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Summary 

A novel quantitative analysis employing the Principal Component Analysis (PCA) of 

containership traffic in the Black Sea from 2018 to 2021 is performed. The study uses a matrix 

covering five ship size classes from A to E for four years of operation, from 2018 to 2021, 

accounting for ship traffic, 𝐶𝑂2, fuel consumption (FC), shipping intensity, and eco and traffic 

efficiency. Only the first two principal factors are analysed because of their total variation 

weight. Shipping intensity, FC intensity, and 𝐶𝑂2 intensity plays a significant role in the first 

factor, while Eco efficiency, FC efficiency, and Traffic efficiency are considered for the second 

factor. Notably, the set of parameters pertains to time and is strongly associated with DWT. 

Two principal components were identified, F1 and F2, where F1 integrates efficiency and 

intensity. At the same time, F2 separates the intensity from the efficiency conditional on the 

ship size and the year of operations. In the principal component F1 the activities of ships A and 

C differ from B, D and E, separating more efficiently from less efficiently used ships, and in 

F2, the activities of class sizes of ships C and D and E contrast A and B ships, distinguishing 

the big-size class ships from small ones. It was concluded that the most intensively used ships 

are the ship size classes C and D, and the most efficient are ship size classes A and B. The most 

intensive use of the ships was in 2020, followed by 2021, and the most efficient were in 2018, 

2019. Based on the ship activities and using the Within-class variance, ships are grouped into 

two clusters of similar activities, where the first one, with lower variance and more 

homogeneous, includes only the ship size class A. The second one with a relatively large 

variance consists of the rest size of the ships. Linear relationships considering the intensity and 

efficiency are derived as a function of the main variables, where the factor loading represents 

the variable’s coefficient, given as a relative weight to any factor. 

Keywords: ship traffic; fuel consumption; shipping; 𝐶𝑂2; Eco-efficiency; PCA 

1. Introduction 

Over the past ten years, the International Maritime Organization (IMO) has undertaken 

remarkable initiatives to curb greenhouse gas (GHG) emissions from maritime operations. In 

April 2015, the European Parliament sanctioned a strategy to progressively integrate this issue 

into the European Union’s ongoing endeavours to mitigate domestic GHG emissions. On July 
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1 2015, Regulation 2015/757 April 29 [1] was enacted. This strategy primarily focuses on the 

monitoring, reporting, and verification (MRV) of carbon emissions from ships. 

The developed EU-MRV database [2] started collecting data on January 1, 2018. Data for 

various emission indicators of ships with GT > 5,000 are monitored, reported, and verified 

before being included in the database. 

For the first year, the database included information for more than 11,600 ships, about 

38% of the world’s merchant fleet. The total amount emitted 𝐶𝑂2 in 2018 was over 138 MT, 

which is comparable to the 𝐶𝑂2 emissions of Belgium (105.1 MT) and Chechia (108.3 MT) for 

the same year [3]. Container ships have the largest 𝐶𝑂2 emission share, about 30% of the total 

amount, followed by bulk carriers and tankers [4]. 

Data on container ships visiting six Black Sea ports: Varna, Burgas, Constanta, Odesa, 

Novorossiysk, Poti and Ambarli [5] was collected to identify the demand and potential need for 

ships [6]. Ship traffic data is taken from the Marine Traffic Platform [7], and vessel 

characteristics are from the Equasis database [8]. The types of containerships operated by the 

Black Sea ports are shown in Fig. 1. 

 

    

Fig. 1 Types of containership operated in Black Sea ports [5] 

The emission data for these ships for 2018 to 2021 were extracted from the EU-MRV 

database based on the ship’s name (or IMO number in the case of a name change).  

The amendments to the EU MRV Regulation 2015/757 from 2023 May 10 [9] enlarge 

the scope of this implementation. Regarding emissions, the term 𝐶𝑂2 is replaced by 

“greenhouse gas”. From January 1, 2025, the application is enforced for offshore ships above 

400 GT and general cargo ships between 400 ≤ GT ≤ 5,000. Attention to ship emission 

databases such as EU-MRV and IMO DCS (Data Collection System) from October 28 [10] will 

increase because they can be used to estimate the CII (Carbon Intensity Indicator) for existing 

ships. 

