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Summary 

This paper presents a fast alternative optimization method for developing a reliable 

optimal controller that can handle system model parameter uncertainties. The source of 

uncertainty in this study is identified as hydrodynamic coefficients, which are prone to errors 

due to the challenges involved in obtaining accurate values. The proposed optimization method 

utilizes a complex nonlinear ship model provided by Maneuver Modelling Group (MMG) as 

the reference for the ship motion model. The optimization process is divided into two stages: a 

blind search followed by bisection optimization, to obtain a robust optimal controller. To 

demonstrate the effectiveness of the proposed approach, system response analysis and practical 

tests were performed on Step, M-Turn, and Doublet maneuvers. The results show that the 

controller parameters obtained from the proposed optimization method are capable of achieving 

high success rates in controlling a system with uncertain parameters. 

Key words: robust control; optimal control; optimization; parametric uncertainty; 

autonomous surface vessel, autonomous marine vehicle 

1. Introduction 

The automation of ship control has revolutionized the shipping industry, improving 

efficiency, reducing costs, and enhancing safety. Automated ship control includes functions 

such as steering, propulsion, and monitoring of critical equipment, and has made it possible to 

remotely control or monitor ships from shore, reducing the number of crew members required 

on board [1]. One of the critical factors in ship design, performance, and manoeuvring is the 

hydrodynamic coefficient [2]. These coefficients represent the forces and moments acting on 

the vessel's hull, rudder, and propeller, which are essential for predicting the ship's motion and 

stability [3]. Unfortunately, hydrodynamic coefficients are not always accurate due to factors 

such as the vessel's speed, sea conditions, and changes in the vessel's geometry and loading [4]. 

As a result, it can be challenging to determine hydrodynamic coefficients accurately, making it 

difficult to control the vessel's motion and stability. 

Numerous studies have been conducted in the field of controlling ship with hydrodynamic 

coefficients with uncertainties associated with them. Several approaches have been used, 

including predictive methods such as Multi-level Model Predictive Control (MPC), which was 
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proposed by Haseltalab et al. [5] to control ship speed and calculate propulsion energy in the 

presence of uncertainties. Another method involves the use of adaptive control, as pursued by 

Lu et al. [6], which involves continuously adjusting control inputs based on real-time ship 

behaviour measurements. Fuzzy logic-based control has also been implemented, as seen in the 

work carried out by Chen and Tan [7], where the ship's control inputs are adjusted based on 

fuzzy rules that take into account uncertainty in hydrodynamic coefficients. Additionally, 

machine learning-based approaches have been used, such as the reinforcement learning method 

employed by Zhang et al. [8] to adjust the ship's control inputs based on given data. Another 

technique, robust control, is designed to maintain stable and predictable ship behaviour even in 

the presence of uncertain hydrodynamic coefficients, as demonstrated by Ye et al. [9]. 

The focus of this study to implement a robust controller for the aforementioned problem. 

Robust controllers employ a mathematical model that considers uncertain parameters [10] to 

handle the possible range of values for those parameters. This type of controller ensures that 

the vessel remains stable and operates correctly under various conditions [11]. However, 

finding a suitable robust controller can be challenging using deterministic methods like linear 

or nonlinear approach [12]. For instance, the commonly used ship motion model provided by 

the Maneuvering Modelling Group (MMG) has 17 coefficients for the hull's hydrodynamic 

coefficient alone, making the optimization problem complex and large [13]. To address this 

issue, optimization techniques such as Particle Swarm Optimization (PSO) and Genetic 

Algorithms (GA) [14-16] have been used to determine the optimal coefficients that best match 

the ship's motion. However, these methods can be slow, particularly if a large number of 

samples [17] are needed to represent the uncertainties in the hydrodynamic coefficients. 

