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A B S T R A C T  

This paper presents a biomimetic underwater glider inspired by the manta ray. 

Theoretical research is conducted to establish a dynamic model and address the path 

planning problem in gliding mode. A novel dynamic model for the gliding mode is 

developed, which takes the acceleration of a movable mass and the rate of change of a 

buoyancy control device as control inputs. Compared to previous methods, this model 

incorporates the real-time dynamic response of the control system, providing a more 

detailed depiction of the glider's dynamic behavior. Furthermore, the steady-state 

equation of gliding motion within a vertical section under ocean current conditions is 

derived, establishing a quantitative relationship between control states and gliding 

steady states, which is crucial for studying gliding motion under ocean currents. Based 

on the dynamic model, a performance evaluation model for the glider is proposed, with 

evaluation metrics including energy consumption, travel time, and detection range. 

The path planning problem is transformed into a multi-objective optimization problem 

by incorporating the performance evaluation model into the research and solved using 

the Non-dominated Sorting Genetic Algorithm-III (NSGA-III) algorithm for different 

motion strategies. Numerical results demonstrate that under both ocean current and 

non-current conditions, the proposed path planning method can yield path parameters 

that meet various performance evaluation criteria and are more comprehensive, 

thereby validating the effectiveness of the proposed path planning approach. 

1. Introduction 

In recent years, the intensification of human exploration into the enigmatic underwater world has 

paralleled the deepening of oceanographic research. Researchers have proposed various underwater vehicles 

[1-4]. As pivotal exploration carriers, unmanned Autonomous Underwater Gliders (AUGs) [5] have emerged 

as a focal point of research within the academic and industrial spheres. The underwater glider is regulated by 
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manipulating the position of a movable mass block and the overall buoyancy, thereby imbuing the vehicle 

with salient features such as minimal energy consumption, reduced noise levels, and streamlined motion [6]. 

This renders the vehicle apt for extended-duration and broad-range oceanic exploration endeavors [7,8]. A 

substantial array of underwater gliders, employing this mode of motion control, have been efficaciously 

developed and deployed. Webb, et al. [9] unveiled the SLOCUM, an advanced underwater glider, engineered 

to navigate up to 40,000 kilometers by exploiting thermal gradients for propulsion. Petritoli and Leccese [10] 

developed a sophisticated attitude and control system for a unique tail-fin-less autonomous underwater vehicle, 

distinguished by its absence of movable control surfaces. Zhou, et al. [11] unveiled an innovative discus-

shaped underwater glider. During the underwater gliding process, the glider is subjected to gravitational forces, 

buoyancy, hydrodynamic forces (lift, drag, inertia), and the inertial coupling effects caused by the internal 

movable mass. The interaction of these forces determines the glider's motion characteristics. The external hull 

and internal movable masses (including battery packs, ballast, etc.) form a coupled system of multiple rigid 

bodies, known as a multibody motion system, which is a widely used method for constructing glider systems 

in research. The fluid forces acting on the body, along with the nonlinear relationship between speed and 

direction and the dynamic adjustment of internal mass, result in complex nonlinear motion characteristics. A 

typical gliding motion includes a sawtooth-like forward glide: by adjusting its buoyancy through the buoyancy 

control device, the glider can move up and down. During the vertical movement, the body adjusts the movable 

mass to change the pitch angle, generating forward velocity through the hydrodynamic forces acting on the 

wings. Therefore, the glider can form a sawtooth-like motion pattern in the vertical plane through the coupling 

of multiple forces. In addition to the sawtooth motion, the underwater glider can also perform another steady-

state motion, which is a spiral trajectory underwater. By adjusting the buoyancy to make the body rise or fall 

while maintaining a fixed pitch angle and controlling the internal rotating mass to adjust the yaw angle, the 

glider can exhibit steady-state spiral motion. 

With the continuous iteration and upgrading of underwater glider entities, researchers have been 

consistently advancing theoretical studies on underwater gliding motion[12]. Significant progress has also 

been made in the study of the mechanism of underwater gliding motion and dynamic models of such systems. 

Currently, the main methods for establishing dynamic models can be divided into two types:(1) The Newton-

Euler method, based on Newton's second law and Euler's rotational equations, establishes dynamic equations 

by directly analyzing the forces and moments within the system. This method is suitable for rigid body systems 

and translational-rotational analysis, and it offers physical intuitiveness. (2) The Lagrangian method, based on 

the principle of least action, establishes dynamic equations by the difference between the system's kinetic and 

potential energy (the Lagrangian) in generalized coordinates, without directly considering forces. This method 

is suitable for systems with complex constraints and energy analysis.  

Yang, et al. [13] created a dynamic model for the deep-sea glider Petrel-II using the Newton-Euler 

method, incorporating considerations for hull deformation at different depths and seawater density changes. 

Wang, et al. [14] established a simplified dynamical model of an underwater glider system using Lagrangian 

equations. Additionally, they solved the helical steady-state motion of the glider by integrating the system 

state equations. A method of constructing a dynamic model for underwater gliders based on Lagrangian 

equations, combined with an environmental compensation model, has been verified to significantly improve 

control accuracy [15]. Leonard and Graver [16] combined the two to derive a generalized nonlinear dynamic 

model, which includes the hydrodynamic force of the glider body, the glider itself and the coupling of its 

movable internal mass. The main difference between the two lies in the fact that the former is force-centered 

and physically intuitive, while the latter is energy-centered and more mathematically abstract.  

Zhang, et al. [17] proposed a recursive algorithm, noted for its rapid convergence, to solve the helical steady-

state equations of the glider. Fan and Woolsey [18] proposed the nonlinear multibody dynamics model, which 

is designed to characterize underwater gliders operating in unstable and nonuniform flows. Zhao, et al. [19] 

applied a universal mathematical model to a specific real-world underwater glider, executing its linearization, 

a crucial step for the practical implementation of control methods. Liu, et al. [20] experimentally demonstrated 

a spiraling motion in underwater gliders, establishing the theoretical basis for their multimodal motion. Lyu, 

et al. [21] established a dynamic model that takes into account buoyancy and pitch control systems. 

Lei, et al. [22] merged physics-driven and data-driven modeling to introduce a novel method for underwater 
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glider modeling, based on physics-guided neural networks. 

Extensive research on the dynamic models of underwater gliders primarily aims to further parameterize 

the entire motion process of the vehicle, providing a foundational basis for subsequent motion control studies. 

To delve deeper into strategies aimed at augmenting the performance of underwater gliders, researchers have 

embarked on comprehensive investigations in the realms of path planning and motion strategy development. 

The current mainstream research approach involves describing the physical motion mechanisms of gliders 

through a comprehensive mathematical model [23, 24] and establishing the relationship between motion 

parameters and various performance metrics [25-27]. The performance metrics include energy consumption, 

detection range, and motion accuracy. This allows for the regulation of parameters to optimize motion 

strategies. This is similar to part of the content of this study. Zamuda and Hernández Sosa [28] proposed a 

method that applies differential evolution to underwater glider path planning. Zamuda, et al. [29] advanced 

their research by proposing a novel method for addressing constrained underwater glider path planning, 

significantly enhancing the glider's data collection capabilities while ensuring a controlled trajectory. Yoon 

and Kim [30] reformulated the trajectory optimization problem for underwater gliders into an optimal control 

problem, incorporating a series of intricate inequality constraints regarding depth limitations, and resolving 

the planning challenge. Yang, et al. [31] successfully enhanced the gliding range of the Petrel-L underwater 

glider through the strategic optimization of motion parameters tailored for diverse observation missions. Wang, 

et al. [32] employed integrated collaborative optimization and multidisciplinary optimization methods to 

select and refine various design parameters, thereby optimizing the motion performance of the system. To 

concurrently maximize both the energy utilization rate and motion speed of the glider while also improving 

its buoyancy positioning accuracy and energy efficiency, using established multi-objective optimization 

methods, the motion control parameters under gliding mode were optimized, effectively resolving the planning 

challenge [33, 34]. Cai, et al. [35] introduced a new path parameterization method and a novel velocity 

synthesis approach, forming a constrained optimization model for underwater glider path planning to address 

path planning issues of underwater gliders. Wu, et al. [36] developed a novel alternative model for path 

planning evaluation parameters and proposed a cutting-edge strategy employing the NSGA-II multi-objective 

optimization algorithm, successfully surmounting the complex challenge of path planning for multipoint 

exploration. Lan, et al. [37] approached the complex path planning problem of gliders navigating dense 

obstacles in ocean currents, via a depth-determined policy gradient method. Wang, et al. [38] investigated the 

issue of biofouling affecting the Petrel-L glider. Based on the glider's dynamic model, an internal penalty 

function method was used to optimize several key parameters in order to reduce the decrease in gliding range 

caused by biofouling. Tian, et al. [39] established a total energy consumption model based on the glider's 

dynamic model and the navigation efficiency index represented by the energy consumption per unit distance. 

Through mathematical derivation, the monotonicity of the total energy consumption model was proven, and 

an analytical solution for the globally optimal motion state with general applicability was obtained. Finally, 

the global optimal motion state was validated through pool experiments. 

In recent research, the effects of complex ocean currents and seabed environments have been 

incorporated into the overall path planning problem. In [40], an energy-optimal motion planning method for 

gliders, which takes into account ocean currents and seabed topography, is proposed. This method, using a 

segmented adaptive function, achieves good results in realistic seabed topography numerical simulations. 

Building on this work, Hu, et al. [41] further analyzed the impact of motion parameters on the hybrid wing-

body glider's movement. Additionally, an improved JADE optimization algorithm was proposed, combining 

adaptive segmentation to further enhance the glider's adaptability to the environment and reduce energy 

consumption. These studies effectively address the problem of multi-segment energy-optimal trajectory 

planning for gliders in complex seabed environments. 

It is noteworthy that the majority of AUGs being developed are of the revolving body type. In 

comparison, a manta ray-inspired underwater vehicle offers superior load capacity, enhanced hydrodynamic 

efficiency, and a higher lift-drag ratio [42, 43]. Furthermore, for the study of marine biological behavior, manta 

ray-inspired underwater vehicles are better suited for close observation of marine life. 

