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A B S T R A C T  

A novel hybrid adaptive control method is presented for trajectory tracking of remotely 

operated underwater vehicles (ROVs) that addresses unknown disturbances and model 

uncertainties in this paper. Traditional nonlinear control methods struggle to handle 

external disturbances and uncertainty in system model. To address the trajectory 

tracking control needs of ROVs in complex underwater environments, a kinematic and 

dynamic model is first developed for a fully actuated ROV with six degrees of freedom 

(6-DOF). The trajectory tracking problem is formulated as an online, nonlinear 

receding horizon optimization process. Control increments are computed as inputs to 

this nonlinear optimization problem. An L1 adaptive control method (L1AC) is then 

developed, incorporating a state observer, adaptive control law, and time filter. The 

framework retains the rolling optimization process of nonlinear model predictive 

control (NMPC) while integrating the L1 adaptive component for instant compensation 

of unknown disturbances and model parameter mismatches. Numerical simulations 

were conducted to compare the trajectory tracking performance of the proposed hybrid 

adaptive method with the NMPC method under various disturbances, including ocean 

currents, waves, random forces, and model uncertainties. The results confirm that the 

proposed hybrid adaptive control scheme is more effective and robust than the 

standalone NMPC approach across various scenarios.

1. Introduction 

In recent years, there has been a significant increase in the demand for marine resource research, 

exploration, and development. However, conducting operations in uncharted environments, such as the deep 

sea, presents substantial safety risks. To mitigate these risks, various underwater vehicles [1,2] are widely 

utilized in fields like measurement, scientific research, industry, and military applications. As key types of 

marine robotic systems, they are classified into autonomous underwater vehicles (AUVs) [3,4] and ROVs 

[5,6] based on their operational method and design. ROVs offer several advantages, including enhanced safety, 

rapid search capabilities, superior maneuverability, and high modularity. ROVs are widely employed in 

diverse domains, including territorial exploration, ocean resource extraction, underwater cable installation, 
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and the maintenance of underwater structures [7-9]. Studies have shown that ROVs, operating without real-

time human intervention, can significantly enhance safety and efficiency [10]. However, ROVs typically 

execute tasks based on control commands transmitted by operators via cables, and those without autonomous 

control capabilities often show suboptimal performance in specific underwater operations [11]. Controlling 

ROVs becomes particularly challenging in the presence of external environmental disturbances [12]. 

To achieve mission objectives, ROVs must be capable of real-time trajectory tracking, obstacle 

avoidance, and navigation to designated target points [13]. To achieve mission objectives, ROVs must be 

capable of real-time trajectory tracking, obstacle avoidance, and navigation to designated target points. 

Various control strategies have been proposed for addressing the trajectory tracking problem of underwater 

vehicles, including adaptive control [14], PID control [15], sliding mode control (SMC) [16], fuzzy logic 

control [17,18], neural network control [19], and hybrid control methods [13]. Major challenges for ROVs' 

automatic control systems include highly nonlinear motion, time-varying hydrodynamic effects, and external 

environmental disturbances [4, 20]. These challenges create significant difficulties for traditional controllers, 

which often struggle to manage nonlinear fluid dynamics and external interferences. Therefore, advanced 

nonlinear control technologies are needed to achieve precise motion control in challenging underwater 

environments. Compared to traditional nonlinear control techniques, these new methods demand greater 

robustness. [21] proposed an adaptive system that combines two neural networks, considering nonlinear 

control inputs, uncertainties in model parameters, and environmental disturbances. This approach has proven 

to be both effective and robust. However, its reliance on the number of nodes for control performance leads 

to a heavy computational load. Nonlinear model predictive control (NMPC) [22] is a control technique based 

on optimization. NMPC offers the advantage of performing rolling optimization of control inputs and planning 

within the prediction horizon [23], while simultaneously imposing real-time constraints on system states [24]. 

This capability has made it an essential tool for trajectory tracking of underwater vehicles [25-27]. Molero, et 

al. [28] proposed an MPC controller to solve the trajectory tracking problem of ROVs. The results showed 

that this new controller significantly reduced position errors compared to traditional PID controllers. Zhu and 

Xia [29] developed a novel MPC to address parameter uncertainty in unconstrained discrete linear systems, 

achieving promising results. Gao, et al. [30] proposed an adaptive positioning control method based on NMPC 

that integrates the NMPC controller with neural network adaptive control to optimize tracking in a two-

dimensional scenario. Long, et al. [31] developed an ESKF-based MPC controller for trajectory tracking 

control. The robustness of this approach was confirmed through simulation experiments, showing high 

tracking accuracy. Although NMPC has shown promising results in complex underwater nonlinear 

environments, there remains significant room for theoretical improvement in managing disturbances. 

Furthermore, NMPC relies on a highly accurate model to achieve optimal performance, making it difficult to 

maintain high control precision when model uncertainties exist. This necessitates the development of highly 

adaptive controllers capable of robustly compensating for unknown model dynamics without relying on prior 

assumptions. The L1 controller, initially applied in the aerospace field [32,33] , can enhance the performance 

of existing controllers. By decoupling robustness and adaptivity, it enables fast and robust adaptation of the 

system under uncertainty and external disturbances [34,35]. Within its control bandwidth, the L1 adaptive 

controller has a strong capability to suppress interference [36]. It can be directly applied to control a system 

or used to enhance existing automatic control systems, quickly providing the system with the desired 

properties through an adaptive reference [37,38]. In the design phase of the control algorithm, once the control 

flow of the entire system is established, incorporating an L1 controller typically requires minimal adjustment 

effort [39]. 