Large datasets are becoming increasingly prevalent, presenting challenges in terms of 

interpretation. To address this issue, PCA offers a valuable technique for reducing the 

complexity of such datasets [11]. By doing so, it enhances interpretability while minimising the 

loss of information. The origins of PCA can be traced back to the work in [11]. However, the 

computational feasibility of applying PCA to non-trivially small datasets was realised only with 

the widespread availability of electronic computers in the following decades. A brief review of 

PCA’s state of the art can be found in [12]. 

Kawashima et al. [13] introduced a novel approach for characterising and generating ship 

traffic flow through PCA. This method is employed explicitly on AIS data, and the resulting 

ship traffic data exhibit similar characteristics to the original AIS data. Consequently, a 

simulation method is developed to assess the likelihood of encounters between ships. By 

extracting encounter conditions associated with collision risks, it becomes possible to calculate 

the encounter probability. 
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To enhance operational efficiency and service quality in container handling, [14] 

suggested the utilisation of a hybrid prediction model that combines Principal Component 

Analysis (PCA) and Extreme Learning Machine (ELM), which is optimised using Improved 

Particle Swarm Optimisation (IPSO). This approach aims to develop scientific and practical 

berth plans. By employing PCA, the model reduces the dimensionality of the investigation data, 

which encompasses uncertain factors that impact the operation time of container ships at the 

berth. 

Perera and Mo [15] introduced an approach based on PCA to evaluate ship performance 

and navigation behaviour in specific marine engine operating regions. A data set containing 

ship performance and navigation information was analysed to uncover the underlying structure 

of the selected operating region. The data set was initially categorised based on the engine’s 

operating points, identifying three central operating regions. Subsequently, one of these 

operating regions was examined to determine the principal components (PCs) associated with 

it. These PCs represented the relationships between various ship performance and navigation 

parameters and their connection to the operating region, enabling the evaluation of ship 

performance and navigation behaviour. 

The Principal Component Analysis was also employed in elaborating ship hull form. A 

study in [16] used PCA to compress the geometric representation of a set of existing vessels. 

The resulting principal scores were then used to generate numerous derived hull forms, which 

are computationally evaluated for their performance in still-water conditions. 

Helmsmar [17] proposed an integrated approach for identifying the efficient hull 

configuration by combining a data compression method with Computational Fluid Dynamics 

(CFD). To achieve this, a comprehensive database of normalised ship offsets was compiled 

through a literature survey, focusing on a specific hull form. The table of offsets was 

compressed using PCA, resulting in a set of scores. These compressed scores are then utilised 

as inputs in the CFD solver to evaluate the still-water performance. 

The present study aims to employ PCA for characterising the container ship traffic flow. 

The analysis used AIS data for container ship traffic in the Black Sea. Only the first two 

principal components are analysed, and the eigenvectors of the variables, factor loadings and 

correlation between variables are established. Several relations of the essential intensity and 

efficiency factors in containership traffic in the Blac Sea are identified. 

2. Data and analysed variable 

The analysis is performed for the container ship traffic in the Black Sea for 2018, 2019, 

2020 and 2021 years. The number of voyages, speed and DWT are taken from AIS (Automatic 

Identification System) and given in Fig. 2 to 7. The registered containerships are classified into 

five classes, where Class A is from 8 to 29 DWT×1,000, B is from 29 to 50 DWT×1000, C is 

from 50 to 72 DWT×1,000, D is from 72 to 93 DWT×1,000 and E is from 93 to 114 

DWT×1,000. 

In the Black Sea region from 2018 to 2021, the containerships slightly reduced the number 

of voyages and the voyage time (Fig. 2 and Fig. 6), increasing the DWT (Fig. 3). The speed 

(Fig. 7) was slightly increased and almost unchanged for the fuel consumption (Fig. 4) and 𝐶𝑂2 

emissions (Fig. 5). 
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Fig. 2 Voyages as a function of ship size class and 

year. 