To address this limitation, this study aims to design and test a faster optimization 

algorithm to handle large and complex optimization problems such as those associated with 

ship hydrodynamic coefficients. First, the problem mathematically formulated in Section 2 

where the slow performance of existing methods such as PSO and GA is investigated. Section 

3 introduces designed optimization method namely Bisection Optimization via Blind Search, 

which is faster compared to the other mentioned methods. Section 4 presents the optimization 

properties and results. Additional 3 test cases: Step, M-Turn, and Doublet maneuver, discussed 

in Section 5 to further test the obtained controller parameters. This paper finalized with 

conclusions presented in Section 6. 

2. Problem Formulation 

Consider following hydrodynamic force equations acting on ship hull provided by MMG [13]: 

𝑋𝐻 =
𝜌𝐿𝑝𝑝𝑑𝑈2𝑋𝐻

′ (𝑣𝑚
′ ,𝑟′)

2
 (1) 

𝑌𝐻 =
𝜌𝐿𝑝𝑝𝑑𝑈2𝑌𝐻

′ (𝑣𝑚
′ ,𝑟′)

2
 (2) 

𝑁𝐻 =
𝜌𝐿𝑃𝑃

2 𝑑𝑈2𝑁𝐻
′ (𝑣𝑚

′ ,𝑟′)

2
 (3) 

where XH, YH and NH are surge force, sway force and moment acting on the ship hull while 

prime accents denote nondimensionalized unit of measurements that represent following 

polynomials: 

𝑋𝐻
′ (𝑣𝑚

′ , 𝑟′) = −𝑅0
′ + 𝑋𝑣𝑣

′ 𝑣𝑚
′2 + 𝑋𝑣𝑟

′ 𝑣𝑚
′ 𝑟′ + 𝑋𝑟𝑟

′ 𝑟′2 + 𝑋𝑣𝑣𝑣𝑣
′ 𝑣𝑚

′4 (4) 

𝑌𝐻
′ (𝑣𝑚

′ , 𝑟′) = 𝑌𝑣
′𝑣𝑚

′ + 𝑌𝑅
′𝑟′ + 𝑌𝑣𝑣𝑣

′ 𝑣𝑚
′3 + 𝑌𝑣𝑣𝑟

′ 𝑣𝑚
′2𝑟′ + 𝑌𝑣𝑟𝑟

′ 𝑣𝑚
′ 𝑟′2 + 𝑌𝑟𝑟𝑟

′ 𝑟′3 (5) 
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𝑁𝐻
′ (𝑣𝑚

′ , 𝑟′) = 𝑁𝑣
′𝑣𝑚

′ + 𝑁𝑅
′ 𝑟′ + 𝑁𝑣𝑣𝑣

′ 𝑣𝑚
′3 + 𝑁𝑣𝑣𝑟

′ 𝑣𝑚
′2𝑟′ + 𝑁𝑣𝑟𝑟

′ 𝑣𝑚
′ 𝑟′2 + 𝑁𝑟𝑟𝑟

′ 𝑟′3 (6) 

here, all of the subscripted X, Y, and N on the right-hand side of Eq. (4) to Eq. (6) are the 

hydrodynamics coefficients ϑ ∈ Θ.  

Conventional way of treating these 17 parameters is by defining them as a fixed 

coefficient which obtained through experimental results or computational fluid dynamics 

(CFD) analysis [13] resulting a fixed polynomial. In this case, controlling such deterministic 

model is not a challenging task as there are numerous available studies that cover the topic of 

nonlinear control. However, as mentioned in Section 1, the estimation of hydrodynamic 

coefficients can be associated with a degree of inaccuracy. Therefore, even if a controller is 

designed and performs well in simulation, the performance in a real-world scenario may be 

affected by these inaccuracies. Indeed, if all parameters being considered as uncertain variable 

finding optimal controller deterministically will involve complex mathematical calculations 

[18]. In such cases, metaheuristic optimization approaches such as Particle Swarm Optimization 

(PSO) and Genetic Algorithm (GA) are commonly used [19]. To employ these methods, a 

desired cost ωd defined and search for a controller parameter K value that results in a cost ω 

less than the desired cost [20]. This optimization problem can be formulated as follows: 