In summary, ROV trajectory tracking control systems require both high precision and robustness. While 

significant progress has been made in ROV trajectory tracking control, traditional control strategies face 

challenges in handling nonlinear hydrodynamics and external disturbances, showing limitations in control 

accuracy and sensitivity to environmental perturbations. Adaptive control and neural network-based methods 

have shown promise in complex underwater settings, but they heavily depend on computational resources and 

model parameter accuracy. Although NMPC has become a crucial tool for addressing the trajectory tracking 

problem due to its optimization capabilities and effective handling of constraints, its performance significantly 

deteriorates when model uncertainties exist due to its reliance on accurate models. To overcome these 
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limitations, a novel highly adaptive controller is needed that can robustly compensate for unknown model 

dynamics without relying on prior assumptions. Such a controller should also seamlessly integrate with 

existing control frameworks to enhance the system's disturbance rejection capabilities and control accuracy 

under various environmental conditions. 

To tackle these challenges, this study introduces a novel hybrid adaptive controller designed to mitigate 

disturbances and increase overall control effectiveness. The cost function is formulated in terms of position 

error, control input, and terminal constraints, converting the trajectory tracking problem into an NMPC 

problem that is solved through online rolling optimization. To further enhance the adaptability of the NMPC 

controller and improve trajectory tracking accuracy, an L1 adaptive control component, derived from the 

ROV's motion model, is integrated. This component is cascaded with the baseline NMPC controller, forming 

a novel hybrid adaptive control framework. Following the adaptive compensation phase, the updated control 

input is employed to compute the ROV's state for the next time step. This adaptive approach effectively 

compensates for model uncertainties and unknown disturbances in complex marine environments while 

retaining the rolling optimization capabilities of NMPC for precise motion control. The updated pose state is 

then fed back to the optimizer, triggering a new iteration cycle to maintain the controller's accuracy and 

robustness. The proposed method is validated through simulations, with results and analyses demonstrating 

its effectiveness in enhancing the ROV's trajectory tracking performance under various environmental 

conditions. 

The structure of this article is as follows: The first section provides an introduction to the study. The 

second section derives the detailed mathematical model of the ROV used in this research. Subsequently, the 

trajectory tracking problem for the ROV is formulated as a rolling optimization control problem using NMPC. 

To address unknown environmental disturbances and model uncertainty encountered during trajectory 

tracking, an L1 adaptive augmentation is introduced, forming the theoretical basis for the hybrid adaptive 

control approach. In the third section, the effectiveness of the proposed hybrid adaptive control method is 

demonstrated through MATLAB simulations, which highlight the controller's tracking performance. Finally, 

the fourth section concludes the article by summarizing the proposed control method and the key findings 

from the simulation results. 

2. Mathematical method 

2.1 Mathematical model of ROVs 

The mathematical modeling of underwater vehicles relies on the hydrodynamic characteristics of rigid 

bodies and their associated motion behaviors. The study of dynamics is further categorized into kinematics 

and kinetics [40]. Kinematics focuses on the geometric relationships of position, orientation, and motion paths 

of moving bodies, while kinetics deals with the forces and torques that induce such motions. By utilizing 

measured model parameters and hydrodynamic forces, the developed mathematical model can accurately 

predict the motion of the ROV and can be effectively applied to its control system. 

Table 1  Standard symbols for the movement of the ROV 

DOF Force &Moment Velocities Position &Euler Angles 

Surge 
vxF  u  x  

Sway 
vyF  v  y  

Heave 
vzF  w  z  

Roll 
xM  p    

Pitch 
yM  q    

Yaw 
zM  r    
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In this study, the motion of the ROV is represented using six degrees of freedom, with appropriate 

coordinate systems established for detailed descriptions. The ROV is modeled as a rigid body within these 

coordinate systems. For further mathematical formulation, we define the symbolic representations of the 

ROV's position, orientation, and forces within these coordinate systems to facilitate analysis [4,6], Table 1. 

To analyze the motion of the ROV, we define it in two coordinate systems: the Earth-fixed coordinate 

system and the body-fixed coordinate system. The Earth-fixed coordinate system, also known as the inertial 

frame, serves as a stationary reference frame relative to the Earth's surface. Conversely, the body-fixed 

coordinate system is attached to the ROV itself and moves along with it. As illustrated in Fig. 1, the inertial 

frame is denoted as ( , , )e e e eO X Y Z  while the body frame is denoted as ( , , )b b b bO X Y Z . These coordinate 

systems are used to describe the motion of the ROV relative to the inertial reference frame. 