Fig. 3 DWT as a function of ship size class and year 

 

Fig. 4 Fuel consumption as a function of ship size 

class and year. 
Fig. 5 𝐶𝑂2 emissions as a function of ship size class 

and year 

 

Fig. 6 Voyage time as a function of ship size class 

and year. 

Fig. 7 Speed as a function of ship size class and year 

Fuel consumption intensity is defined as the fuel consumption needed for a unit of time 

in operation (see Fig. 8): 

𝐹𝐶𝑖𝑛𝑡 𝑖,𝑗 =
𝐹𝐶𝑖,𝑗

𝑇𝑖𝑚𝑒𝑖,𝑗
  (1) 

where 𝐹𝐶𝑖,𝑗 is the average fuel consumption of the ith class ship in the jth year and 𝑇𝑖𝑚𝑒𝑖,𝑗 is the 

time, days, spent in one year of operation of the ith class ship in the jth year.  

The 𝐶𝑂2 intensity is defined as the average 𝐶𝑂2,𝑖,𝑗emission generated for the time spent 

on the ith class ship in the jth year for the 𝑇𝑖𝑚𝑒𝑖,𝑗 spent in one year of operation (see Fig. 9): 

𝐶𝑂2,𝑖𝑛𝑡,𝑖,𝑗 =
𝐶𝑂2,𝑖,𝑗

𝑇𝑖𝑚𝑒 𝑖,𝑗
 (2) 
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The traffic intensity is defined as the number of voyages carried for the time spent by the 

ith class ship in the jh year of a one-year operation (see Fig. 10): 

𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑖𝑛𝑡,𝑖,𝑗 =
𝑉𝑜𝑦𝑎𝑔𝑒𝑠 𝑖,𝑗

𝑇𝑖𝑚𝑒𝑖,𝑗
 (3) 

where 𝑉𝑜𝑦𝑎𝑔𝑒𝑠𝑖,𝑗 is the voyages. 

 

Fig. 8 Normalised fuel consumption intensity as a 

function of ship size class and year. 
Fig. 9 Normalised 𝐶𝑂2,𝑖,𝑗as a function of ship size, 

class, and year. 

 

Fig. 10 Normalised traffic intensity as a function 

of ship size class and year. 

Fig. 11 Normalised shipping intensity as a 

function of ship size class and year 

 

The shipping intensity is defined by the total amount of 𝐷𝑊𝑇𝑖,𝑗 transported in the time 

(see Fig. 11): 

𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑖𝑛𝑡 𝑖,𝑗 =
𝐷𝑊𝑇𝑖,𝑗

𝑇𝑖𝑚𝑒 𝑖,𝑗
 (4) 
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Fig. 12 Normalised eco-efficiency as a function of 

ship size class and year. 

Fig. 13 Normalised fuel consumption efficiency as a 

function of ship size class and year 

 

Fig. 14 Normalised traffic efficiency as a function of ship size class and year 

Eco-efficiency is defined as the 𝐶𝑂2,𝑖,𝑗 emission generated by the ith class of ships in the 

jth year for transporting a total amount of 𝐷𝑊𝑇𝑖,𝑗 (see Fig. 12): 

𝐸𝑐𝑜𝑒𝑓𝑓 𝑖,𝑗 =
𝐶𝑂2,𝑖,𝑗

𝐷𝑊𝑇𝑖,𝑗
 (5) 

where 𝐶𝑂2,𝑖,𝑗 is the 𝐶𝑂2 emissions, kg𝐶𝑂2/nm/year. 