𝜔𝑑 ≥ 𝜔(𝜗, 𝐾) (7) 

where the cost ω given ϑ ∈ Θ and K has to be less than ωd. However, due to the fact that ϑ ∈ Θ 

are generally comes with some degree of error [21], ϑ obtained from experimental result or 

CFD analysis defined as the nominal parameter ϑ0 while highest and lowest possible value of ϑ  

has to be introduced as follows: 

Θ ≜ {𝜗 ∈ [𝜗−, 𝜗+]; 𝜗− ≤ 𝜗0 ≤ 𝜗+} (8) 

here, 𝜗− and 𝜗+ denote lower bound and upper bound of 𝜗0. To be able to have a controller 

that can also compensate these uncertainties, controller obtained from Eq. (7) will not be 

sufficient. Instead, we need to have a robustness problem synthesized to the equation. This can 

be expressed as follows: 

𝜔𝑑 ≥ {𝜔(𝜗, 𝐾) ∀ 𝜗 ∈ Θ} (9) 

As previously mentioned, typically optimization problem from Eq. (7) solved by using 

metaheuristic optimization algorithm [22] due to the complexity of the MMG model. This 

optimization algorithm is commonly used to find optimal solutions for complex problems 

where traditional optimization methods are not effective [23]. While metaheuristic method such 

as GA and PSO have been shown to be effective at solving such problems expressed by Eq. (7), 

with large number of uncertain variables being introduced, they can be computationally 

expensive. Fig. 1 illustrates how PSO or GA would work given uncertainties problem: 

 

Fig. 1 Particle or Population Based Optimization for Multi-sample Problem 
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For every sample of the model ϑ, the motion model is simulated with p number of particles 

for i iterations. Meaning, the number of motion model together with the control algorithm being 

simulated ϖ can be expressed as follow: 

𝜛𝑃𝑆𝑂/𝐺𝐴 = 𝑛. 𝑝. 𝑖𝑃𝑆𝑂/𝐺𝐴 (10) 

As we increase the number of samples ϑ set of [ϑ-, ϑ+], number of particles p, and iteration 

iPSO/GA to be dense enough in order to obtain desired accuracy [24], we significantly increase 

the number of models being simulated which corresponds to amount of time needed to perform 

the optimization process. Assume that the time taken for finding an optimal K to satisfy Eq. (7) 

is 20 hours. Then for 10,000 samples ϑ set of Θ, we are expecting 200,000 hours or 

approximately 25 years to solve problem from Eq. (8) with the same optimization algorithm. 

Here we can see that the existence of solution in this case is necessary but not sufficient 

considering the time taken to run the simulation is also an important factor. The solution of this 

problem requires both good result as well as reasonable amount of time to run the optimization 

simulation. 

3. Bisection Optimization via Blind Search 

In this section, we present an approach for optimizing the problem introduced in Section 

2. Bisection Optimization via Blind Search is a two-step optimization algorithm that utilizes a 

blind search technique in the first stage, followed by a refinement process using the bisection 

method to obtain the optimal controller. The steps involved in this method described in Fig. 2. 

 

Fig. 2 Bisection Optimization via Blind Search for Multi-sample Problem 

In this approach, the model is simulated for n samples, using m sampled controller 

parameters K, and saving the resulting cost value ω. The controller parameter K, that yields the 

lowest value of ω is then refined in the second stage using a bisection-based optimization 

method. The number of simulations of the motion model and control algorithm need to be 

completed, denoted by ϖ, can be expressed as follows: 

𝜛𝐵𝐵 = 𝑛. 𝑚 + 𝑛. 𝑖𝐵𝐵 = 𝑛(𝑚 + 𝑖𝐵𝐵) (11) 

Here we can see that the number iteration of bisection method iBB has additive relation to 

the number of K samples m compared to iPSO/GA which multiplicatively effects to ϖ. Hence, the 

proposed algorithm can significantly reduce the optimization time. 