Summarizing the research work outlined above, the main focuses can be categorized as follows: (1) 
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Dynamic models of gliders were established, and optimization models based on motion parameters were 

derived from these dynamic models. (2) Evaluation models for glider motion, such as energy consumption, 

were proposed, transforming the path planning problem into a single-objective or multi-objective optimization 

problem. By optimizing the motion parameters, gliding paths for different requirements were determined. (3) 

Recent studies have considered complex ocean current conditions and seabed environments, effectively 

addressing multi-segment energy-optimal motion planning problems for gliders under such scenarios. 

However, despite these advances, further research is required in the following areas: First, the dynamic 

models of gliders established in existing studies mainly use the position of the sliding mass and the buoyancy 

value provided by the buoyancy adjustment device as control inputs. However, it is evident that the adjustment 

processes of the sliding mass and buoyancy device are gradual dynamic processes, and the dynamic response 

of these adjustments is critical for controlling underwater gliders. Current research primarily focuses on 

kinematic characteristics, without fully considering the dynamic response of the system during the gliding 

process. Furthermore, there are significant gaps in the validation and analysis of system dynamics models 

under ocean current conditions within the framework of fluid dynamics. This lack of analysis reduces the 

accuracy of path planning and motion control under ocean current conditions. Additionally, there is insufficient 

research on motion strategies under varying conditions and a scarcity of studies integrating multiple 

performance evaluation criteria into motion planning. 

To address these issues, the following work was conducted in this study: To more accurately describe 

the control system's response during dynamic adjustments, the sliding mass translational acceleration and 

buoyancy adjustment rate were used as system inputs to establish a control model. This model accounts for 

the adjustment processes of the control devices rather than simply defining their final states. Simultaneously, 

the influence of ocean currents was considered not only at the kinematic level but also by deriving the 

quantitative relationship between control states and steady-state gliding under ocean current conditions. This 

derivation is crucial for precisely controlling gliding motion under ocean currents and represents a novel 

contribution to glider research under such conditions. Based on the above analysis, an energy consumption 

model for ocean current conditions was directly established.  Additionally, three evaluation criteria were 

proposed for gliding motion: energy consumption, time consumption, and gliding range. By integrating these 

criteria, the path planning problem was transformed into a multi-objective optimization problem for motion 

parameters, which was solved using NSGA-III. The optimization results obtained through this method can be 

selected based on different requirements, providing a more comprehensive solution to the path planning 

problem of underwater gliders. 

The structure of the article is as follows. Section 1 is the nomenclature. Section 2 is the introduction. 

Section 3 establishes the system control model for the glider mode of the vehicle, based on movable mass-

driven acceleration and the rate of change of a buoyancy control device as control inputs. Section 4 simplifies 

the two-dimensional sectional motion equation and analyzes the steady-state gliding under undisturbed 

conditions and in ocean currents. Section 5 establishes vehicle motion performance evaluation models, 

including models for energy consumption, time consumption, and detection range evaluation. Section 6 

formulates motion strategies for exploration missions and based on the aforementioned research, proposes a 

method for path planning. Numerical examples are provided to demonstrate the process of the proposed 

method. Section 7 is the conclusion and outlook of the article. 
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2. Control equations of the gliding mode system 

 

Fig. 1  The adjustment mechanism for the gliding mode of the vehicle 

This study delves into the dynamics of a manta ray-inspired underwater vehicle, with a particular 

emphasis on exploring its gliding motion modality. The structural design of the vehicle is comprehensively 

illustrated in Figure 1. The vehicle incorporates a novel design where the battery pack is configured as a 

movable internal mass block, enhancing its manoeuvrability. Through the specific translation and rotation of 

this movable mass block, the vehicle's attitude can be precisely adjusted, offering superior control. 

Furthermore, by manipulating the state of the net buoyancy control device, the vehicle's net buoyancy can be 

meticulously regulated. 

In this section, we derive the dynamic equations of the glider, with the entire derivation process based 

on the following simplifying assumptions: (1) In this study, we assume that the seawater density does not 

change with depth. (2) Since the range of buoyancy adjustment provided by the control device is relatively 

small, we approximate that the operation of the buoyancy control device does not affect the glider's centre of 

gravity position. (3) Due to the flexible structure of the flapping-wing configuration of the vehicle, small 

passive deformations may occur under actual gliding conditions. In the modelling of the pure gliding mode in 

this paper, we approximate that the aerofoil does not undergo deformation. 

First, we define the operator ∧. Taking the vector 𝐚 = (a1 a2 a3)T as an example, 

𝐚
∧
= (

0 −a3 a2
a3 0 −a1
−a2 a1 0

) (1) 

Define the vector 𝐛 = (b1 b2 b3)
T. The operation ∧ is defined as follows, 

𝐚
∧
𝐛 = (

0 −a3 a2
a3 0 −a1
−a2 a1 0

)(
b1
b2
b3

) = 𝐚 × 𝐛 (2) 

For the convenience of subsequent system equation descriptions, we define the identity matrix: 

𝐜 = (𝐜𝟏 𝐜𝟐 𝐜𝟑) = (
1 0 0
0 1 0
0 0 1

) (3) 

To delineate the system with precision, our research method defines a total of four reference frames. As 

illustrated in Figure 2, these frames include the inertial frame, the body frame, the local frame of the movable 
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mass, and the flow frame, which encapsulates the dynamics of fluid forces. These reference frames are denoted 

as 𝑂𝑒(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒), 𝑂𝑏(𝑋𝑏, 𝑌𝑏 , 𝑍𝑏), 𝑂𝑟(𝑋𝑟, 𝑌𝑟 , 𝑍𝑟) and 𝑂𝑓(𝑋𝑓 , 𝑌𝑓 , 𝑍𝑓), respectively. 

 

Fig. 2  The coordinate frames of underwater vehicle 

Building upon the previously delineated symbol definitions, the kinematic equations governing the 

navigator within the inertial frame are succinctly encapsulated as follows [44]. 

𝑽
•

= 𝑹𝟏𝒗 (4) 

𝑾
•

= 𝑹𝟐𝒘 (5) 

where the matrices 𝐑𝟏 and 𝐑𝟐 denote the transformation matrices from the body coordinate system to the 

fixed coordinate system, with their expressions delineated as follows, 

𝑹𝟏 = (
C𝜓C𝜃 −S𝜓C𝜃 + C𝜓S𝜃S𝜙 S𝜙 + C𝜓C𝜙S𝜃
S𝜓C𝜃 C𝜙 + S𝜙S𝜃S𝜓 −C𝜓S𝜃 + S𝜃S𝜓C𝜙
−S𝜃 C𝜃S𝜙 C𝜃C𝜙

) (6) 

𝑹𝟐 = (

1 S𝜙T𝜃 C𝜙T𝜃
0 C𝜙 −S𝜙
0 S𝜙/C𝜃 C𝜙/C𝜃

) (7) 

where S𝜃 represents sin θ, C𝜃 represents cos 𝜃 and T𝜃 represents tan 𝜃. 

𝑹𝟑 represents the transformation matrix from the local coordinate system of the movable mass to the 

body coordinate system, 

𝑹𝟑 = (
1 0 0
0 C𝜆 −S𝜆
0 S𝜆 C𝜆

) (8) 

For the purpose of articulating the fluid forces exerted on the body during motion, we establish a fluid 

coordinate system. The transformation matrix 𝑹𝟒, which transitions from the flow frame to the body frame, is 

expressed as follows: 
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𝑹𝟒 = (

C𝛼C𝛽 −C𝛼S𝛽 −S𝛼
S𝛽 C𝛽 0
S𝛼C𝛽 −S𝛼S𝛽 C𝛼

) (9) 

In describing the forces acting on underwater moving objects, two important physical quantities are 

considered, one of which is the angle of attack 𝛼, 

𝛼 = arctan(
𝑣3
𝑣1
) (10) 

The slip angle 𝛽is defined as follows, 

𝛽 = arcsin(
𝑣2

√𝑣1
2 + 𝑣2

2 + 𝑣3
2
) (11) 

With respect to the derivation of the transformation matrix, taking the transformation matrix 𝑅1as an 

example, the following mathematical relationship exists: 

𝑹𝟏
•

= 𝑹𝟏𝑾
•

 (12) 

The mass of the vehicle is divided into two parts: the movable internal mass block and the static mass 

(all parts except the movable internal mass block). Moreover, both parts are considered as rigid bodies, with 

the movable internal mass denoted as mr, and the static mass denoted as ms. 

Since the range of net buoyancy adjustment is small, the shift in the center of gravity of the entire glider's 

static mass caused by changes in the device is considered negligible in this study [45]. The center of buoyancy 

provided by the device is located at the center of buoyancy of the vehicle. 

In this study, we choose to characterize the dynamical behavior of the system through the formulation 

of momentum in classical physics. According to the definitions of the physical variables in this paper, 𝑷𝒆 
represents the linear momentum of the static mass of the body in the fixed coordinate system, and 𝑳𝒆 
represents the angular momentum of the static mass of the body in the fixed coordinate system. Based on 

Newton's laws of motion, the following equations can be derived, 

𝑷𝒆
.

=∑𝑭𝒆𝒌

K

k=1

 (13) 

𝑳𝒆
.

=∑(𝑹𝒌 × 𝑭𝒆𝒌

K

k=1

) + ∑ 𝑻𝒆𝒎

M

m=1
 

(14) 

where 𝑭𝒆 and 𝑻𝒆 represent the external force and the external torque acting on the system in the inertial frame, 

respectively. 𝑹𝒌 is the point of the action of hydrodynamic forces on the vehicle, which in this paper is set as 

the center of buoyancy, i.e., the origin of the body frame. 

Within the body frame, the linear and angular momenta of the system are denoted by matrices 𝑷𝒃 and 

𝑳𝒃, respectively. These momenta account for the additional mass and moment of inertia associated with the 

motion of the underwater object. In accordance with the momentum theorem, the expression for the 

momentum of the static mass system in the body frame is as follows, 
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𝑷𝒃 = (𝑴𝒔 +𝑴𝒂)(𝒗 + 𝒘 × 𝑹𝒔) (15) 

𝑳𝒃 = (𝑰𝒔 + 𝑰𝒂)𝒘 + (𝑴𝒔 +𝑴𝒂)𝑹𝒔 × 𝒗 (16) 

where 𝑴𝒔 is the mass matrix of the defined static mass and 𝑰𝒔 is the inertia matrix of the static mass in the 

body frame. 