Fuel consumption efficiency is defined as the fuel consumption needed for transporting a 

unit of DWT in operation (see Fig. 13): 

𝐹𝐶𝑒𝑓𝑓 𝑖,𝑗 =
𝐹𝐶𝑖,𝑗

𝐷𝑊𝑇𝑖,𝑗
  (6) 

Traffic efficiency is defined as the number of voyages for transporting a unit DWT (see 

Fig. 14): 
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𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑒𝑓𝑓,𝑖,𝑗 =
𝑉𝑜𝑦𝑎𝑔𝑒𝑠 𝑖,𝑗

𝐷𝑊𝑇𝑖,𝑗
   (7) 

It can be seen from Fig 8 and 9 that the normalised FC intensity and normalised 

𝐶𝑂2,intensity as a function of ship size class and year are very similar but vary with the years 

and ship size class. The most intensive FC and 𝐶𝑂2 intensity are seen in 2020 for class size 

ships C, accompanied by the most intensive traffic and shipping (Fig10, 11). On the contrary, 

the smallest FC and 𝐶𝑂2 intensity are observed in 2018 for class-size ships A. Whit respect to 

the Eco-efficiency (Fig. 12), as defined by Eqn (5), the most efficient class-size ships are A-

ships for all analysed years. The most efficient FC (Fig. 13) for 2018 is shown for class size 

ships A, for 2019 is E, and for 2020 and 2021 is D, which looks like the traffic efficiency 

presented in Fig. 14.  

3. Principal Component Analysis 

The Principal Component Analysis is used to analyse the original information of ship 

traffic containerships in the Black Sea taken from the AIS as given in Fig. 2 to 7 into smaller 

factors [18] and identify the critical variables influencing the traffic intensity and efficiency. 

PCA is performed for seven variables “Shipping intensity”, “FC intensity”, “𝐶𝑂2 

intensity”, “Traffic intensity”, “Eco efficiency”, “FC efficiency”, and “Traffic efficiency” for 

the objects “Y2018/A”, “Y2018/B”, “Y2018/C”, “Y2018/D”, “Y2018/E”, “Y2019/A”, 

“Y2019/B”, “Y2019/C”, “Y2019/D”, “Y2019/E”, “Y2020/A”, “Y2020/B”, “Y2020/C”, 

“Y2020/D”, “Y2020/E”, “Y2021/A”, “Y2021/B”, “Y2021/C”, “Y2021/D” and “Y2021/E”. 

The summary statistics, including observations (Obs.) minimum (Min) and maximum (Max), 

mean value (Mean) and standard deviation (Std. Dev) and correlation matrix of variables are 

given in Table 1 and 2. 

Table 1 Summary statistics 

Variable Obs. Min. Max. Mean Std. Dev. 

Shipping intensity (SI) 20 1.556 21.510 7.734 5.239 

FC intensity (FCI) 20 8.793 65.868 23.027 14.153 

𝐶𝑂2 intensity (CO2I) 20 2.747 21.619 7.275 4.602 

Traffic intensity (TRI) 20 0.078 0.342 0.127 0.062 

Eco-efficiency (EE) 20 0.693 1.766 1.079 0.341 

FC efficiency (FCE) 20 2.211 5.652 3.440 1.098 

Traffic efficiency (TRE) 20 0.010 0.058 0.024 0.018 

Table 2 Correlation matrix 

Variables SI. FCI CO2I REI EE FCE TRE 

SI 1 0.969 0.966 0.800 -0.630 -0.655 -0.689 

FCI 0.969 1 0.999 0.899 -0.476 -0.501 -0.565 

CO2I 0.966 0.999 1 0.909 -0.463 -0.492 -0.552 

TRI 0.800 0.899 0.909 1 -0.155 -0.189 -0.225 

EE -0.630 -0.476 -0.463 -0.155 1 0.996 0.975 

FCE -0.655 -0.501 -0.492 -0.189 0.996 1 0.976 

TRE -0.689 -0.565 -0.552 -0.225 0.975 0.976 1 
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It can be seen that “Shipping intensity (SI)”, “FC intensity (FCI)”, “𝐶𝑂2 intensity 

(CO2I)”, and “Traffic intensity (TRI)“ are highly positively correlated and negatively 

correlated to “Eco efficiency (EE)”, “FC efficiency (FCE)”, and “Traffic efficiency (TRE)”. 