3.1 Methods of sampling 

As mentioned in the problem formulation, the hydrodynamics coefficients are the 

uncertain parameter in this study. A Gaussian distribution employed for random generation to 
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account for uncertainties in the model. The reason for choosing this distribution is to treat the 

hydrodynamics coefficient obtained from experimental results as a valid reference for the model 

uncertainties. As explained in Section 2, the uncertainty range is defined as: 

𝜗− ≤ 𝜗0 ≤ 𝜗+ (12) 

Where the mean of the distribution will be based on the nominal sample ϑ0, while the standard 

deviation of the distribution will determine the level of error associated with the hydrodynamics 

coefficient. The distribution of model uncertainties and the impact of standard deviation on its 

shape are visually illustrated in Fig. 3. 

 

Fig. 3 Gaussian-based sampling of model uncertainties 

The number of samples required to obtain a reliable estimate of real-world scenarios will be 

determined using a function introduced by Lyonett and Toscano [25], which is expressed as 

follows: 

𝑛 ≥
ln(1−𝑎)

ln(1−𝑏)
 (13) 

The minimum number of samples required for a reliable estimate is denoted as n, with a and b 

being parameters that determine the level of confidence in the sampling method. The value of 

a and b ranges from 0 to 1, with a larger value of a resulting in a greater number of samples 

needed, and a larger value of b requiring fewer samples. 

In contrast to the sampling of model uncertainties, the controller parameters K are 

randomly generated using a uniform distribution, as there is no prior information about the 

optimal controller [26]. The process involves specifying the search interval and the required 

number of samples. The value of n obtained from Eq. (13) is used to determine the number of 

K samples. 

3.2 Performance criterion 

The evaluation of a controller's performance during the optimization process conducted 

through the use of a cost function. Four distinct types of error-based cost functions J are 

considered, namely: Integral of Absolute Error (IAE); Integral of Squared Error (ISE); Integral 

of Time multiplied Absolute Error (ITAE); and Integral of Time multiplied Squared Error 

(ITSE). Table 1 shows mathematical expressions and descriptions of all mentioned functions. 

Table 1. Cost functions and respective equations. 

Cost Function Equation 

IAE 𝐽IAE = ∫ |𝑒|𝑑𝑡  

ISE 𝐽ISE = ∫ 𝑒2𝑑𝑡  

ITAE 𝐽ITAE = ∫ 𝑡|𝑒|𝑑𝑡  

ITSE 𝐽ITSE = ∫ 𝑡𝑒2𝑑𝑡  
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IAE measures the steady-state error of a control system by minimizing the integral of the 

absolute error over time [27,28]. Similarly, ISE minimizes the integral of the squared error over 

time, making it suitable for evaluating the steady-state error of a control system [27,28,30]. 

ITAE, on the other hand, is designed to minimize the integral of the absolute error over time 

while prioritizing fast and accurate response times [27]. This cost function is commonly used 

in systems that require quick and precise responses [27,29]. Finally, ITSE computes the integral 

of the absolute error over time, making it suitable for systems that require fast and accurate 

response times but may be more sensitive to overshoot or oscillation [26,28,30]. 

4. Simulation Results  

A simulation scenario created where the controller is given a task of changing the yaw 

angle ψ, from 0 degree to 40 degree. To evaluate the effectiveness of the controller, the study 

introduced varying levels of uncertainty to assess its ability at maintaining stability with 

tolerable variations in the system parameters. In this paper, the levels of uncertainty considered 

to be ±20% which represent the extent to which the parameters can deviate from their nominal 

values. 

 
Fig. 4 Heading angle 𝜓 control optimization 

Fig. 4 illustrates the scenario for the optimization. The output Optimal Robust 

Controller block is rudder angle δ which has angle saturation max. 35 degree and turning rate 

saturation of max. 10 degrees/second. The ship has initial surge speed 1.179 m/s and the 

propeller speed is 5 revolutions/second.  