Mapping the momentum from the body frame to the inertial frame through the transformation matrix 

yields the following relationship, 

𝑷𝒆 = 𝑹𝟏𝑷𝒃

 

(17) 

𝑳𝒆 = 𝑹𝟏𝑳𝒃 + 𝑽 × 𝑷𝒆

 

(18) 

Differentiating the above momentum equation yields the following formula. 

𝑷
.

𝒆 = 𝑹𝟏(𝑷
.

𝒃 +𝒘
∧
𝑷𝒃)

 

(19) 

𝑳
.

𝒆 = 𝑹𝟏(𝑳𝒃
.

+𝒘
∧
𝑳𝒃) + 𝑹𝟏𝒗 × 𝑷𝒆 + 𝑽 × 𝑷𝒆

.

 

(20) 

We substitute the aforementioned expressions into the initial Equations. (13) and (14) which were 

derived based on Newton's laws, to further derive Equations (21) and (22). 

𝑷𝒃
.

= 𝑷𝒃 ×𝒘+∑𝑭𝒃𝒌

K

k=1
 

(21) 

𝑳𝒃
.

= 𝑳𝒃 ×𝒘+ 𝑷𝒃 × 𝒗 +∑𝑻𝒃𝒌

K

k=1
 

(22) 

where ∑ 𝐹𝑏𝑘
K
k=1 = 𝑅1

𝑇𝑚𝑠𝑔 − 𝑅1
𝑇𝑚𝑔 + 𝑅4𝐹𝑓 + 𝐹𝑟−𝑠 represents the external forces acting on the main body of 

the vehicle,𝑅1
𝑇𝑚𝑠𝑔 represents the gravitational force on the static mass in the body frame, −𝑅1

𝑇𝑚𝑔𝑐3 

represents the buoyancy due to the body's displaced volume, and 𝐹𝑟−𝑠 represents the force exerted on the body 

by the movable mass. In the above equation, 𝐹𝑓 represents the fluid force in the flow frame, and Tf represents 

the fluid torque in the flow frame, which can be calculated using the following method, 

𝑭𝒇 = [

−(𝐾𝐷0 + 𝐾𝐷𝛼
2)(𝑣1

2 + 𝑣2
2 + 𝑣3

2)

𝐾𝛽(𝑣1
2 + 𝑣2

2 + 𝑣3
2)

−(𝐾𝐿0 +𝐾𝛼𝛼)(𝑣1
2 + 𝑣2

2 + 𝑣3
2)

]

 

(23) 

𝑻𝒇 = [

(𝐾𝑀𝑅𝛽 + 𝐾𝑤1𝑤1)(𝑣1
2 + 𝑣2

2 + 𝑣3
2)

(𝐾𝑀0 + 𝐾𝑀𝛼 + 𝐾𝑤2𝑤2)(𝑣1
2 + 𝑣2

2 + 𝑣3
2)

(𝐾𝑀𝑌𝛽 + 𝐾𝑤3𝑤3)(𝑣1
2 + 𝑣2

2 + 𝑣3
2)

]

 

(24) 
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The hydrodynamic coefficients articulated in the aforementioned formula can be ascertained via 

computational fluid dynamics (CFD) and empirical methodologies. 

Employing the principle of momentum, it is feasible to deduce the expressions for the absolute linear 

and angular momenta of the movable mass within the body frame, 

𝑷𝒓𝒃 = 𝑴𝒓𝒗𝒓𝒃

 

(25) 

𝑳𝒓𝒃 = 𝑰𝒓𝒃𝒘𝒓𝒃

 

(26) 

where 𝒗𝒓𝒃 = 𝒗 +𝒘𝒓 × 𝑹𝒓 + 𝒗𝒓 represents the absolute linear velocity of the slider in the body coordinate 

system, and 𝒘𝒓𝒃 = 𝒘+𝒘𝒓  represents the absolute angular velocity of the movable mass in the body 

coordinate system. 𝑰𝒓𝒃 = 𝑹𝟑𝑰𝒓𝑹𝟑
𝑻  represents the inertia matrix of the movable mass within the body 

coordinate system. Geometric relationships can be deduced as follows, 

𝑹𝒓 = 𝒙𝒓𝒄𝟏 + 𝒓(sin𝝀)𝒄𝟐 + 𝒓(cos𝝀)𝒄𝟑 = (𝒙𝒓 𝒚𝒓 𝒛𝒓)𝑻 (27) 

This study specifically investigates gliding motion in a vertical profile, wherein the movement of the 

movable slider is constrained solely to the x-axis, and considerations of rotational control are disregarded. In 

light of these parameters, the conditions are simplified as follows,𝑤𝑟 = 𝜆 = 0 ,𝑣𝑟𝑦 = 𝑣𝑟𝑧 = 0 ,𝑤𝑟𝑏 = 𝑤 . 

Concurrently, given that the transformation matrix assumes the form of the identity matrix 𝑹𝟑 in this scenario, 

it becomes redundant and can be disregarded, consequently leading to the equation 𝑰𝒓 = 𝑰𝒓𝒃. 

Analogous to Equations (19) and (20), the differentiation of the absolute momentum of the slider within 

its local coordinate system yields the following equation, 

𝑷𝒓
.

= 𝑷𝒓𝒃 ×𝒘+ 𝑹𝟏
𝑻𝑴𝒓𝒈 + 𝑭𝒔−𝒓

 

(28) 

𝑳𝒓
.

= 𝑳𝒓𝒃 × 𝒘+ 𝑷𝒓𝒃 × 𝒗𝒓𝒃 + 𝑻𝒔−𝒓 − 𝑹𝒓 × 𝑭𝒔−𝒓

 

(29) 

where 𝑭𝒔−𝒓 and 𝑻𝒔−𝒓 represent the force and torque exerted by the driving mechanism on the movable mass, 

respectively.𝑭𝒓−𝒔 and 𝑻𝒓−𝒔 are the reaction force and torque to and 𝑻𝒔−𝒓, respectively. In accordance with 

Newton's Third Law of Motion, these forces are equivalent in magnitude but antithetical in direction. 

Through the integration of the previously mentioned equations and the exclusion of interaction force 

terms, we are able to formulate the dynamic equations that govern the system. 

(𝑴𝒔 +𝑴𝒂)(𝒗
.
+𝒘

.
× 𝑹𝒔) +𝑴𝒓(𝒗

.
+𝒘

.
× 𝑹𝒓 +𝒘× 𝑹𝒓

.

+ 𝒗𝒓
.
) = 𝑷𝒃 × 𝒘

+ 𝑹𝟏
𝑻𝑴𝒔𝒈 − 𝑹𝟏

𝑻(𝑴𝒔 +𝑴𝒓)𝒈 + 𝑹𝟒𝑭𝒇 + 𝑭𝒓−𝒔 + 𝑷𝒓𝒃 × 𝒘

+ 𝑹𝟏
𝑻𝑴𝒓𝒈+ 𝑭𝒔−𝒓 

(30) 

(𝑰𝒔 + 𝑰𝒂)𝒘
.
+ (𝑴𝒔 +𝑴𝒂)𝑹𝒔 × 𝒗

.
+ 𝑰𝒓𝒘

.

= 𝑳𝒃 × 𝒘+ 𝑷𝒃 × 𝒗 + 𝑹𝒔𝑴𝒔𝒈+ 𝑹𝟒𝑻𝒇 + 𝑻𝒓−𝒔 + 𝑳𝒓𝒃 ×𝒘

+ 𝑷𝒓𝒃 × 𝒗𝒓𝒃 + 𝑻𝒔−𝒓 − 𝑹𝒓 × 𝑭𝒔−𝒓

 

(31) 

After systematic organization, the following equations are obtained, 
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(𝑴𝒔 +𝑴𝒂 +𝑴𝒓)𝒗
.
− (𝑴𝒔𝑹𝒔

∧

+𝑴𝒂𝑹𝒔
∧

+𝑴𝒓𝑹𝒓
∧

)𝒘
.

= 𝑷𝒃
∧

𝒘−𝑴𝒓𝒗𝒓
.
+𝑹𝟒𝑭𝒇 +𝑴𝒓(𝒗 + 𝒘 × 𝑹𝒓 + 𝒗𝒓

−𝒘𝒓 × 𝑹𝒓
.

) × 𝒘

 

(32) 

(𝑰𝒔 + 𝑰𝒂 + 𝑰𝒓 −𝑴𝒓𝑹𝒓
∧

𝑹𝒓
∧

)𝒘
.
+ (𝑴𝒔𝑹𝒔

∧

+𝑴𝒂𝑹𝒔
∧

+𝑴𝒓𝑹𝒓
∧

)𝒗
.

= 𝑳𝒃
∧

𝒘+ 𝑷𝒃
∧

𝒗 + 𝑹𝒔𝑴𝒔𝒈

 

+𝑹𝟒𝑻𝒇 + 𝑳𝒓𝒃
∧

𝒘+ 𝑷𝒓𝒃
∧

𝒗𝒓𝒃 +𝑴𝒓𝑹𝒓
∧

(𝒗𝒓
∧
𝒘− 𝒗𝒓

.
) + 𝑹𝒓

∧

𝒘
∧
𝑷𝒓𝒃

 

(33) 

𝑹𝒓
.

= [𝑣𝑟𝑥, 0,0]
T

 

(34) 

𝒗𝒓
.
= [𝑢(1),0,0]T

 

(35) 

𝑚𝑏
.
= 𝑢(2)

 

(36) 

Equations (32)–(36), together with Equations (4) and (5), collectively constitute the comprehensive 

three-dimensional dynamic mathematical model of the entire gliding system. In traditional underwater glider 

control systems, the position of the movable mass is often directly used as the control input of the system, 

neglecting the dynamic process of the control drive. This can result in the system's inability to adapt in real-

time to dynamic behaviors, leading to imprecise control. We use the driving acceleration of the movable mass 

and the rate of change of the net buoyancy adjustment device as the inputs for the entire control system. This 

state-space representation can enhance control precision: acceleration control typically allows for more precise 

control of the system's dynamic behavior, especially in scenarios requiring rapid response. It can more 

accurately describe the motion state of the system, providing superior dynamic control. This work provides a 

more intuitive, easily analyzable, and implementable mathematical model for the subsequent research process. 