Table 2  The 6-DOF motion of the ship is described in vector form 

Parameter Total Linear Angular 

NEW position T
η=[P,Θ]  

T
P = [x, y, z]  

T
Θ = [f,θ,ψ]  

BODY Velocity T
V =[ν,ω]  T

ν =[u,v,w]  T
ω=[p,q,r]  

BODY force/moment T

1 2τ = [τ ,τ ]
 T

1 vx vy vzτ = [F ,F ,F ]
 T

2 ωx ωy ωzτ = [M ,M ,M ]
 

The position and orientation of the ROV are generally described in an Earth-fixed coordinate system, 

while its linear and angular velocities are expressed in a body-fixed coordinate system. Standard symbols, as 

presented in Table 2, are used to denote these quantities. The transformation between these two reference 

frames is governed by coordinate transformation equations, which are formulated as follows: 

RV =  (1) 

where 




 
 
 

1 3 3

3 3 2

R 0
R =

0 R
. Separating the states of angular velocity and linear velocity leads to the following 

formulations: 

1P R=  (2) 

2R  =  (3) 

The rotation matrix that transforms vectors from the body-fixed coordinate system to the inertial frame 

is given by: 

 
 
 
  

1

CψgCθ -SψgCf +CψgSθgSf SfSψ +CψgCfgSθ

R = SψgCθ CψCf +SfgSθgSψ -CψgSf +SθgSψgCf

-Sθ CθgSf CθgCf

 (4) 

 
 
 
  

2

1 SfgTθ CfgTθ

R = 0 Cf -Sf

0 Sf / Cθ Cf / Cθ

 (5) 
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where S  denotes sin , C  denotes cos , and T  denotes tan . 

 
Fig. 1  Reference frames, ROV image courtesy of https://bluerobotics.com 

The dynamics of a ROV aim to elucidate the relationship between the forces exerted on the vehicle and 

its resulting motion. Utilizing the Newton-Euler formulation, the dynamic equations governing an ideal 6-

DOF ROV, while neglecting external disturbances and model uncertainties, can be expressed as follows: 

( ) ( ) ( )M V C V V D V V g  + + + =  (6) 

where   represents the control input of the system in the absence of disturbances. 

( , , , , , )x y z
u v w p q r

diag m X m Y m Z I K I M I N





 
 
 

= − − − − − −

1 3 3

RB A

3 3 1

M 0
M = M + M =

0 J  (7) 

where RBM  is the rigid body inertia matrix of the ROV. AM  is the added mass matrix of the vehicle. Given 

the assumption regarding the center of buoyancy and the specific motion characteristics of the ROV 

considered in this study, the contribution of the non-diagonal elements is neglected. ( )C V  is the Coriolis and 

centripetal force, including the rigid-body Coriolis force term ( RBC ) and hydrodynamic Coriolis force term 

( AC ). According to literature [41], the following expression is obtained through Lagrangian parameterization 

method: 
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 
 
 













3 3 1

2

wz

wz ux

vy ux

z y
wz vy rn qm

z x
wz ux r pk

y x
vy ux qm pk

0 C (V)
C(V) =

C (V)

0 0 0 0 Z w + mw -mv

0 0 0 -Z w - mw 0 mu - X u

0 0 0 mv - Y v X u - mu 0

=
0 mw - Z w Y v - mw 0 I r - N r M q - I q

Z w - mw 0 -X u - mu N r - I r 0 I p - K p

mv - Y v X u - mu 0 I q - M q K p - I p 0











 
 
 

 (8) 

In general, ( )D V  is the approximate damping term that accounts for both linear and quadratic 

resistances, and it can be expressed as follows: 

| | | | | |

| | | | | |

diag( | |, | |, | |,

| |, | |, | |)

ux ux ux vy vy vy wz wz wz

pk pk pk qm qm qm rn rn rn

X X u Y Y v Z Z w

K K p M M q N N r





 
 
 

= − − − − − −

− − − − − −

1 3 3

3 3 2

D (V) 0
D(V) =

0 D (V)

 
(9) 

where ( )g   represents the static water restoring force, and it is assumed that the buoyancy force is equal to 

the gravitational force, denoted as B mg= , where g  is the gravitational acceleration. Additionally, it is 

assumed that ( , , )b b bx y z  represents the coordinates of the center of buoyancy of the ROV in the body frame. 

 
 
 
  
  

   
 
 
  

1

b b2

b b

b b

(mg - B)sinθ

-(mg - B)cosθsinφ

-(mg - B)cosθcosφg (η)
g(η) = =

y Bcosθcosφ - z Bcosθsinφg (η)

-z Bsinθ - x Bcosθcosφ

x Bcosθsinφ + y Bsinθ

 (10) 

The equation above represents the dynamics of an ROV in an ideal state, neglecting external 

environmental disturbances. The derived result is similar to that presented in [37]. This equation can be 

rewritten as follows: 

1 1[ ( ) ( )] V M C V D VV M − −= − + +  (11) 

The time step is t  discrete time, and the fourth-order explicit Runge-Kutta method is used to represent 

the state information of ROV in the 1k +  time step: 

4( 1) ( ( ), ( ), )RKX k f X k k t+ =   (12) 



Y. Zhang et al. Brodogradnja Volume 76 Number 1 (2025) 76106 

 

7 

 

where [ , ]TX V=  is the status information of ROV. 

2.2 NMPC formulation 

NMPC is a control strategy that relies on numerical optimization techniques. It incorporates a nonlinear 

system model, a predefined cost function, and a numerical optimization solver. By iteratively minimizing the 

cost function, NMPC optimizes the control inputs to the system model, thereby predicting future control 

actions and system responses. Within each prediction horizon, the NMPC controller computes an optimal 

sequence of future control inputs but only implements the first control input in real-time. This receding horizon 

strategy enables the nonlinear system's response to converge towards a desired reference trajectory. When 

external disturbances are neglected, the system dynamics are expressed in the following compact 

mathematical form: 

 
  =     

 

-- 11 -1

b

RVη
X

+  V - M g(
=

-M [C(V) D(V)] Mη)+ τ
V

 (13) 

where b  represents the input of the baseline controller in the absence of disturbances. 