In this study, two types of controllers were investigated, namely proportional (P) and 

proportional-derivative (PD) controllers. The justification of derivative term inclusion is to 

damp out oscillations or overshoot in the system's response which can improve the stability and 

settling time [23]. On the other hand, the integral term considered to be excluded due to the 

system’s inherent stability [27] and expected slow response.  

The relation between controller parameters and input of the system δ can be expressed 

as follow [32]: 

𝛿𝑃 = 𝐾𝑃(𝜓ref − 𝜓meas) (18) 

𝛿𝑃𝐷 = 𝐾𝑃(𝜓ref − 𝜓meas) + 𝐾𝐷[(𝜓ref − 𝜓meas) − (𝜓ref,prev − 𝜓meas,prev)]  (19) 

where P-controller input 𝛿𝑃 is the multiplication of proportional gain KP and the difference 

between heading angle reference 𝜓ref and current measured heading angle 𝜓meas. In the case 

of PD-controller, the input equation has additional term which is the multiplication of derivative 

gain KD and the difference between current and previous error. 
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4.1 Optimization parameters 

The scaled 1/80 DTC ship model was chosen for simulation in this study due to the ease 

of accessibility and availability of its parameters. Table 2 provides a list of the parameters to 

run the simulation of MMG ship motion model. All of the symbols used are using the parameter 

from MMG model paper [13] and the derivation of the equations are not discussed in this paper. 

Table 2. Geometric Properties and Hydrodynamic Coefficients of 1/80 DTC Ship 

Geometric 

Properties 

𝐿 𝑚 𝐼𝑧 𝑥𝑔  

7 3.27 0.2044 0.011  

Hull 

Hydrodynamic 

Coefficients 

𝑅0 𝑋𝑣𝑣 𝑋𝑣𝑟 𝑋𝑟𝑟 𝑋𝑣𝑣𝑣𝑣 

-0.033 -0.0491 -0.1201 -0.0509 0 

𝑌𝑣 𝑌𝑟 𝑌𝑣𝑣𝑣 𝑌𝑣𝑣𝑟 𝑌𝑣𝑟𝑟 𝑌𝑟𝑟𝑟 

-0.3579 0.127 -0.2509 0.1352 0 0 

𝑁𝑣 𝑁𝑟 𝑁𝑣𝑣𝑣 𝑁𝑣𝑣𝑟 𝑁𝑣𝑟𝑟 𝑁𝑟𝑟𝑟 

-0.0698 -0.0435 -0.0588 -0.0367 0 0 

Propeller 

Hydrodynamic 

Coefficients 

𝑘0 𝑘1 𝑘2 𝑡𝑃   

-0.1060 -0.3246 0.4594 0.22   

𝐷𝑃 𝑤𝑃0 𝐶1 𝐶2(𝛽 > 0) 𝐶2(𝛽 < 0) 

2.6 0.35 0 1.6 1.1 

Rudder 

Hydrodynamic 

Coefficients 

𝑡𝑅 𝑥𝑅 𝑓∝ 𝑢𝑅   

0 -16 2.747 0.5   

𝑎𝐻 𝑎𝑅 𝛾𝑅(𝛽 > 0) 𝛾𝑅(𝛽 < 0)   

0.312 -0.0655 0.640 0.395   

Table 3. Bisection Optimization via Blind Search Properties 

Optimization 

Properties 

𝑺𝟏,𝐁𝐁 𝑺𝟐,𝐁𝐁 𝒅 m a b 

0 100 5 10,000 0.995 0.005 

All 17 coefficients of the hull hydrodynamic coefficients listed in Table 2 are treated as 

nominal value of uncertain parameter ϑ0. Optimization parameters can be seen in Table 3 where 

10,000 controller parameter K is sampled with lower search bound S1 = 0 and upper interval 

bound S2 = 100. The initial bisection interval d = 5 and we obtain number of uncertainties 

sample n = 1058 which determined from parameter a and b as shown in Eq. (13). 

4.2 Optimization results 

The simulation was run on a computer with an Intel Core i7-9750H, 20GB of RAM, an 

NVIDIA Quadro T1000 graphics card and the simulation software used is MATLAB R2022b. 