3. Vertical profile gliding steady-state analysis 

In Section 2, an exhaustive derivation of the system's state response equations is conducted, considering 

control inputs within a three-dimensional motion context, culminating in the establishment of a comprehensive 

system control model. To advance the understanding of a vehicle's motion dynamics in gliding modalities, an 

in-depth investigation and analysis of the steady-state gliding motion within the vertical profile is imperative. 

The forthcoming analysis will focus on assessing the effects of ocean current disturbances on the vehicle's 

gliding mode. 

3.1 Simplification of the equations of motion in the vertical profile 

To establish the mathematical relationship between the steady-state motion parameters and control 

parameters, we simplify the entire three-dimensional motion equation. In the gliding motion within the vertical 

profile (𝑋𝑒 − 𝑍𝑒 plane), the motion components within the horizontal plane do not need to be considered, thus 

the state space can be simplified as: 
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𝑹𝟏 = [
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
]
 
𝑽 = [

𝑥
0
𝑧
]
 
𝑾 = [

0
𝜃
0
]𝒗 = [

𝑣1
0
𝑣3
]
 
𝒘 = [

0
𝑤2
0
]
 

𝑹𝒓 = [

𝑥𝑟
0
𝑧𝑟
]
 
𝒖 = [

𝑣𝑟𝑥
.

𝑚𝑏
. ] 

(37) 

In the gliding motion within the vertical profile, the control of the movable slider can only slide in the 

𝑋𝑏-axis and cannot rotate for adjustment, therefore the position of the center of mass of the movable mass 

changes only in the 𝑋𝑏-axis. By substituting the simplified state variables into the Equations (4), (5), (32) and 

(33), the final simplified two-dimensional pitch motion equation for the vertical section is derived [16]. 

𝑥
.
= 𝑣1 cos 𝜃 + 𝑣3 sin 𝜃 (38) 

𝑧
.
= −𝑣1 sin 𝜃 + 𝑣3 cos 𝜃 (39) 

𝜃
.

= 𝑤2 
(40) 

𝑣1
.
=

1

𝑀𝑛(1,1)
(𝑀𝑛(3,3)𝑣3𝜃 − 𝑃𝑟𝑧𝜃 −𝑚𝑏𝑔 sin 𝜃 + 𝐹𝑓(3) sin 𝛼 − 𝐹𝑓(1) cos 𝛼

− 𝑣
.

𝑟𝑥) 

(41) 

𝑣3
.
=

1

𝑀𝑛(3,3)
(𝑀𝑛(1,1)𝑣1𝜃 + 𝑃𝑟𝑥𝜃 +𝑚𝑏𝑔 cos 𝜃 − 𝐹𝑓(3) cos 𝛼 − 𝐹𝑓(1) sin 𝛼) (42) 

𝑤
.

2 =
1

𝐼𝑛(2,2)
((𝑀𝑛(3,3) − 𝑀𝑛(1,1))𝑣1𝑣3 −𝑚ℎ𝑔(−𝑥ℎ cos 𝜃 − 𝑧ℎ sin 𝜃) 

+𝑚𝑟𝑔(−𝑥𝑟 cos 𝜃 − 𝑟 sin 𝜃) + 𝑇𝑓(2) − 𝑟𝑣
.

𝑟𝑥) 

(43) 

For convenience of expression, we denote the nominal inertial mass and the nominal inertia matrix of 

the entire static system as: 𝑀𝑛 = 𝑀𝑠 +𝑀𝑎, and 𝐼𝑛 = 𝐼𝑠 + 𝐼𝑎. By ignoring the behavior of the movable mass 

in the 𝑌𝑒 direction and eliminating the state variables of the body in the 𝑌𝑒 direction, the entire control process 

is simplified, facilitating subsequent solutions. 

After the drive device has ceased operation, the vehicle achieves a steady-state. In this state, both the 

control device's configuration (encompassing the position of the movable mass and the net buoyancy 

adjustment device) and the vehicle's motion status remain constant. Consequently, the control device's state 

can be determined by resolving the equations governing steady-state gliding. 

Given that both the acceleration within the system's state space and the momentum of the control device 

are equal to zero, this enables further simplification of the dynamic equations, specifically Equations (41) (42) 

and (43). 

0 = −𝑚𝑏𝑔 sin 𝜃 + 𝐹𝑓(3) sin 𝛼 − 𝐹𝑓(1) cos 𝛼 (44) 
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0 = 𝑚𝑏𝑔 cos 𝜃 − 𝐹𝑓(3) cos 𝛼 − 𝐹𝑓(1) sin 𝛼 (45) 

0 = (𝑀𝑛(3,3) − 𝑀𝑛(1,1))𝑣1𝑣3 −𝑚ℎ𝑔(−𝑥ℎ cos 𝜃 − 𝑧ℎ sin 𝜃 + 𝑚𝑟𝑔(−𝑥𝑟 cos 𝜃
− 𝑟 sin 𝜃) + 𝑇𝑓(2) 

(46) 

3.2 Steady-state motion solution under no current conditions 

The system's state equations are complicated by the inclusion of two angular variables. The complexity 

arises because the equations are framed in a fixed coordinate system, whereas the hydrodynamic forces are 

initially computed in the fluid coordinate system, subsequently transformed to the body coordinate system, 

and ultimately retransformed to the fixed coordinate system. This sequential transformation process leads to 

redundant angular descriptions in the equations. To address this complexity, we introduce the kinematic 

relationships, depicted in Figure 3. 

 

Fig. 3  Motion analysis schematic in steady-state gliding mode 

The motion parameters for steady-state gliding in the vertical plane include the angleτof the trajectory 

with respect to the 𝑋𝑒 direction, the glide speed 𝑉, and the angle of attack 𝛼 of the vehicle, which describes 

its attitude. The parameters for steady-state motion control include the position 𝑥r of the movable mass on the 

body frame, and the mass 𝑚𝑏 of the net buoyancy adjustment device. 

The steady-state forces in the flow frame are directly related to those in the inertial frame through the 

new angular definition 𝜏, 

𝜏 = 𝜃 − 𝛼 (47) 

By using the angle 𝜏, the complex handling of θ and α can be bypassed directly. The net buoyancy in 

the above steady-state equations can be described in the inertial frame through a new transformation matrix 

as follows, 

[
0
𝐵
] = [

cos 𝜏 sin 𝜏
− sin 𝜏 cos 𝜏

] [
𝐾𝐷0 + 𝐾𝐷𝛼

2

𝐾𝐿0 + 𝐾𝐿𝛼
]𝑉2 (48) 

Under normal operating conditions, the gliding speed is 𝑉 ≠ 0, and the angle of the glide path is 

 𝜏 ≠ ±
𝜋

2
. Therefore, when 𝑉 = 𝑉𝑑 and 𝜏 = 𝜏𝑑 Equation (35) can be further organized into the following form, 
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𝛼𝑑
2 +

𝐾𝐿
𝐾𝐷
𝑡𝑎𝑛 𝜏𝑑 𝛼𝑑 +

1

𝐾𝐷
(𝐾𝐷0 + 𝐾𝐿0 𝑡𝑎𝑛 𝜏𝑑) = 0 (49) 

𝑚𝑏𝑑 = (−
sin 𝜏𝑑 (𝐾𝐷0 + 𝐾𝐷𝛼𝑑

2)

𝑔
+ cos 𝜏𝑑 (𝐾𝐿0 + 𝐾𝐿𝛼𝑑))𝑉𝑑

2

 (50) 

From Equation (49), the angle of attack under the set conditions can be derived. However, to ensure that 

the quadratic equation has solutions, the discriminant must satisfy the following condition: 

(
𝐾𝐿
𝐾𝐷
tan 𝜏𝑑)

2 −
4

𝐾𝐷
(𝐾𝐷0 + 𝐾𝐿0 tan 𝜏𝑑) ≥ 0 (51) 

The feasible range of 𝜏𝑑 should ensure that Equation (49) has real solutions, subject to the following 

constraints, 

𝜏d ∈

(

  
 
tan−1(2

𝐾𝐷
𝐾𝐿
(
𝐾𝐿0
𝐾𝐿
+√(

𝐾𝐿0
𝐾𝐿
)
2

+
𝐾𝐷0
𝐾𝐷
) ,
𝜋

2
)

∪

(

 
 
−
𝜋

2
, tan−1(2

𝐾𝐷
𝐾𝐿
(
𝐾𝐿0
𝐾𝐿
−√(

𝐾𝐿0
𝐾𝐿
)
2

+
𝐾𝐷0
𝐾𝐷
))

)

 
 

)

  
 

 

(52) 

When the constraints are satisfied, the angle of attack 𝛼𝑑 under the set conditions can be obtained using 

the quadratic formula as follows, 

αd =
1

2

𝐾𝐿
𝐾𝐷
tan τd (−1 + √1 − 4

𝐾𝐷

𝐾𝐿
2 cot 𝜏𝑑 (𝐾𝐷0 cot 𝜏𝑑 + 𝐾𝐿0)) (53) 

By substituting the value of 𝛼𝑑 into Equation (37), the state 𝑚𝑏𝑑 of the net buoyancy adjustment device 

can be determined, 

𝑥𝑟𝑑 = (𝑚ℎ𝑔(−𝑥ℎ cos 𝜃 − 𝑧ℎ sin 𝜃) + (𝑀𝑛(3,3) − 𝑀𝑛(1,1))𝑣1𝑣3
+ 𝑇𝑓(2))/(𝑚𝑟𝑔 cos 𝜃) − 𝑟 tan 𝜃 (54) 

Through the resolution of the state equations, the range of angles delineating the vehicle gliding 

trajectory in the vertical plane has been precisely determined. Concurrently, a quantitative derivation has been 

made of the relationship between the states of the internal movable mass, the net buoyancy adjustment device, 

and the motion parameters during a steady-state glide in the absence of current. 

