the value. 

The random forest (RF) method is one of the decision trees used for classification and 

regression, developed by Leo Breiman [14]. The RF method is known to show good results, 

especially for tasks related to classification and guessing [15]. In addition, RF has several 

advantages when it is necessary to deal with many variables with small amounts of 

observational data [16]. RF method shows the relationship between the dependent variable and 

the predictor in the form of a tree. It allows for readable and interpretable conclusions, which 

is why it is so popular. The estimation accuracy of a model is very important, and the RF method 

is accepted as estimating models with high accuracy.  

The artificial neural network (ANN) was developed to analyze complex data structures 

or big data. It can be used for pattern recognition, parameter estimation, and classification. 

Burak Yildiz [17] applied the ANN in predicting residual resistance of a trimaran vessel based 
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on the experimental data. Several structures and algorithms for building ANNs have been 

developed, such as the multilayer perceptron (MLP) and radial basis function (RBF). In 

addition, various optimization algorithms have been applied to MLP or RBF. The ANN 

structure basically consists of three layers. The first is the input layer containing the independent 

variables. The second, called the hidden layer, has several activation functions to compute the 

relationship between the input (input variable) and output (dependent variable) [18]. The third 

is the output layer. 

3.2 Generation of the training data 

We create a standardized training data set for machine learning models. The shape of the 

data set is shown in Figure 6. Since there are models for each of the 8 sections between the 9 

measurement angles for a specific frequency, we need a total of 8x500 models for 500 

frequencies in the linear interpolation method. A support vector machine requires a total of 500 

models because there is one model for each frequency band. This means that a regression model 

is created with a total of 9 data sets per model. Random forests and neural networks use a single 

model for each method.  

 

 
Fig. 6 The shape of the training data set 

4. Regression results 

Figure 7 shows the results of applying all the regression methods of linear interpolation, 

support vector machine, random forest, and artificial neural network. In each method, 𝐹𝑥, 𝐹𝑦, 

and 𝑀𝑧  values are shown from left to right. Note that the scale of the PSD values was set 

automatically, and the PSD values of 𝐹𝑦  appear relatively large. Therefore, the peak near  

17 rad/sec of 𝐹𝑦  in Figure 5 is not well visible. For support vector machines, we applied a 

polynomial kernel. Kernels such as linear kernels or radial basic functions are not suitable for 

this kind of data set due to the shape of the data. Through trial and error, we confirmed that 

having a higher order term gave better results. Finally, we set the degree of the polynomial 

kernel to 8 and the hyperparameter to 5. It can be seen that overall performance is poor because 

the degree of the polynomial is fixed and must be used for 500 different data sets.  
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(a) linear interpolation 

   

   
(b) support vector machine 

   
(c) random forest 

   
(d) neural networks 

Fig. 7 3D plots with the regression results for 4 algorithms. 

In the Random Forest method, we set the number of trees to 1,000, and observed no 

significant performance improvement beyond that. In the case of depth, since the input is only 

the value corresponding to the angle, we set a default value of 1; even if this increases to 2 or 

more, the result does not improve.  
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For the neural network model, we used rectified linear unit (ReLU) as the activation 

function and He initialization as the kernel initializer. This consists of three hidden layers, and 

proceeds in the order input, dense, batch normalization, and dropout. 

A graph presenting the regression results for each method at a specific frequency (18 

rad/sec) is shown in Figure 8. For the linear interpolation method, it can be seen that the 

interpolation reference values are connected to each other. For the support vector machine, as 

the order of the kernel increases to enhance accuracy, it can be seen that it bounces a lot within 

the 30 to 40 degree range. In an ideal situation, the results should be better than those seen in 

the figure, with bilateral symmetry around 0 degrees. For the random forest, the depth is 1, 

which shows the limitations of cascading results. Neural Networks showed relatively good 

performance for all intervals. 