“Traffic intensity” is low and negatively correlated to “Eco efficiency”, “FC efficiency”, and 

“Traffic efficiency”. 

The eigenvalue, variability and cumulative contribution of the principal components are 

given in Table 3, and the eigenvectors of the variables, factor loadings and correlation between 

variables and factors are in Table 4.  

The 70% rule introduced in [19] decides the number of significant components. It was 

recommended that the retained variables capture 70% of the total variances, and if their 

eigenvalue is greater than one, the factors are considered important. Only the first two principal 

factors will be considered since they demonstrate eigenvalues bigger than one and represent 

98.39% of the total weight.  

The eigenvalues show the projection quality from the seven-dimensional variables 

analysis into two dimensions: intensity and efficiency. The first eigenvalue is 5.07 and covers 

72 % of the total variability. The total variability can still be observed if the data are presented 

on only one axis. Each eigenvalue is related to a one-dimensional factor, a linear combination 

of the initial variables, and all-uncorrelated factors.  

Table 3 Eigenvalue, variability, and cumulative contribution of principal components  

𝐹1
 𝐹2

 

Eigenvalue 5.070 1.818 

Variability (%) 72.425 25.967 

Cumulative % 72.425 98.392 

Table 4 Factor descriptors 

Variable 
𝐹1 − 

Eigenvector 
𝐹2- 

Eigenvector 

𝐹1 - 

Loadings 

𝐹2- 

Loadings 

𝐹1 -  

Correlation 

𝐹2- 

Correlation 

Shipping 

intensity 
0.967 0.203 0.967 0.203 0.967 0.203 

FC  

intensity 
0.917 0.389 0.917 0.389 0.917 0.389 

𝐶𝑂2  

intensity 
0.912 0.403 0.912 0.403 0.912 0.403 

Traffic  

intensity 
0.710 0.675 0.710 0.675 0.710 0.675 

Eco  

efficiency 
-0.784 0.614 -0.784 0.614 -0.784 0.614 

FC  

efficiency 
-0.804 0.587 -0.804 0.587 -0.804 0.587 

Traffic  

efficiency 
-0.835 0.535 -0.835 0.535 -0.835 0.535 

 

The first two eigenvalues correspond to 98.39 % of the variance, guaranteeing that the 

maps based on the first two factors are a good quality projection of the initial multi-dimensional 

problem. The factor scores for the first two components are shown in Fig. 15. 
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The correlation circle belonging to axes 𝐹1 and 𝐹2 from Fig. 15 shows that the Second 

Component separates the intensity from efficiency, and the First Component integrates all. 

It is also shown that when two variables are far from the centre and close to each other, 

they are significantly positively correlated. For example, “FC intensity - 𝐶𝑂2 intensity” and 

“Eco efficiency - FC efficiency - Traffic efficiency”. However, if they are orthogonal, they are 

not correlated. 

The analysis of the values of the contributions of the variables and squared cosines of the 

variables refines this conclusion. The squared cosines of variables show that the first component 

highly contributes to Shipping intensity (0.934), FC intensity (0.841), 𝐶𝑂2 intensity (0.832) and 

Traffic intensity (0.504), and the Second Component contributes mainly to Eco-efficiency 

(0.615), FC-efficiency (0.646) and Traffic efficiency (0.697). 

 

 

Fig. 15 Factors score of active variables. 

The principal component analysis combines variables in a linear relationship considering 

a reduced number of components while maximising the variances. The component 𝐹1 

associated with the intensity and 𝐹2 with efficiency are described by a linear model field [20]: 

𝐹1(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) = 0.967(𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 − 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 0.917(𝐹𝐶 − 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) +

0.912(𝐶𝑂2 − 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 0.710(𝑇𝑟𝑎𝑓𝑓𝑖𝑐 −  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) −

0.784(𝐸𝑐𝑜 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) − 0.804(𝐹𝐶 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) −

0.835(𝑇𝑟𝑎𝑓𝑓𝑖𝑐 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  (8) 