As a predictive model, the aforementioned equation does not account for external environmental 

disturbances or system uncertainties. Since model parameter uncertainties must be considered in the study, an 

uncertainty coefficient will be introduced in subsequent analysis.  

The cost function ( ( , )J X  ) is formulated based on the deviation between the predicted system response 

and the desired system output, as well as the magnitude of the control inputs. The objective is to minimize this 

cost function to reduce both the tracking error and the control effort. This approach determines the optimal 

control inputs that satisfy the constraints over the next N  time steps. Subsequently, only the first control input 

from this sequence is applied to the system. The desired navigation trajectory and state information

( , , )R R R RX x y z  for the ROV are assumed to be known in advance, smooth, and bounded. The structure of the 

predefined cost function at time step k  is given as follows: 

1

1 2

0

( , ( | )) ( ( | ), ( | )) ( ( | ))
N

n b b

n

J X k L X n k n k L X N k 
−

=

 = +  (14) 

In this context, 
1( , )bL X   is defined as the stage cost: 

1 2

2 2

1( , )b R bQ Q
L X X X = − +  (15) 

2 ( )L X  is the terminal constraint cost: 

3

2

2 ( ) R Q
L X X X= −  (16) 

where 6 6

1 2,Q Q R   is a positive definite matrix that consists of two weight matrices that can be set 

independently. Their main role is to adjust the weight ratio of position error and input during the optimization 

process. In this paper, given the consideration of position error and the requirement for input (to minimize 

energy consumption as much as possible), a larger value is chosen for 
2Q . The positive definite matrix 

6 6

3Q R   is the solution to the Lyapunov equation [42]. 
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To solve the optimization problem in the code, numerical computation is employed. The entire solution 

process involves discretizing the cost function over the prediction time horizon and summing it up. The 

prediction time domain is uniformly divided into N  nodes, and the cost function is evaluated at each time 

node. 

At time step k , the optimization problem concerning the aircraft state X  and input   is solved in the 

prediction horizon, incorporating the cost function J . The optimization problem can be described as follows: 

1

1 2
( | )

0

min ( , ( | )) ( ( | ), ( | )) ( ( | ))
N

n b b
u k

n

J X k L X n k n k L X N k 
−


=

 = +  (17a) 

4. . ( 1| ) ( ( | ), ( | ))RK bs t X n k f X n k n k+ =  (17b) 

 min max min max( | ) , ( | ) ,n 0, , 1

( | ) , ( | )

b

b f

X X n k X n k N

n k U X n k X

  



      −

 
 (17c) 

(0 | ) ( )X k X k=  (17d) 

where 
min max,X X  and min max,   are vehicle state and control inputs constraints. The fourth-order Runge-Kutta 

method is utilized to solve the optimization problem, providing a numerical solution for the system's dynamic 

equations at each time step. 

By successfully solving eq. (17), the optimal state trajectory and inputs ( ( | ), ( | ))bX k k   can be 

obtained. Then, the NMPC control action applied to the system at time step k  is defined as: 

( ) (0 | )b k bX k  =  (18) 

Ultimately, the nominal closed-loop system can be expressed in the following form: 

1 4( , ( ))k RK k b kX f X X+ =  (19) 

Next, we summarize the fundamental assumptions of NMPC principles to establish the sufficient 

conditions for the stability of the nominal closed-loop system. 

Assumption 1: Considering the closed terminal set fX  related to eq. (17) and the terminal cost 2 ( )L X  

from eq. (16), we assume that for each state 
k fX X , there exists an acceptable control value ( )loc kX U   

at any time step k  such that the following two conditions hold: 

1 4( , ( ))k RK k loc k fX f X X X+ =   (20) 

2 1 2 2( ) ( , ( )) ( )k k loc k kL X L X X L X+ +   
(21) 

Theorem 1: If Assumption 1 holds, then under the feedback law ( )b kX  in eq (17a-d), the nominal 

closed-loop system 
1 4( , ( ))k RK k kX f X X+ =  achieves recursive feasibility and asymptotic stability [43]. 

Through internal optimization, the optimal solution of the cost function is continuously sought within 

the prediction time interval, allowing for the determination of the required input sequence for the next time 

step. This process is repeated iteratively, achieving the objective of rolling optimization. The nonlinear 

optimization process described above generates the system input b  for the baseline controller, which is 
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subsequently used as an input to the cascade L1 adaptive augmentation for further computation in the next 

step. 