The total elapsed time for each optimization is approximately 15 hours.  

Table 4. Optimization Results 

Cost 

Function 

P-controller PD-controller 

KP Cost KP KD Cost 

IAE 2.70 7632.63 1.83 10.30 6684.96 

ISE 2.51 3365.27 1.45 11.01 2709.62 

ITAE 2.81 69776.19 1.84 10.31 47857.26 

ITSE 2.62 15128.92 1.80 10.27 12229.44 
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 Both P and PD-controller has same amount of controller parameter being sampled m. 

The only difference is PD controller has pairs of K = [KP, KD], instead of only KP. The results 

are listed in Table 4. All error criterion provides practically the same result although the 

decimals are varied. Cost functions which employ a time multiplicative factor (ITAE and ITSE) 

demonstrate a slightly larger KP value compared to IAE and ISE. Nevertheless, the main insight 

from the table is it can be seen that PD-controller outperformed the P-controller, as lower cost 

associated with the former. It should be noted that the comparison of costs between different 

error criterion is not meaningful, since each of them employs a different equation to calculate 

the error. 

 

Fig. 5 System responses with P and PD-controller via IAE 

In order to visualize the result from Table 4, optimum controller obtained via IAE selected 

arbitrarily to be plotted in Fig. 5. Darker lines represent the system response in the ideal 

condition where there are no hydrodynamic coefficients error while the lighter coloured regions 

are actually a group of densely stacked lines that represents the system response with 1058 

random gaussian variation of hydrodynamic coefficient with 20% level of uncertainty. It can 

be observed that adding derivative term into controller gives a damping effect on the system's 

response that reduce overshoot and oscillations, resulting in a faster settling time. 

4.3 Computational Efficiency Comparison 

In this subsection, we compare the computational efficiency of our proposed optimization 

method with conventional PSO algorithm. The comparison is conducted based on the execution 

time required to reach the optimal solution with desired tolerance. Note that in Section 2, we 

discussed the impracticality of conducting PSO optimization for the entire range of sampled 

uncertainty variation, n = 1058. Therefore, in this simulation, we only consider the nominal 

value. Table 5 lists PSO optimization parameters. 

Table 5. Particle Swarm Optimization Properties 

Optimization 

Properties 

𝑺𝟏,𝐏𝐒𝐎 𝑺𝟐,𝐏𝐒𝐎 N Stopping criterion Cost Function 

0 100 100 If ΔKP ≤ 0.01 and ΔKD ≤ 0.01 IAE 

Here, a swarm size of N = 100 was employed and the stopping criterion was selected based on 

the requirement of considering only 2 decimal places, as shown in Table 5. The simulation was 

conducted only for PD-controller, as P-controller did not yield satisfactory results in the 

previous section. Again, IAE arbitrarily selected for error criterion as the other three cost 

functions provide relatively similar results. After 7 iterations which took approximately 19 

minutes, KP = 4.17 and KD = 9.35 obtained.  
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Fig. 6 System responses with P/PD-controller from proposed method and PD-controller from PSO for 0%, 5%, 

and 20% level of uncertainties. 

The obtained controller parameters obtained via PSO algorithm are tested in a same 

simulation scenario introduced in Subsection 4.2. and the system’s responses are compared in 

Fig. 6. The simulation results demonstrate that in conditions of ideal situations (0%) or low 

uncertainty (5%), PD-controller from PSO algorithm arguably provides the best performance 

for ship motion control. Although some small overshoot is observed, the settling time is quicker 

compared to other methods. However, as the level of uncertainty increases to 20%, undesired 

behavior starts to appear. For certain combinations of parameter variations, the system response 

yields 25% overshoot, which is not desirable in ship motion control. In contrast, the PD-

controller obtained from Bisection Optimization via Blind Search shows a more stable response 

and quicker overall settling time in higher uncertainty conditions. This can be attributed to the 

fact that the PD-controller via our proposed method considers all possible model parameter 

variations (n = 1058) while the PSO algorithm does not. If all model samples were to be 

considered in PSO algorithm, the simulation time required would be approximately become 19 

minutes x 1058 samples = 22218 minutes, or around 14 days. This shows that our proposed 

method is 22 times faster. 