3.3 Steady-state motion solution under current conditions 

Oceanic currents significantly influence the gliding dynamics of navigational vehicles. In the context of 

this research, vehicle exploration missions are confined to smaller bodies of water, leading to the assumption 

that the intensity and direction of currents remain consistent and invariant with depth. 
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The current velocity 𝑉𝑐𝑥 in the 𝑋𝑒-axis significantly influences the glide speed, whereas the current 𝑉𝑐𝑦 

in the 𝑌𝑒-axis chiefly impacts the vehicle's heading. The current strength in the 𝑍𝑒-axis is virtually negligible. 

The currents in the 𝑌𝑒-axis exert minimal influence on the glide performance of torpedo-shaped underwater 

gliders [46]. Inspired by the manta ray, this underwater vehicle has a very small lateral surface area, 

comparable to that of traditional torpedo-shaped underwater gliders, thereby rendering the influence of current 

𝑉𝑐𝑦 on its directional heading minimal. Moreover, the manta-ray-inspired design of this underwater vehicle 

encompasses a combination of high maneuverability with both gliding and flapping mechanisms. Throughout 

the gliding phase, real-time course corrections are achievable via feedback control systems. Consequently, for 

the sake of simplifying computational models, the effect of the current 𝑉𝑐𝑦 on navigation can be overlooked, 

focusing instead on the influence of a constant current 𝑉𝑐𝑥 on the vehicular motion strategy. 

As illustrated in Figure 4, we assume a constant current velocity 𝑉𝑐𝑥 along the𝑋𝑒-axis (neglecting the 

current velocity along the 𝑍𝑒-axis). In the inertial frame, the vehicle glides at a speed 𝑉𝑑 in a direction that 

forms an angle 𝜏𝑑 with the 𝑋𝑒-axis. 

 

Fig. 4  Steady-state gliding motion analysis in ocean current environment 

Based on geometrical knowledge, the following conclusions can be drawn. 

3.3.1 When 𝑉𝑐𝑥 forms an acute angle with the direction of navigation (in a downstream state): 

𝑉𝑑𝑓 = √4𝑉𝑐𝑥2 + 𝑉𝑑
2 − 4𝑉𝑐𝑥𝑉𝑑 cos 𝜏𝑑 (55) 

Where 𝑉𝑑𝑓 represents the velocity of the vehicle relative to the fluid in the flow frame, 𝑉𝑑
′  represents the 

velocity of the vehicle in the fixed frame without considering the influence of currents, which combines with 

the current velocity to form 𝑉𝑑. 

𝜏𝑑
′ = 𝜏𝑑 + 𝜉 (56) 

wherein 𝜉 = arccos(
𝑉𝑑
2+𝑉𝑑𝑓

2−4𝑉𝑐𝑥
2

2𝑉𝑑𝑉𝑑𝑓
). 
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3.3.2 When 𝑉𝑐𝑥 forms an obtuse angle with respect to the navigation speed (in a countercurrent 

state): 

𝑉𝑑𝑓 = √4𝑉𝑐2 + 𝑉𝑑
2 − 4𝑉𝑐𝑉𝑑 cos( 𝜋 − 𝜏𝑑) (57) 

𝜏𝑑
′ = 𝜏𝑑 − 𝜉 (58) 

Equation (56) still applies. 

After derivation, gliding in the inertial frame at speed 𝑉𝑑 and angle 𝜏𝑑, owing to the impact of ocean 

currents, the actual motion parameters involved in steady-state analysis in the fluid frame become navigation 

speed 𝑉𝑑𝑓 and angle 𝜏𝑑
′ . By substituting motion parameters 𝑉𝑑𝑓 and 𝜏𝑑

′  into Equations (50), (53) and (54), we 

ultimately obtain the relationships between motion parameters and control parameters in ocean current 

environments. 

4. Establishing the models for evaluating vehicle performance 

The gliding motion mode of a manta ray-inspired underwater vehicle is crucial for establishing its 

motion performance evaluation model. This paper details the comprehensive motion adjustment process 

within a singular glide profile of the aforementioned vehicle. 

 

Fig. 5  Force analysis on the airframe in gliding mode 

As depicted in Figure 5, initially, the vehicle maintains neutral buoyancy. Upon determining the gliding 

state, the drive device moves the movable slider to position 𝑥𝑟𝑑1 and adjusts the net buoyancy adjustment 

device to weight 𝑚𝑏𝑑1 . Upon reaching the designated depth, the control devices (slider and buoyancy 

chamber) return to their equilibrium positions. The control state is adjusted to 𝑚𝑏𝑑2 and 𝑥𝑟𝑑2. Upon ascent to 

the preset position, it reverts to a state of neutral buoyancy. This research assumes symmetrical paths in the 

ascending and descending stages, thereby maintaining uniformity in velocity and angle parameters between 

the descent and ascent phases, denoted as 
1 2V V= 𝜏1 = 𝜏2 . This operational configuration streamlines the 

mathematical formulation of gliding motion, which is applicable to both individual motion cycles and 

extensive motion planning, thereby enhancing the efficiency of optimization calculations in the motion 

planning phase. 
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Subsequently, we utilize the transformations of motion parameters in gliding mode to develop models 

for energy consumption, time expenditure, and detection range assessment for the vehicle. 

4.1 Energy consumption model 

Throughout the vehicle gliding phase, the principal energy consumption is attributed to several key 

components: the buoyancy adjustment device, which encompasses the energy utilization of the pump 

regulating the buoyancy chamber's volume. The attitude adjustment device, involves the energy use of the 

motor that manipulates the movable slider's position. The control system, accounts for the operational energy 

expenditure of the central decision-making system. The detection system, includes the operational energy use 

of the assorted sensors onboard the vehicle. By utilizing the transformations of motion parameters in gliding 

mode, we construct models to quantify the vehicle's energy consumption, time consumption, and detection 

range. 

The energy consumption E1of the buoyancy adjustment system is determined by the state of the 

buoyancy adjustment device during the gliding phase. Based on the motion adjustment process of a single 

profile, the energy consumption function for this part is as follows, 

𝐸1 = |
𝑚𝑏𝑑1
𝜌
| (
𝑝(𝐷)

𝑞(𝐷)
+
𝑝𝑣
𝑞𝑣
) + |

𝑚𝑏𝑑2
𝜌
| (
𝑝(𝐷)

𝑞(𝐷)
+
𝑝𝑣
𝑞𝑣
) (59) 

where 𝑝(𝐷) and 𝑞(𝐷) are functions of the navigation target depth 𝐷. For fluid density 𝜌, we take the value 

𝜌 = 1035𝑘𝑔/𝑚3. Based on [25], we select the following data for energy consumption calculation, 

𝑝(𝐷) = (28.212 + 0.017841𝐷) W (60) 

𝑞(𝐷) = ((1.7𝑒 − 6) − (1.98𝑒 − 10)𝐷) m3/s (61) 

4.1.1 Energy consumption of the attitude adjustment system 

𝐸2 = 2 |
𝑥𝑟𝑑1
𝑣𝑟𝑥

| 𝑝𝑟(𝜃)+2 |
𝑥𝑟𝑑2
𝑣𝑟𝑥

| 𝑝𝑟(𝜃) (62) 

where 𝑣𝑟𝑥 is the movement speed of the movable slider and 𝑝𝑟(𝜃) is the driving power of the movable slider, 

which varies with the pitch angle 𝜃 of the vehicle. In this paper, since the value of 𝜉 is very small, it follows 

that 𝜃 ≈ 𝜏. Therefore, the following relationship exists, 

𝑝𝑟(𝜃) ≈ 𝑝𝑟(𝜏) = (1.43 + 0.064|𝜏|)W (63) 

For the movement speed of the movable slider in the manta ray-inspired underwater vehicle studied, we 

take the average speed of movement during the control process to be approximately 𝑣𝑟𝑥 = 0.1 m/s. 

4.1.2 Energy consumption of the control system 

𝐸3 = (
𝑙𝑑

|𝑉1 cos 𝜏1|
) 𝑝𝑐 (64) 

When a current condition exists, meaning that there is a fixed vcx, it leads to a change in the relative 

velocity in the flow frame, thereby altering the steady-state space of the glider. Below, we conduct a detailed 

study of the current conditions, rederive the relationship between the state variables of the control device and 

the state of the glider under the new steady-state, and update the expression of the energy consumption 

function: 

𝐸3 = (
𝑙𝑑

|𝑉1 cos 𝜏1 + 𝑉𝑐𝑥|
) 𝑝𝑐 (65) 
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where 𝑙𝑑 represents the designed 𝑋𝑒 -direction travel distance for a single profile movement. 𝑝𝑐  is the 

operational power of the vehicle's control system, for which the data in this study is taken as 𝑝𝑐 = 2𝑊. 

4.1.3 Energy consumption of the detection system 

𝐸4 =
𝑙𝑑

|𝑉1 cos 𝜏1|
𝑝1 + 2(

𝐷𝑡

𝑡(𝑉1 sin 𝜏1) + 𝑑𝑠
)𝑝2 (66) 

Similarly, in the presence of currents: 

𝐸4 =
𝑙𝑑

|𝑉1 cos 𝜏1 + 𝑉𝑐𝑥|
𝑝1 + 2(

𝐷𝑡

𝑡(𝑉1 sin 𝜏1) + 𝑑𝑠
)𝑝2 (67) 

where 𝑝1 is the average power consumption of sensors during gliding conditions. 𝑝2, t and ds are the average 

power of the depth sensor, the duration of a single activation, and the depth sampling interval, respectively. 

For the manta ray-inspired underwater vehicle proposed in this paper, according to the literature [25], the 

relevant data in the formula are taken as the following values:𝑝1 = 0.2 𝑊, 𝑝2 = 1.92 𝑊, 𝑡 = 3 𝑠, 𝑑𝑠 = 30 m 

Ultimately, combining the energy consumption functions of the abovementioned parts, we obtain the 

total energy consumption function for a single profile gliding during the gliding phase of the entire vehicle, 

𝐸 = (𝐸1 + 𝐸2 + 𝐸3 + 𝐸4)/1000 (68) 

Equations (59) to (67) illustrate that the energy consumption of the glider's navigation will vary with 

changes in the control parameters 𝑚𝑏𝑑, 𝑥𝑟𝑑 and the motion parameters 𝑉1, 𝜏1. 