2.3 L1 adaptive augmentation 

In real-world scenarios, developing accurate models is particularly challenging, especially in complex 

underwater environments where the motion of ROVs is affected by uncertainties and disturbances, such as 

varying propeller dynamics and wind waves. The previously derived NMPC control model assumes an 

idealized description of ROV motion, which does not account for these complexities. To address this, the 

actual system uncertainties and unknown external disturbances are incorporated into the state-space 

representation of the system. Specifically, we directly consider the uncertainties in thrust and torque across all 

six degrees of freedom and introduce external disturbances affecting thrust and torque for each degree of 

freedom: 

( ) ( ) ( ) b mM V C V V D V V g   + + + = +  (22) 

In this study, T

mσ (t) = [ς,ζ]  represents unknown external disturbances, where T

x y zς = [ς ,ς ,ς ]  denotes 

disturbances affecting linear acceleration, and T

x y zζ = [ζ ,ζ ,ζ ]  signifies environmental disturbances 

influencing angular acceleration. The ROV considered in this study is a fully actuated system, capable of 

providing linear acceleration along all three coordinate axes and angular acceleration about all three coordinate 

axes. To address the uncertainties in the actual system and unknown external disturbances, the L1AC approach 

is employed. The L1AC framework consists of a state predictor, an adaptive law, and a low-pass filter (LPF) 

[39], as depicted in Fig. 2. The state predictor replicates the system dynamics, replacing unknown uncertainties 

with estimated values. The output of the L1AC is then applied to the uncertain dynamic equation: 

1( ) ( ) ( ) ( ) ( ) ( , ( ))b L mM V C V V D V V g t t t V t   + + + = + +  (23) 

where 6 1

1( )L t R   represents the compensation values generated by the L1 control for cascading purposes. 

The predictor in the L1 Adaptive Control (L1AC) framework is formulated as follows: 

1 1 1

1 s( ) [ ( ) ( )] ( ) [ ( ) ( ) ( , ( ))] ( )b L mV t M C V D V V M g M t t t V t A V t   
 

− − −= − + − + + + +  (24) 

where ( ) ( ) ( )V t V t V t


= −  denotes the state error, while 6 6

sA R   is an adjustable diagonal Hurwitz matrix. 

The L1 Adaptive Control (L1AC) is implemented using a nonlinear reference model, which employs a 

piecewise constant adaptive law [36,38] to estimate the matched uncertainties. The piecewise constant 

adaptive rate is applied to [ ,( 1) )t k t k t  +  : 

1 1( ) ( ) ( ) ( )m mt k t B k t k t  
  −

− −=  = −     (25) 

where t  represents the time step, and B
−

 is an invertible square matrix: 

1( ) ( )B k t M k t
−

− = −   (26) 
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1(exp( ) )s sA A t I− =  −  (27) 

For k N : 

( ) exp( ) ( )sk t A t V k t  =    (28) 

Next, we define a first-order continuous-time filter ( )C s  [44]. The L1AC control law is: 

1( ) ( ) ( )mL s C s s 


= −  (29) 

In practical discrete-time implementation, the control rate at the k th−  time step can be defined as 

follows: 

,1, 1, 1(1 )m kL k co L k cot t    


−=  + −   (30) 

where 
co  represents the frequency limit of a suitably chosen first-order filter. The L1AC observer in discrete 

time evolves as follows: 

1 1 1
1 ,, 1,[ ( ( ) ( )) ( ) ( ) ]k k m kk k k k k k b k L k s kV V M C V D V V M g M A V t   

  
− − −

+ = + − + − + + + +   (31) 

The piecewise constant adaptive law can compensate for the state prediction error at the subsequent 

sampling time ( 1)k t+  : 

( ) ( ) ( )( ( ) ( ))s m mV t A V t B t t t 
− 

= + −  (32) 

For complete proofs of stability and performance of L1 adaptive controller refer to [45]. 

 

Fig.2  L1AC framework schematic diagram 

Based on the above formula, the components of the L1AC framework are illustrated in the Fig.2, 

consisting of three parts: a LPF, a state predictor, and an adaptive law. 
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Fig.3  Structure diagram of hybrid adaptive controller 

The Fig.3 presents a schematic diagram of the entire controller structure. In this study, two types of 

disturbances are considered: unknown environmental disturbances directly acting on the ROV body and model 

uncertainties affecting the baseline controller. The initial control inputs are computed by the NMPC controller 

to obtain the baseline control input ( b ). This input ( b ) is then fed into the adaptive control module to perform 

disturbance compensation. Consequently, the combined adaptive control input is generated and applied to the 

ROV model to compute the pose state, which is subsequently provided to the controller for the next iteration. 

2.4 Algorithm 

The calculation program of the newly proposed hybrid adaptive control framework is as follows: 

Algorithm L1+NMPC Trajectory Tracking Algorithm 

Input: (0)X  (initial state), 
RX  (desired trajectory), t  (time step), T  (simulation 

time), 1 2,Q Q  (weighting matrices), min max,   (input constrains), ,s coA    

(L1 parameters) 

1: 1k   

2: ( ) (0)X k X  

3: While k t T  do 

4: Construct NMPC problem with (0)X  using eq. (16) and (17). 

Compute ( )b k . 

5: Construct L1AC with ( )b k . 

Compute , , , , , ( )V V B k t 
  −

   using eq. (24-28) and (32). 

Compute 1( )L k  using eq. (31) and update 
1( ) ( ) ( )L bk k k  = + . 

6: Implement ( )k  to the ROV with disturbances. 

7: Compute the current state ( 1)X k +  using eq. (12). 

8: 1k k +  

9: End while. 
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3. Simulation study 

3.1 Parameter and operating condition setting 

The three-dimensional sinusoidal reference trajectory used in the numerical simulations is defined as 

follows: 

0.5*

0.5*

10*sin(0.1* )

R

R

R

x t

y t

z t

=


=
 =

 (33) 

The three-dimensional helical reference trajectory is defined as: 

10*sin(0.1* )

10*cos(0.1* )

R

R

R

x t

y t

z t

=


=
 =

 (34) 

The key specifications of the ROV utilized in the simulations are presented in Table 3 and are derived 

from [46]. 