5. Test Cases 

In this section, additional tests conducted to further enhance our comprehension of how 

well the controllers perform. These tests involved three different scenarios: Step, M-Turn, and 

Doublet maneuver test. The ship provided with a set of position coordinates in the form of x 

and y references. The reference coordinates which used the ship's length L as a reference point 

are listed in Table 6. We varied the locations to see if the control system could handle different 

scenarios effectively.  
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Table 6. 𝑥 and 𝑦 coordinate references. 

Step 
𝒙 (𝑳) 0 1 1 3     

𝒚 (𝑳) 0 0 1 1     

M Turn 
𝒙 (𝑳) 0 1 2 3 4    

𝒚 (𝑳) 0 1 -1 1 0    

Doublet 
𝒙 (𝑳) 0 1 1 2 2 3 3 4 

𝒚 (𝑳) 0 0 1 1 -1 -1 0 0 

The ship’s ability to reach each point is the main objective in this test cases, rather than the 

specific angle at which it arrives or which path it should follow. Fig. 7 illustrates the control 

loop for these test cases, which outlines the steps involved in the process.  

 

Fig. 7 Waypoint control of 1/80 DTC Ship. 

It is apparent that the system references are given in xy-coordinates, whereas the input 

of the system requires heading angle as a reference. Hence, a transformation is necessary to 

convert the input reference from xy-coordinates to a heading angle reference. This can be 

formulated as follow [32]: 

𝜓ref = arctan2 (
𝑦ref−𝑦meas

𝑥ref−𝑥meas
) (20) 

where xref and yref are x and y coordinates reference respectively while xmeas and ymeas are 

measured coordinates at current time step. The process of feeding input to the controller is done 

incrementally, one reference point at a time where the ship must be within 50 cm of the current 

reference point before the next reference point can be tracked.  

 

Fig. 8 Step, M-Turn, and Doublet maneuver test cases for 1/80 DTC ship with 20% uncertainty level. 

Fig. 8 compares the paths taken by a 1/80 DTC ship controlled by PD-controllers 

obtained using Bisection Optimization via Blind Search and the Particle Swarm Optimization 

algorithm. The controller obtained by our proposed method is capable of tracking all of the 

given reference waypoints. In contrast, the controller obtained from PSO algorithm, which is 

designed only for nominal parameter values, encounters difficulty when uncertainty introduced. 
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6. Conclusions 

This study designed a fast optimization algorithm to find a robust optimal controller for 

ship heading angle control with a certain level of error in hydrodynamic coefficients that is 

difficult to solve deterministically. The optimization error calculation method varied by 

employing four cost functions: IAE, ISE, ITAE, and ITSE. However, the results in Table 4 

show that the optimum controller parameter obtained from different cost functions are 

insignificant. The addition of a derivative term to the controller, however, resulted in an 

improved overall system’s response. The proposed algorithm works significantly faster than 

existing methods such as Particle Swarm Optimization (PSO) which compared in Section 4. 

Our study has several important implications for the field of optimization in dealing with 

multiple coefficients with some degree of error, like in surface vessels. Having a controller that 

can compensate for all these uncertainties will make sea sailing and navigation more efficient 

and safer. Additionally, the robust optimal controllers obtained are pre-processed so that a ship 

equipped with a less powerful computational processor can implement these controller 

parameters for higher accuracy and robust control. While our study presents a promising new 

optimization method for finding robust optimal controller parameters, there are still some 

limitations that need to be addressed in future research. One limitation is the assumption of 

undisturbed ship dynamics. Future studies could explore the use of more complex models with 

disturbances and investigate the effectiveness of our method in dealing with model external 

uncertainty.  
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