4.2 Time consumption model 

When conducting underwater detection tasks, the time consumption of the task is an important indicator 

for evaluating navigation performance. As the single-profile motion studied in this paper is symmetrical in the 

ascending and descending phases, that is 𝑉1 = 𝑉2, the total time consumption can be expressed as follows: 

𝑇 =
𝑙𝑑

|𝑉1 cos 𝜏1|
 (69) 

From the expression of the time consumption function, it can be derived that 𝑇 varies with the change 

in the path parameter 𝑉1, 𝜏1. 

4.3 Detection range evaluation model 

The paramount task of underwater vehicles encompasses the detection of target aquatic environments, 

wherein the detection range serves as a pivotal indicator for assessing motion performance. An expanded 

detection range at a predetermined travel distance equates to necessitating a more profound depth in the 

planned path. From geometric principles, the following expression for the target depth can be derived. 

𝐷 = 𝑙𝑑 tan 𝜏1 (70) 

The target depth should remain within the safe depth limit (𝐷 < 𝐷𝑑).We use the depth 𝐷 of the zigzag 

trajectory to measure the detection range. Equation (70), indicates that 𝐷  is also a function of the path 

parameters 𝑉1, 𝜏1. 

We develop comprehensive models for energy consumption, time consumption, and detection range. 

These models, articulated through control and motion parameters, serve to evaluate the vehicle's motion 

performance. 
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5. Path planning algorithm 

When the manta ray-inspired underwater vehicle enters a gliding state, it involves not only the activation 

of the propulsion mechanism but also the engagement of sonar and various other detection sensors. 

Consequently, within the range of underwater detection, the vehicle must optimize its control parameters to 

align with diverse operational scene requirements, thereby charting a path that optimally balances safety and 

efficiency across multiple objective functions. To address various operational task requirements, the first step 

involves formulating a corresponding motion optimization framework.  

 

Fig. 6  Flowchart for the optimization and solution process of motion strategy 

The comprehensive workflow of the path planning study is systematically illustrated in Figure 6. The 

computational process is segmented into three distinct phases. The initial phase involves establishing the 

motion model, incorporating the influence of ocean currents to derive the steady-state equation, and 

elucidating the interrelations among the variables. The second phase involves the construction of a motion 

performance evaluation model. The third phase is dedicated to formulating a motion strategy, integrating it 

with the evaluation model, and employing a multi-objective optimization function to refine the path planning 

problem. 

5.1 Evaluation model for single-profile motion 

The first detection mode involves near-target point single-profile detection. When addressing detection 

tasks in proximity to target points, frequent transitions in the gliding state can significantly escalate the energy 

consumption associated with the detection mission. Consequently, the vehicle is configured to utilize a single-

profile gliding motion for short-distance detection tasks within unknown environments. Upon reaching the 
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vicinity of the target point following a single planned movement, the ensuing path is reconfigured in 

accordance with the acquired environmental information. This particular scenario is depicted in Figure 7. 

 

Fig. 7  Schematic of detection motion strategy for a single profile 

To enhance the efficacy of diverse exploration tasks, the motion planning results of the glider should 

ideally combine the advantages of higher navigation speed, lower energy consumption, and a larger detection 

range. After setting the motion forms for the exploration tasks, we use genetic algorithms and particle swarm 

optimization algorithms to study the trajectory optimization problems under different motion methods. Within 

varying task contexts, by employing the vehicle's energy consumption, navigation speed, and detection range 

as objective functions, multi-objective optimization will be conducted to resolve the planning challenges, with 

the goal of deriving the optimal gliding strategy. 

5.1.1 Without current conditions 

From the derivations presented above, we establish that 𝐸, 𝑇, 𝐷  is a function of the path planning 

parameter 𝑉, 𝜏. To ensure the optimal performance of the glider, we determine the optimal path parameters 

through optimization calculations. The optimized mathematical model is presented below. 

{

min𝐸 (𝑉1, 𝜏1),min 𝑇 (𝑉1, 𝜏1),max𝐷 (𝑉1, 𝜏1)

𝑠. 𝑡.
𝑉1 ∈ [𝑉min, 𝑉max], 𝜏1 ∈ (−

𝜋

2
,−𝜏min) ∪ (𝜏min,

𝜋

2
 )

𝑥𝑟𝑑1, 𝑥𝑟𝑑2 ∈ [−0.05, 0.05],𝑚𝑏𝑑1, 𝑚𝑏𝑑2 ∈ [−1,1]

 (71) 

In the numerical simulation, calculations were predicated on the following working conditions: the target 

point was situated 300 m away under static water conditions. For the expediency of computation in the 

optimization problem-solving process, the reciprocal of the target depth 𝐷 is utilized as the optimization 

parameter. This means that the smaller the optimization objective is, the larger the detection range that can be 

achieved. 

Equation (71) delineates a multi-objective optimization problem, to be addressed using both the 

Nondominated Sorting Genetic Algorithm III (NSGA-III) and a particle swarm-based multi-objective 

optimization algorithm. Each algorithm employs the Pareto optimality principle as a foundational theory for 

solving )multi-objective optimization problems [47]. The specific parameter configuration for NSGA-III is 

comprehensively detailed in Table 2. 
Table 2  NSGA-III multi-objective optimization computation parameters. 

Population 

size 

Number of 

generations 

Crossover 

probability 

Crossover 

index 

Mutation 

probability 

Mutation 

index 

200 100 0.5 100 0.6 120 
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The parameter configuration for the particle swarm-based multi-objective optimization algorithm is given 

in Table 3. 

Table 3  MOPSO multi-objective optimization computation parameters. 

Population size Number of iterations Crossover probability Crossover index Mutation index 

200 100 0.5 50 100 

The parameters of the glider and its control devices used in numerical calculation were expressed in  

Table 4. 

Table 4  Parameters of the glider's mass and control devices. 

Mass 15 kg 

Static hull mass 14 kg 

Movable sliding block adjustment range 

Translational range:−50 mm − 50 mm 

Rotational range：±
π

2
 

Mass：2 kg 

Buoyancy adjustment range ±1 kg 

We used the CFD method to calculate the hydrodynamic parameters of the vehicle, which were used in 

steady-state analysis. The specific values of the parameters obtained by fitting were expressed in Table 5. 

Table 5  Calculated Values of Hydrodynamic Parameters 

𝐾𝐷0 18.36 kg/m 

𝐾𝐷 112.76 kg/m/rad2 

𝐾𝐿0 -0.24 kg/m 

𝐾𝛼 324.10 kg/m/rad 

𝐾𝑀0 0.021 kg 

𝐾𝑀 -39.37 kg/rad 

𝐾𝑤2 -189.56 kg s/rad2 

To verify the convergence of the optimization calculations for path planning pertaining to short-distance 

detection tasks in unknown environments, we independently conduct three distinct optimization calculations 

employing two different methods. The optimization calculations in this study were performed using  

MATLAB 2023b. The computations were conducted on a computer with the following configuration: 

Windows 11, 64-bit, equipped with an AMD Ryzen 9 5900X 12-Core processor. The resulting Pareto frontiers 

are shown in Figure 8. 
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(a) NSGA-III 

 

 

(b) MOPSO 

Fig. 8  Multi-objective optimization results in Pareto frontier 
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As illustrated in Figure 8, we employed two solution methods for the multi-objective optimization 

problem: NSGA-III and MOPSO. Figure 8(a) presents the results of three independent optimization runs using 

NSGA-III, while Figure 8(b) shows the outcomes of three independent runs using MOPSO. The three 

independent computation results are 98.3256 s, 108.4352 s, and 96.7432 s for NSGA-III, and 121.6742 s, 

115.8962 s, and 128.7854 s for MOPSO. For different operating conditions, multiple independent optimization 

runs were conducted. It is worth noting that for each operating condition in this study, multiple independent 

optimization computations were performed. However, only three Pareto frontier results are presented in the 

main text, while the remaining optimization results are provided in the appendix. And the data in  

Tables 2 and 3 also indicate that the NSGA-III algorithm requires lower computational costs. Analyzing the 

optimization results depicted in Figure 8 reveals that NSGA-III consistently generates more stable Pareto 

frontiers for this specific problem, demonstrating its superior suitability for addressing optimization challenges 

in this context. 

The three independent optimization results shown in Figure 8(a) confirm the convergence of the NSGA-

III algorithm. Furthermore, the Pareto frontiers in the figure visually highlight the conflicting relationships 

among the three optimization objective functions (energy consumption metric, time expenditure metric, and 

detection range metric). 

Table 6  The non-dominated solution computation results. 

Case 
Angle 

(rad) 

Velocity 

(m/s) 
𝑚𝑏𝑑1 (kg) 𝑚𝑏𝑑2 (kg) 

𝑥𝑟𝑑1 

(m) 

𝑥𝑟𝑑2 

(m) 

Energy 

(kJ) 

Time 

(s) 

Area 

(1/m) 

1 ±0.7029 0.3545 -0.122 0.126 0.032 -0.031 4.02 1109 0.0078 

2 ±0.5598 1.50 -0.878 0.885 0.014 -0.016 33.89 236 0.0106 

3 ±0.9623 0.8767 -0.299 0.301 0.048 -0.046 9.30 599 0.0046 

4 ±0.8137 0.9080 -0.251 0.252 0.041 -0.042 10.34 483 0.0063 

 

Fig. 9  Optimized gliding path for a single profile 

We conducted a further study and analysis of the Pareto front derived from the NSGA-III optimization 

calculation, which consists of 100 nondominated solutions. From this array of nondominated solutions, four 

were selected, each exemplifying optimal and median evaluations across the three objective functions. For 

these four cohorts of nondominated solutions, the respective values of path parameters and control parameters 

for each solution are enumerated in Table 6. Figure 9 displays the results of the four selected numerical 

calculations. 
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When the rapid completion of exploration tasks is prioritized, the initial planning scheme outlined in the 

table is recommended; conversely, to optimize the quantity of detection tasks accomplished by the vehicle 

(thus minimizing energy consumption per profile movement), the second strategy should be employed; for 

objectives emphasizing the robot's detection range, the third plan is advisable. This paper advocates for the 

fourth solution delineated in the table, as it integrates multiple objectives including movement speed, vehicle 

energy consumption, and detection range, culminating in a more integrated and holistic performance. 