This study uses the BlueROV2 platform to perform numerical simulations for validating control 

algorithms. The ROV has dimensions of 457 mm in length, 338 mm in width, and 254 mm in height. It 

employs vectored thrust propulsion and is equipped with eight thrusters, allowing for control with six degrees 

of freedom. The maximum diving depth of the ROV is 100 m, and it can reach a forward speed of up to  

1.5 m/s. 

Table 3  Parameter values of the BlueROV2 

Parameter Value Unit Parameter Value Unit 

m  11.5 kg 
pk

K  -0.12 kgm2 

xI  0.16 kgm2 

qm

M  -0.12 kgm2 

yI  0.16 kgm2 
rn

N  -0.12 kgm2 

zI  0.16 kgm2 
uxX  -4.03 kg/s 

ux

X  -5.5 kg 
vyY  -6.22 kg/s 

vy

Y  -12.7 kg 
wzZ  -5.18 kg/s 

wz

Z  -14.57 kg 
| |vy vyY  21.66 kg/m 

g  9.81 m/s2 
| |wz wzZ  36.99 kg/m 

| |ux uxX  -18.18 kg/m 
| |pk pkK  -1.55 kgm2/rad2 

| |qm qmM  -1.55 kgm2/rad2 
| |rn rnN  -1.55 kgm2/rad2 

pkK  -0.07 kgm2/(s.rad) 
qmM  -0.07 kgm2/(s.rad) 

rnN  -0.07 kgm2/(s.rad)    
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The initial setup conditions for the numerical simulation are as follows: the initial velocity state

( )T

0v = [0,0,0,0,0,0]  vector's first three components are given in meters per second (m/s), while the 

remaining three are in radians per second (rad/s). The prediction time horizon is denoted as 5N = , and the 

sampling period is specified. The control input constraints for the NMPC are also defined: 

 
T

maxτ = 50, 50, 50, 50, 50, 50  (35) 

 
T

minτ = -50, -50, -50, -50, -50, -50  (36) 

NMPC position error weight matrix: 


1

Q = 20 diag(1,1,1,1,1,1)  (37) 

Input value weight matrix: 


2

Q = 20 diag(1,1,1,1,1,1)  (38) 

All simulations were conducted on a laptop equipped with an Intel Core i7-10750H CPU @ 2.60GHz 

dual-core processor, using a simulator based on MATLAB R2018b. Two reference trajectories were chosen 

for the simulations, which were performed under both undisturbed conditions and with ocean disturbances. 

The initial pose state of the ROV for the sine curve trajectory tracking simulation is defined as 
T

0η =[1m,1m,1m,0rad,0rad,0rad] , while the initial pose state for the helix curve trajectory tracking 

simulation is defined as T

0η =[1m,1m,9m,0rad,0rad,0rad] . In designing the simulation experiments, four 

types of disturbances were considered: no disturbance, ocean current disturbance, random disturbance, wave 

disturbance, and model uncertainties due to inaccurate coefficients in the NMPC dynamic model. The 

coefficients for the L1 controller are set to T

coω =[2,2,2,2,2,2] , where the six vector values are in rad/s, and 

T

sA = -diag[5,5,5,10,10,10]  is an adjustable diagonal Hurwitz matrix. The above interferences were applied 

in the form of fluid velocity. 

The random disturbance: 

0.1* (1)

0.3* (1)

0.4* (1)

x

y

z

v rand m s

v rand m s

v rand m s

=


=
 =

 (39) 

The ocean current disturbance: 

0.3

0.1

0.1

x

y

z

v m s

v m s

v m s

=


=
 =

 (40) 

The wave disturbance: 
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0.2sin(5 ) 0.1sin(10 )

0.1sin(5 ) 0.1sin(5 )

0.1sin(5 )

x

y

z

v t t m s

v t t m s

v t m s

= +


= +
 =

 (41) 

The fourth operating condition is model parameter uncertainty, where errors exist in the control model 

parameters within the NMPC. This study considers a 20% uncertainty in the ROV model parameters to 

evaluate its impact on the controller's performance. 

Numerical simulation experiments were conducted to assess the performance of both the basic NMPC 

controller and the proposed hybrid adaptive controller for trajectory tracking under four distinct operating 

conditions, as well as an unperturbed scenario. The results of these experiments are summarized below. 

3.2 Simulation results analysis 

3.2.1 Sine curve motion trajectory 

Numerical simulation experiments were conducted to evaluate the performance of the basic NMPC 

controller and the proposed hybrid adaptive controller for trajectory tracking control under four distinct 

operating conditions and unperturbed scenarios. The results of these experiments are presented below. 

As illustrated in Fig. 4, the orange curve represents the simulation results without any disturbance, the 

green curve shows results under ocean current disturbance, the purple curve corresponds to random 

disturbance, the blue curve depicts results with wave disturbance, and the red curve indicates results with 

model parameter uncertainty. The black curve represents the reference trajectory. The ROV successfully 

performs real-time tracking of the desired trajectory under the influence of both controllers across different 

conditions. These results demonstrate the convergence and stability of the hybrid control algorithm. 