 

  

(a) linear interpolation (b) support vector machine 

  

(c) random forest (d) neural networks 

Fig. 8 Regression results for 4 algorithms at a specific frequency (18rad/sec). Orange dots are training sets, and 

blue solid lines are result values generated at 1-degree intervals by each interpolation method.   

The overall performance results based on MSE, determined by comparing the training set 

and the predicted values at the same angles, appear in Table 2. For linear interpolation, the 

predicted value must represent the training value, so the MSE value must be zero. It is clear 

that this does not indicate that the prediction was perfect. For the support vector machine, we 

confirmed that there exists a section with a lot of deviation due to the influence of a high-order 

polynomial in both 𝐹𝑦 and 𝑀𝑧. The reason for the large error can be confirmed in Figure 7 (b). 

The applied kernel for the SVM was selected to show the result value as close to the test set as 

possible for comparison. As a result, a regulation parameter of 5 was selected for the 8th order 

polynomial and applied to the data analysis. Due to the nature of MSE, the results are amplified 

when large errors are included. Therefore, since 500 errors appearing in the interpolation 
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process are accumulated for each angle, the fit of the model deteriorates, resulting in a very 

large error. The neural network method shows the best results for all force directions. 

Table 2  Comparison of MSE values from the regression methodologies 
 

𝐹𝑥 𝐹𝑦 𝑀𝑧 

Linear regression 0.00 0.00 0.00 

Support vector machine 689,809.65 487,344,726.71 28,777,468.15 

Random forest 16.15 21,681.15 109.49 

Deep neural networks 0.31 640.43 3.40 

 

5. Conclusion 

The ice tank test offers a limited amount of data due to difficulties in the time and cost 

required for preparation. A method of examining the results by analyzing individual pieces of 

experimental data has been under development for a long time. However, it is also necessary to 

observe patterns in the measurement data according to changes in various parameters known to 

affect the ice load, and machine learning techniques can be effectively applied as a tool for this 

purpose.  

A methodology for calculating the power spectral density was presented for the data 

measured in the ice tank. The overall pattern according to the attack angle was observed and 

analyzed. The ice tank test was conducted as a captive test by changing the bow angle from -

40 to 40 degrees at intervals of 10 degrees. The indirect method was used in estimating power 

spectral density suggested by Blackman & Tukey for each angle at which the test was 

conducted. In order to observe the change trend of the overall power spectrum density according 

to the bow angle, various regression methods were applied by subdividing the angle, and the 

results were compared. Four widely used methods of machine learning (linear interpolation, a 

support vector machine, a random forest, and a deep neural network) were applied for linear 

regression. 9 data sets were used as training data and tested for each angle. 

Linear interpolation is the most basic method and can serve as a standard for judging the 

performance of other methods. In the case of the Support Vector Machine, we tried to find the 

optimal situation by changing the order, but the results were poor. If the measurement data has 

left-right symmetry, performance should be better, but our results suffered due to the 

asymmetry of the measurement values. The more data we have, the better the performance 

seems to be. However, it is difficult to tackle an increase in parameters, so there will be 

limitations in future usage. 

The random forest method is known to be the most suitable model for multivariate 

regression, but it did not perform well in this data analysis. This is because the basic data itself 

only provides information about the angle, which limits the depth of the decision tree. However, 

when there are many variables to consider, such as ice thickness and degree of integration, it 

can be expected to show greater performance improvement than other methods. The deep neural 

network method showed the best performance. As it can be used for multivariate input, it will 

be comparable to the random forest method if given additional data. Overall, the artificial neural 

network method performed best. Although it takes a long time to complete, this arguably has 

no significant impact because this is not a problem that needs to be analyzed in real time.  

If the power spectrum model is further developed as presented in this paper, it will be 

possible to generate realistic ice loads in a time-domain simulation. As discussed in the 

introduction, the ice module receives the heading angle of the floating structure. Then the 

module generates a corresponding random signal based on the regressed PSD values. Technique 

to generate adequate ice load with the PSD values will be the next step of the research. It should 
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be possible to obtain better results by applying the improved ice load in simulation techniques 

that use a complex environmental load. 
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