5.1.2 Current conditions  

The downstream state is taken as an example. In the numerical simulation, calculations are performed 

based on the working conditions: the target point is 300 m away. We assume a fixed ocean current speed of 

𝑣𝑐𝑥 = 0.15 m/s. 

In this context, the energy consumption indicator 𝐸(𝑉1, 𝜏1)  in Equation (68) must be calculated 

according to the ocean conditions. The motion parameters in Equations (50), (53), and (54) are replaced with 

those in Equations (55), and (56) under ocean current conditions, and xrd1 , mrd1  is calculated. After 

recalculating all the evaluation function indicators, based on the previous calculation results, we directly apply 

the multi-objective optimization algorithm based on the NSGA-III to solve this problem. Below are the path 

planning calculation results under ocean current conditions. 

Table 7  The non-dominated solution computation results in ocean current environment. 

Case 
Angle 

(rad) 

Velocity 

(m/s) 

𝑚𝑏𝑑1 

(kg) 

𝑚𝑏𝑑2 

(kg) 

𝑥𝑟𝑑1 

(m) 

𝑥𝑟𝑑2 

(m) 

Energy 

(kJ) 

Time 

(s) 

Area 

(1/m) 

1 ±0.6001 0.3624 -0.102 0.104 0.035 -0.031 3.91 1003 0.0089 

2 ±0.4812 1.3814 -0.787 0.789 0.022 -0.024 27.23 245 0.0126 

3 ±1.0781 0.8536 -0.217 0.220 0.047 -0.045 8.95 743 0.0034 

4 ±0.7781 1.0583 -0.681 0.684 0.044 -0.042 11.23 398 0.0076 

Similar to the condition without ocean currents, we employed NSGA-III to solve this multi-objective 

optimization problem through three independent computations. The results shown in Figure 10 indicate that 

the optimization is convergent. Additionally, the Pareto front depicted in the figure highlights the significant 

conflicts among the three objective functions under the ocean current condition. This Pareto front is also 

composed of 100 non-dominated solutions. From these, four solutions were selected, representing the optimal 

and median evaluations of the three objective functions. The path parameters and control parameters 

corresponding to each solution are listed in Table 7. Figure 11 visualizes the results of these four selected 

numerical calculations. 
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Fig. 10  Multi-objective optimization resulting in Pareto frontier in an ocean current environment 

 

Fig. 11  Optimized single-profile gliding path in ocean current environment 

Equation (56) demonstrates that the presence of a following current increases the relative angle of the 

vehicle in the fluid frame, thereby resulting in an augmented movement distance of the movable mass. 

Concurrently, there is a decrease in the relative speed between the vehicle and the fluid, consequently 

narrowing the adjustment spectrum of the buoyancy control device. Owing to the more pronounced impact of 

the buoyancy control device compared with the movement of the movable mass in the vehicle's energy 

consumption model, the aggregate energy expenditure under following the current conditions is diminished 

relative to that under still water conditions, which is corroborated by the numerical optimization results. The 

numerical simulation outcomes of three strategically selected path planning schemes under ocean current 

conditions are delineated in Figure 11. 

5.2 Evaluation model for long-distance motion 

The second detection mode involves long-distance multi-profile movement. In contrast with short-

distance gliding strategies within a detection ambit, the spatial separation between two points in this mode is 

frequently substantial. To maintain the navigation depth within prescribed limits, it is often necessary to 

execute multiple dives and ascents. For the simplification of control dynamics during long-distance multi-
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profile gliding, consistent motion within each individual profile is ensured, and the descending and ascending 

phases of each profile are maintained in symmetry. 

 

Fig. 12  Schematic of long-range multi-profile detection motion strategy 

In the delineated gliding scenario, the entire trajectory consists of a series of single-profile cycles. As 

illustrated in Figure 12, we assume that the entire motion process is formed by concatenating identical 

isosceles triangles, where each base of the triangle represents the distance 𝐿𝑑 that the vehicle moves in the 𝑋𝑒 
direction during a single profile motion. The desired depth for each profile motion remains consistent, denoted 

as 𝐷𝑑. 

5.2.1 Without current conditions 

As shown in Figure 12, we can translate the line segments of the motion path between points O and A, 

ultimately forming a large isosceles triangle 𝑂𝐵𝐴. Based on geometric knowledge, the following conclusion 

can be drawn: the actual gliding distance of multiple profiles is equivalent to the distance of an isosceles 

triangle with the line connecting the initial and end points (𝑂𝐴) as the base, and the target path parameter τd 

chosen during the planning process is the base angle. The gliding speed is determined by the selected target 

path parameter Vd. With the above conclusion in mind, when considering the time consumption under this 

scenario, its value is equal to the total time of individual profile movements. The time consumption function 

for this scenario can be expressed as follows: 

𝑇 =
𝑛𝐿

𝑉𝑑 cos( 𝜏𝑑)
 (72) 

Similarly, the energy consumption function for this scenario can be expressed as the sum of the energy 

consumption for 𝑛 identical cycles. 

𝐸 = 𝑛(𝐸1 + 𝐸2 + 𝐸3 + 𝐸4)/1000
 

(73) 

The detection range function depends on the target height 𝐷𝑑 of the path planning, and simultaneously, 

the number of cycles in the above time and energy consumption functions also have a direct relationship with 

the depth of the path. As shown in Figure 12, the overall depth of the hypothetical path (𝑂𝐵𝐴) formed after 

path translation is 𝑑. Equation (70) shows that the value of 𝑛 in multi-profile gliding is directly proportional 

to the time and energy consumption. Therefore, under the constraint of target depth, it is essential to ensure 

that the value of 𝑛 for each set of planned path parameters is minimized. Thus, we determine the value of n in 

the following manner. 

𝑛 = ⌈
𝑑

𝐷
⌉
 

(74) 
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where 𝑑 = 𝑛𝐷𝑑 =
𝑙

2
|tan 𝜏𝑑|. By using the ceiling function to ensure the constraint 𝐷𝑑 ≤ 𝐷, a smaller number 

of profiles n can be obtained when different path parameters are selected during the optimization calculation. 

Since it is a detection task in a known environment, in this scenario, we disregard the detection area as 

an objective function in planning. Naturally, additional objective functions can be incorporated to 

accommodate evolving requirements for path configuration. By resolving the time and energy consumption 

functions pertinent to this scenario and ascertaining the optimal number of profiles, the subsequent 

mathematical model can be rigorously optimized, 

{

min𝐸 (𝑉1, 𝜏1),min𝑇 (𝑉1, 𝜏1)

𝑠. 𝑡.
𝑉1 ∈ [𝑉max, 𝑉max],  𝜏1 ∈ (−

𝜋

2
,−𝜏min ) ∪ (𝜏min,

𝜋

2
 ) 

𝑥𝑟𝑑1, 𝑥𝑟𝑑2 ∈ [−0.05,0.05],𝑚𝑏𝑑1, 𝑚𝑏𝑑2 ∈ [−1,1] 
 

(75) 

Calculations were performed under specified operational conditions: a target distance of 5000 m, a 

maximum depth constraint of 300 m, and quiescent water conditions. Consistent with the aforementioned 

research methodology, we used the NSGA-III algorithm to solve this optimization problem. However, under 

this condition, only two objective functions were considered: energy consumption and time expenditure. 

Through three independent NSGA-III computations, we obtained the Pareto front results shown in Figure 13, 

confirming the convergence of the optimization calculation. Moreover, the NSGA-III algorithm demonstrated 

excellent computational efficiency and cost-effectiveness, indicating its suitability for complex, long-distance, 

multi-profile path planning scenarios. The Pareto front in Figure 13 also illustrates the conflicting relationship 

between energy consumption and time expenditure during long-distance, multi-profile movements. 

 

 

Fig. 13  Bi-objective optimization resulting in Pareto frontier 
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Table 8  NSGA-III multi-objective optimization computation parameters. 

Population 

size 

Number of 

generations 

Crossover 

probability 

Crossover 

index 

Mutation 

probability 

Mutation 

index 

150 100 0.5 100 0.6 120 

The table records the configuration parameters of the NSGA III algorithm used in solving this problem. 

Table 9  The non-dominated solution computation results. 

Case 
Angle 

(rad) 

Velocity 

(m/s) 
𝑚𝑏𝑑1 (kg) 𝑚𝑏𝑑2 (kg) 𝑥𝑟𝑑1 (m) 𝑥𝑟𝑑2 (m) 

Energy 

(KJ) 
Time (s) n 

1 ±0.4423 0.4003 -0.8511 0.8532 0.0152 -0.0139 44.1125 13821 4 

2 ±0.6315 1.4089 -0.1403 0.1421 0.033 -0.031 216.53 4397 7 

3 ±0.5277 0.9936 -0.4334 0.4352 0.0257 -0.0235 101.03 5824.5 5 

 

Fig. 14  Optimized gliding path for multiple profiles 

The study and analysis are undertaken on the Pareto front, emanating from the NSGA-III optimization 

calculation, encompassing 150 nondominated solutions. Among these nondominated solutions, three were 

selected, each exemplifying the optimal criteria: one with the lowest energy consumption function, another 

with the minimum time function, and the third with median values for both objective functions. The values of 

the assorted path and control parameters corresponding to these three nondominant solutions are delineated in 

Table 9, while Figure 14 shows the outcomes of the three selected numerical calculations. 

If the goal is to enable the glider to complete exploration tasks more quickly, the first planning scheme in 

the table can be adopted. When the vehicle aims to complete more exploration tasks, i.e., the lowest energy 

consumption, the second plan in the table should be used. In general, we recommend selecting the third 

solution from the table, as it takes into account both movement speed and energy consumption, offering a 

more comprehensive performance. This approach ensures a balanced consideration of both objectives, leading 

to a more holistic performance. The calculation results clearly show that the value of n is positively correlated 

with energy consumption, which verifies our derivation. 