𝐹2(𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) = 0.203(𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 − 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 0.389(𝐹𝐶 − 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) +

0.403(𝐶𝑂2 − 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 0.675(𝑇𝑟𝑎𝑓𝑓𝑖𝑐 −  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) +

0.614(𝐸𝑐𝑜 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) + 0.587(𝐹𝐶 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) +

0.535(𝑇𝑟𝑎𝑓𝑓𝑖𝑐 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  (9) 

where (𝑥𝑖)̅̅ ̅̅ ̅ is the normalised variable, and it can be transformed into the normal one by 
using the following: 
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(𝑥𝑖)̅̅ ̅̅ ̅ =
𝑥𝑖−𝐸(𝑥𝑖)

𝜎(𝑥𝑖)
 (10) 

where 𝐸(𝑥𝑖) is the mean value and 𝜎(𝑥𝑖) is the standard deviation. The factor loading represents 

the variable’s coefficient, given as a relative weight to any factor. The factor loadings are shown 

in Table 4. 

To identify the impact of the observation from different years and class size of ships that 

contribute to these differences, the factor score of the components is presented in Fig. 16. The 

Second Component contrasts most of the class sizes of ships (C and D and E) to (A and B), 

meaning distinguishing the big-size class ships from small ones. The first component differs 

from the ships (A and C) from (B, D and E), separating more efficiently from less efficiently 

used ships.  

It may also be concluded that the first and fourth quadrant of the map (see Fig. 16) 

identifies ships with high annual intensity (Traffic, 𝐶𝑂2, FC, and Shipping intensity. The first 

and second Quadrants of the map identify ships with high annual efficiency (Eco, FC and 

Traffic). Quadrant one covers the class size ships’ performance (Y2020/C and Y2021/C), and 

Quadrant three includes the worst performance of class size ships (Y2018/B, Y2018/C, 

Y2019/B and Y2020B). 

The Varimax orthogonal transformation has been employed to adjust the principal 

component axes and to facilitate the interpretation of the results [18, 21], which gives a 

clockwise rotation, providing a new set of rotation loadings, as shown in Fig. 17. The 

improvement in the simplicity of the interpretation is straightforward. The first dimension 

remains linked to Traffic, 𝐶𝑂2, FC, and Shipping intensity, and the second dimension now 

appears more clearly to be related to the Eco, FC, and Traffic efficiency.  

Fig. 17 shows that the most intensively used ships are ship size categories C and D, and 

the most efficient are ship size categories A and B. The most intensive use of the ships was in 

2020, followed by 2021, and the most efficient were in 2018, 2019. 

Agglomerative Hierarchical Clustering (AHC) [22] is used to identify the dissimilarities 

between the objects to be grouped in clusters employing the dendrogram showing the 

progressive grouping.  

 

Fig. 16 Impact of active observation and variables before the Varimax rotation. 
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Fig. 17 Impact of active observation and variables after the Varimax rotation. 

Fig. 18 presents the dendrogram showing how the subgroups of objects are grouped in 

two clusters. The first cluster (left) is relatively homogeneous compared to the second one 

(right). The first cluster covers the class ship size of A, and the second one cover the rest. Fig. 

18 also shows the objects classified into each cluster. Based on the Within-class variance, the 

first cluster, variance=0.133, is more homogeneous than the second, variance =4.606. 

The proximity between objects is identified by estimating how much they are similar 

(similarity) or dissimilar (dissimilarity) using the distance to the centroid, as seen in Fig. 19. 

Similarity is observed between the same class size of ships during the analysed years, but not 

seen similarity between the years. 

 

Fig. 18 Dendrogram. 
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Fig. 19 95% confidence ellipse for ship class sizes 

 

Fig. 20 95% confidence ellipse for ship traffic from 2018 to 2021. 