 
Fig.4  Trajectory tracking results of three-dimensional sine curve under different operating conditions 

Fig. 5 presents the time history curves of the ROV's trajectory tracking results in three directions. The 

following key observations can be made:  

(1) Across all simulations, despite initial tracking errors, the ROV under both controllers effectively 

follows the desired trajectory. 
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(2) While the presence of disturbances affects the ROV's tracking performance, the controller 

consistently adjusts the trajectory back to the desired path. The position tracking errors of both controllers 

remain bounded, demonstrating the effectiveness of the designed controller in trajectory tracking. 

 
(a)        (b) 

 
(c) 

Fig.5  Time history curves of ROV trajectory tracking results on various degrees of freedom 

Further insights can be drawn from the detailed local enlarged views in Fig. 5: 

(1) After the initial phase, the solid line representing the designed controller remains consistently closer 

to the reference trajectory than the NMPC controller, indicating superior tracking performance of the designed 

controller. 

(2) As seen in the enlarged view of the initial point in Fig. 5(b), due to the adaptive component of the 

designed controller, an overshoot occurs when the ROV quickly approaches the desired trajectory near the 

initial point. At this moment, the solid line representing the designed controller deviates further from the 

desired trajectory. However, it rapidly converges back to the desired trajectory, achieving more accurate 

tracking in a short time.  

(3) A relatively gradual rate of trajectory change leads to better tracking performance, as observed in 

the straight-line sections in Fig. 5(a). However, position errors significantly increase at turning points, as 
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shown in the local magnified view in Fig. 5(c). Regardless of whether at turning points or where the trajectory 

slope is more gradual, the designed controller consistently exhibits higher tracking accuracy. 

The primary metric for evaluating tracking performance in this study is the position tracking error, 

defined as: 

2 2 2( ) ( ) ( )R R Re x x y y z z= − + − + −  (42) 

where ( , , )x y z represent the actual position and ( , , )R R Rx y z  represent the desired position. 

 
(a)       (b) 

 
(c)       (d) 

 

(e) 

Fig.6  The time history curve of trajectory error value under different disturbances 

The time history curve of the trajectory error under different disturbances (Fig. 6) provides a more 

intuitive and quantitative comparison of the trajectory tracking performance of the two controllers. In the 

initial phase, due to a large initial position error, the time history curves for the position errors of both 
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controllers exhibit significant variations. Notably, the error for the hybrid controller initially increases sharply 

and is larger than that of the NMPC controller. This is attributed to the control overshoot caused by the 

adaptive component of the designed controller, which aligns with our earlier observations of the position time 

history curve. After the ROV approaches the reference trajectory, the error curves under all conditions become 

smoother, with no significant jitter, which is beneficial for ROV control and confirms the stability and 

convergence of the controller.  

The time history curve of the position error also shows periodic variations, corresponding to the periodic 

nature of the sinusoidal reference trajectory. Across all conditions, the tracking error of the new hybrid 

adaptive controller is significantly smaller than that of the basic NMPC controller. The designed controller 

substantially reduces the tracking position error compared to the NMPC controller, fully verifying the superior 

performance of the proposed controller in terms of trajectory tracking accuracy. 

The data indicates that the average error for both ROV controllers under normal (undisturbed) conditions 

is relatively low. As illustrated in Fig. 7, the introduction of environmental disturbances and model errors 

significantly increases the average position tracking error. Although the NMPC controller can effectively track 

the desired trajectory, its performance is considerably affected by disturbances. When the L1 controller is 

cascaded to form a hybrid adaptive controller, the average position errors under the same four disturbances 

are reduced. 

 

Fig.7  Comparison of tracking error with various uncertainties between the NMPC and the L1+NMPC enhancement 

Further analysis of the data reveals that the hybrid adaptive controller outperforms the baseline NMPC 

controller in reducing position tracking errors across various experimental conditions. Specifically, the 

adaptive hybrid controller reduces the position tracking error by 23.4% under undisturbed conditions, 17.2% 

under ocean current disturbances, 21.8% under random disturbances, 22.6% under wave disturbances, and 

19.2% under model uncertainties. Although the basic NMPC controller shows favorable position tracking 

accuracy, its performance heavily depends on the availability of an accurate dynamic model. In contrast, the 

proposed hybrid controller demonstrates superior tracking accuracy, even when model parameters are set to 

80% of their true values, outperforming the NMPC controller's tracking accuracy under undisturbed conditions. 

The robustness and adaptability of the hybrid controller in the presence of disturbances affirm the efficacy of 

the proposed method. 

As illustrated in Fig. 8, under the initial large position error, the controller output reaches a saturated 

high value to try to quickly correct the position. Under disturbed conditions, the output forces and torques 

exhibit significant fluctuations due to the ROV's deviation from the reference trajectory caused by 

environmental disturbances. These disturbances necessitate rapid adjustments in control forces and torques to 

realign the ROV with the desired trajectory. 
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Fig.8  The designed control & NMPC actual output force and torque time history diagram 

Comparatively, under the same conditions, the actual control inputs calculated by both the NMPC and 

the hybrid adaptive controller are closely aligned. This indicates that both controllers effectively reduce 

position error while maintaining control forces and torques with minimal jitter, reflecting overall stability. The 

calculated thrust outputs based on these optimal control inputs are facilitating efficient thruster control and 

aligning with the operational characteristics of marine vehicle thrusters. This further confirms the stability and 

effectiveness of the designed controller. 