Additional clustering was performed using a 95% confidence ellipse for ship class sizes 

and years presented as a function of the two factors in Fig. 19 and 20 [23, 24]. The mean point 

of the ellipse is located at coordinates 𝐸(𝐹1) and 𝐸(𝐹2), representing the mean of all 𝐹1 

coordinates and all 𝐹2 coordinates and the confidence ellipse is defined by its centre at 𝐸(𝐹1) 

and 𝐸(𝐹2), covering a percentage of the 𝐹1, 𝐹2 points. The semi-major and minor axes of the 

ellipse are defined 𝑘𝜎(𝐹1) and 𝑘𝜎(𝐹2) representing the standard deviations of the independent 

random variables 𝐹1, 𝐹2 and k is the elliptical scale factor. The elliptical scale factor k is defined 

as 2.45 for 95 % confidence, and the elliptic equation is defined as: 

𝐹1
2

𝜎2(𝐹1)
+

𝐹2
2

𝜎2(𝐹2)
= 𝑘2  (10) 

The results in those figures confirm the initial conclusions that the ships category A and 

B were the most efficient and D and E less efficient concerning eco, FC and traffic. It can also 

be seen that the ship class categories C and E were most intensively employed. 
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Regarding the year performance, it seems that the average ship efficiency was very 

similar during the analysed period—the intensity was significant in 2020 and 2021 and less in 

2018 and 2019.  

 

4. Conclusions 

Initially, the study showed that the containerships slightly reduced the number of voyages, 

voyage time and increased the DWT in the Black Sea region from 2018 to 2021. The speed was 

increased somewhat and almost unchanged for the fuel consumption and 𝐶𝑂2 emissions. The 

normalised FC intensity and normalised 𝐶𝑂2,𝑖,𝑗 are very similar but vary with the years and ship 

size class. The most intensive FC and 𝐶𝑂2,𝑖,𝑗 are seen in 2020 for class size ships C, 

accompanied by the most intensive traffic and shipping. On the contrary, the smallest FC and 

𝐶𝑂2,𝑖,𝑗 are observed in 2018 for class size ships A. Regarding Eco-efficiency, the most efficient 

class-size ships are A-ships for all analysed years. The most efficient FC for 2018 is shown for 

class size ships A, for 2019 is E, and for 2020 and 2021 is D, which also looks like the traffic 

efficiency. Employing the Principal Component Analysis established the principal component 

relationships used in a novel analysis of the relationship between containership ship size classes 

operated in the Black Sea for four years starting from 2018 up to 2021, accounting for traffic, 

𝐶𝑂2, fuel consumption and shipping intensity, as well as Eco, Fuel consumption and Traffic 

efficiency. It has been identified that ship size categories A and B were the most efficient and 

D and E less efficient concerning Eco, Fuel consumption and Traffic. Additionally, it was seen 

that the ship size categories C and E were intensively used. What concerns the years of analysis, 

the ship categories of ship efficiency were very similar during the analysed period. However, 

more intensity was seen in 2020 and 2021 and less in 2018 and 2019. It was also observed that 

the ship size category A behaves similarly in different years, which is not the case for other ship 

size categories. Ships were clustered based on the ship activities and using the Within-class 

variance. The first cluster with a variance of 0.133 is more homogeneous and includes only the 

ship size class A, and the second one with a variance of 4.606 consists of the rest size of the 

ships. Linear relationships considering the intensity and efficiency are defined as a function of 

the main variables, where the factor loading represents the variable’s coefficient, given as a 

relative weight to any factor. Additionally, the confidence ellipse approach has been applied to 

identify more information about the intensity, efficiency and similarity of the container ships 

operating in the Black Sea. 

To better understand the intensity and the efficiency of the ships operated in the Black 

Sea, the interaction with the local economy needs to be considered, including the societal 

acceptance of the pollution level due to the ship activities, voyage, anchoring and port 

operations. Additionally, since the ships pass through different exclusive economic zones, 

different national governmental rules and constraints must be accounted for. The parameters 

used as bases of the present analysis relied on the data provided by the global Automatic 

Identification System, which may present inaccurate data in some cases. For this reason, data 

from port monitoring and control for ship traffic needs to be used to calibrate the global date 

and enhance the input date of the analysis in the future. 
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