3.2.2 Spiral motion trajectory 

From the above simulations, it can be concluded that the effectiveness of trajectory tracking is 

significantly influenced by the curvature changes of the preset trajectory. In practical engineering applications, 

ROVs often encounter a variety of trajectory types. Therefore, a spiral trajectory is selected for simulation to 

better represent and address the complexities involved in real-world scenarios. 

In the simulation of spiral trajectory tracking, the ROV encounters curves with varying curvatures in all 

directions. The simulation results are depicted in Fig. 9. As illustrated in Fig. 10, it is evident that during the 

spiral trajectory tracking process, the tracking accuracy of the designed hybrid controller surpasses that of the 

NMPC controller, with the trajectory following the reference path more closely. This outcome confirms the 

effectiveness of the proposed method. 
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Fig.9  Trajectory tracking results of three-dimensional helix curve under different operating conditions 

 
(a)       (b) 

 
(c) 

Fig.10  Time history curves of ROV trajectory tracking errors on various degrees of freedom 
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(a)       (b) 

 

 

(c)       (d) 

  
(e) 

Fig.11  The time history curve of trajectory error value under different disturbances 

Fig. 11 displays the time history curve of the helix trajectory error under different disturbances. The 

tracking error for the newly designed controller is consistently smaller than that of the NMPC controller. 

Additionally, the trajectory error history is smooth and the overall error remains bounded, demonstrating the 

effectiveness and stability of the design method. Notably, there is no overshoot in the initial stage. 

The tracking error history for the spiral curve does not exhibit periodic changes. This is attributed to the 

fact that the spiral curve maintains a constant curvature in the e e eZ O Y  plane and continuously undergoes 

rotational posture changes. Consequently, the tracking error in this simulation is notably larger compared to 

the three-dimensional sine curve, which has periodic inflection points only in the Z direction. This distinction 

is further illustrated in Fig. 12. 
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Fig.12  Comparison of tracking error between the designed and the NMPC method 

Consistent with previous conclusions, the introduction of disturbances increases the overall position 

error. However, compared to the sinusoidal trajectory, the position error for the spiral trajectory is significantly 

greater. As illustrated in Fig. 10(a) the increase in error is attributed to the circular nature of the trajectory 

curve in the e e eY O Z  plane and the continuous rotational motion of the ROV. 

Both controllers are capable of completing the trajectory tracking task even under disturbances. Fig. 12 

shows a quantitative comparison and analysis of the average error. The hybrid controller reduces the position 

error by 19.1%, 27.3%, 23.2%, and 18.0% under these disturbances compared to the baseline controller. In 

the absence of disturbances, the error is reduced by 23.3%. 

Fig. 13 illustrates the variation in output forces and torques across all six degrees of freedom under 

various operating conditions.  

This chapter evaluates the trajectory tracking performance of both controllers by simulating their 

behavior with two distinct three-dimensional curves across multiple operating scenarios. The comparison 

between the designed hybrid adaptive controller and the NMPC controller is conducted, with a detailed 

analysis of their performance characteristics. The results indicate that the hybrid adaptive controller 

significantly improves trajectory tracking accuracy compared to the NMPC controller. 
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Fig.13  The designed control & NMPC actual output force and torque time history diagram 

4. Conclusion 

A novel mixed adaptive strategy for three-dimensional trajectory tracking is proposed in this paper. The 

approach begins with an analysis of the kinematics for a fully-actuated ROV, leading to the development of a 

6-DOF nonlinear kinematic and dynamic model. The tracking control problem is then reformulated as an 

online solvable nonlinear optimization problem using an NMPC controller. The proposed hybrid adaptive 

controller integrates a new L1 adaptive component with the NMPC method. This combination enhances the 

disturbance suppression capabilities of the baseline NMPC controller, thereby improving control accuracy. 

Recognizing the various disturbances that an ROV might encounter in complex marine environments, this 

study includes simulations for two three-dimensional trajectories under four conditions: random disturbance, 

ocean current disturbance, wave disturbance, and model uncertainties. The L1 adaptive component, cascaded 

with the NMPC controller, effectively compensates for tracking disturbances at each sampling interval, 

enabling the ROV to maintain high performance in the presence of environmental and model parameter errors. 

Numerical simulations reveal that the position error for the three-dimensional sine curve is reduced by 23.4%, 

17.2%, 21.8%, and 22.6% under these four conditions, respectively, compared to the basic NMPC controller. 

Similarly, for the three-dimensional helix curve, the position error is reduced by 19.1%, 27.3%, 23.2%, and 

18.0% under the same disturbances. Notably, the new controller performs even better under model parameter 

uncertainty compared to the NMPC controller with accurate model parameters. These results validate the 

effectiveness and robustness of the new hybrid adaptive controller in handling unknown disturbances and 

model uncertainties. 

This paper, based on the foundation of NMPC, introduces an L1 adaptive component to improve control 

performance, especially in situations with unknown environmental disturbances and model uncertainties. By 

enhancing NMPC performance, increasing robustness, improving control performance, and introducing 
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innovative elements in control strategies, this hybrid adaptive control method is not only suitable for ROVs, 

but also broadly applicable to other autonomous systems operating in complex and uncertain environments. 
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