5.2.2 Current conditions 

In the simulation, calculations are based on the working conditions: the target point is 5000 m away with 

a depth limit of 300 m. We selected the countercurrent environment, where 𝑣𝑐𝑥 = −0.1 m/s. 

The energy consumption indicator E(V1, τ1) in Equation (68) must be calculated according to the ocean 

conditions. The motion parameters in Equations (50), (53), and (54) are replaced with those in Equations (57), 
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and (58) under ocean current conditions, and xrd1, mrd1 is calculated. We use the multi-objective optimization 

algorithm based on NSGA-III to plan the motion parameters under these conditions. The calculated results are 

presented in Table 10. 

Table 10  The non-dominated solution computation results in ocean current environment. 

Case 
Angle 

(rad) 

Velocity 

(m/s) 
𝑚𝑏𝑑1 (kg) 𝑚𝑏𝑑2 (kg) 𝑥𝑟𝑑1 (m) 𝑥𝑟𝑑2 (m) 

Energy 

(KJ) 

Time 

(s) 
n 

1 ±0.4437 0.4517 -0.197 0.216 0.0102 -0.0085 56.90 11848 4 

2 ±0.6083 1.4432 -0.928 0.925 0.0235 -0.0214 285.19 4254.9 6 

3 ±0.5314 1.2261 -0.7019 0.7191 0.0132 -0.0149 174.73 4628.8 5 

 

 

Fig. 15  Bi-objective optimization resulting in Pareto frontier in an ocean current environment 

Figure 15 illustrates the Pareto frontiers derived from the trio of computational analyses. Figure 16 

presents the triad of strategically planned paths, each numerically optimized for countercurrent conditions. 
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Fig. 16  Optimized multi-profile gliding path in ocean current environment 

In the scenario of countercurrent conditions, the vehicle exhibits an increased relative motion speed with 

respect to the fluid, accompanied by a reduced motion angle, a phenomenon that is encapsulated in the 

formulated equations. Furthermore, the results from numerical simulations indicate that countercurrent 

conditions markedly augment the total energy expenditure of the underwater vehicle. 

6. Conclusion 

In this paper, a detailed study on the dynamic modelling of the gliding mode and path planning under 

ocean current conditions for a manta ray-inspired underwater vehicle is presented. The comprehensive system 

motion control model is formulated, incorporating the driving acceleration of the movable mass and the rate 

of change in the net buoyancy adjustment as control inputs. The proposed state-space model can improve the 

control accuracy. The focus on acceleration control enables a more refined management of the system’s 

dynamics, which is particularly vital in scenarios demanding rapid response. Moreover, this methodology 

affords a more precise portrayal of the system’s motion status, leading to augmented dynamic control 

capabilities, and yields an intuitive, readily analysable, and implementable mathematical model for future 

research endeavours. Subsequently, leveraging the aforementioned dynamic model, the study of the steady-

state motion within a two-dimensional plane is conducted. The influence of ocean currents on a vehicle's 

steady-state gliding motion is meticulously analysed. The analysis results indicate that, under downcurrent 

conditions, the ocean current diminishes the vehicle's relative speed to the fluid and augments the relative 

angle, whereas under countercurrent conditions, it escalates the relative speed and reduces the relative angle. 

The system model established in this study, which takes the adjustment rates of the controllers as control 

inputs, enables a more accurate description of the system's dynamic response. Compared to traditional 

methods that directly calculate system states based on the position of the sliding mass, our approach employs 

momentum conservation to establish the real-time interaction between the moving mass and the body. This 

renders the entire control process more representative of actual physical scenarios. The developed model 

provides an intuitive, analytically tractable, and easily implementable mathematical framework for future 

research. 

Then, performance evaluation indicators for underwater gliding motion are developed through the 

derivation of dynamic equations. The motion process is characterized through the evaluation of energy 

consumption, time consumption, and detection range parameters. The analytical calculations reveal inherent 

contradictions among the various evaluation functions. Ultimately, comprehensive motion strategies are 

formulated, culminating in the establishment of a path planning process tailored for the vehicle gliding mode. 
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By integrating an evaluation model, the planning challenge is transformed into a multi-objective optimization 

problem, adeptly addressed using an NSGA-III based multi-objective optimization algorithm. 

The numerical simulation results indicate that for single-profile gliding path planning, the proposed 

method reveals the conflicting relationships among the three performance indicators. Furthermore, based on 

the optimization algorithm's calculations, we can derive path planning solutions that satisfy different 

requirements. Similarly, in multi-profile motion planning, the Pareto front intuitively demonstrates the trade-

off relationship between energy consumption and time consumption. Our path planning algorithm effectively 

identifies paths that balance these conflicting objectives, providing options for selection. This validates the 

effectiveness of the proposed path planning framework, which is capable of rapidly generating paths tailored 

to different objectives under both ocean current and non-current conditions. Additionally, the computational 

results further confirm the accuracy of the steady-state analysis in ocean current environments. Moreover, in 

multi-profile motion, the number of profiles n has the most significant impact on energy consumption, with 

higher profile numbers leading to greater energy consumption. 

This study delves into the dynamic mechanisms underlying the impact of ocean currents on the gliding 

mode of a manta ray-inspired underwater vehicle, culminating in the establishment of steady-state gliding 

equations. Furthermore, it proposes a path optimization process for the vehicle, offering substantial theoretical 

guidance for analogous underwater vehicles. 

This paper provides a relatively comprehensive theoretical research framework. However, there remains 

significant work to be carried out. Our future efforts will focus on conducting motion control research based 

on the dynamic system control model proposed in this study, to address the challenges posed by complex 

ocean environments. Additionally, we will validate the proposed research methods through underwater 

experiments using our engineering prototype, further refining the path planning research for underwater 

gliders. 
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NOMENCLATURE 

𝐵 = (𝑚ℎ +𝑚𝑏 +𝑚𝑟 −𝑚)𝑔 the net buoyancy of the vehicle 

𝐷 the width of the body 

(𝑭𝒇 𝑻𝒇)𝑇 
𝑭𝒇 = (𝐹𝑓𝑥 𝐹𝑓𝑦 𝐹𝑓𝑧)𝑇, 𝑻𝒇 = (𝑇𝑓𝑥 𝑇𝑓𝑦 𝑇𝑓𝑧)𝑇 the hydrodynamic 

forces and torques on the body in the flow frame 

(𝑭𝒃 𝑻𝒃)
𝑇 

𝑭𝑏 = (𝑋𝑏 𝑌𝑏 𝑍𝑏)
𝑇, 𝑻𝒇 = (𝐾𝑓 𝑀𝑓 𝑁𝑓)𝑇, the hydrodynamic forces 

and torques on the body in the body frame 

(𝑭𝒆 𝑻𝒆)
𝑇 

𝑭𝒆 = (𝑋𝑒 𝑌𝑒 𝑍𝑒)
𝑇, 𝑻𝒆 = (𝐾𝑒 𝑀𝑒 𝑁𝑒)

𝑇 the hydrodynamic forces 

and torques on the body in the inertial frame 

𝑰𝒂 added inertia tensor matrix of the body 

𝑰𝒔 inertia tensor matrix of the static mass in the body frame 

𝑰𝒓 inertia tensor matrix of the movable block in the frame of movable block 

𝐿 the length of the body 

𝑴𝒂 added mass matrix of the body 

𝑴𝒔 mass matrix of the static mass 

𝑴𝒏, 𝑰𝒏 
the generalized system mass matrix and the generalized system inertia 

tensor matrix 
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𝑚,𝑚𝑠, 𝑚𝑏 ,𝑚𝑟 , 𝑚ℎ 

𝑚𝑠 = 𝑚ℎ +𝑚𝑏 

the vehicle displacement mass, the static mass, the mass of the 

adjustable net buoyancy, the mass of the movable block, and the mass of 

the static hull 

𝑵 = (𝑽 𝑾)𝑇 
𝑽 = (𝑥 𝑦 𝑧)𝑇 the position of the body in the inertial frame, 𝑾 =
(𝜙 𝜃 𝜑)𝑇 the attitude of the body in the inertial frame 

𝒏 = (𝒗 𝒘)𝑇 

𝒗 = (𝑣1 𝑣2 𝑣3)𝑇 the linear velocity of the body in the body frame, 

𝒘 = (𝑤1 𝑤2 𝑤3)𝑇 the angular velocity of the body in the body 

frame 

𝑂𝑒(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) the inertial frame 

𝑂𝑏(𝑋𝑏 , 𝑌𝑏 , 𝑍𝑏) the body frame 

𝑂𝑟(𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟) the local frame of movable block 

𝑂𝑓(𝑋𝑓, 𝑌𝑓 , 𝑍𝑓) the flow frame 

𝑷𝒓𝒃 = (𝑃𝑟𝑏𝑥 𝑃𝑟𝑏𝑦 𝑃𝑟𝑏𝑧)𝑇, 

𝑳𝒓𝒃 = (𝐿𝑟𝑏𝑥 𝐿𝑟𝑏𝑦 𝐿𝑟𝑏𝑧)𝑇 

linear momentum and angular momentum of the movable block in the 

body frame 

𝑷𝒓 = (𝑃𝑟𝑥 𝑃𝑟𝑦 𝑃𝑟𝑧)𝑇, 

𝑳𝒓 = (𝐿𝑟𝑥 𝐿𝑟𝑦 𝐿𝑟𝑧)𝑇 

linear momentum and angular momentum of the movable block in the 

frame of movable block 

𝑹𝟏 rotation matrix linear velocity from the body frame to the inertial frame 

𝑹𝟐 
rotation matrix angular velocity from the body frame to the inertial 

frame 

𝑹𝟑 rotation matrix from the movable block frame to the body frame 

𝑹𝟒 rotation matrix from the flow frame to the body frame 

𝑹s = (𝑥𝑠 𝑦𝑠 𝑧𝑠)𝑇, 

𝑹𝒃 = (𝑥𝑏 𝑦𝑏 𝑧𝑏)𝑇, 

𝑹𝐫 = (𝑥𝑟 𝑦𝑟 𝑧𝑟)𝑇, 

𝑹𝒉 = (𝑥ℎ 𝑦ℎ 𝑧ℎ)𝑇 

coordinates of the center of mass for the static mass, the buoyancy 

adjustment device, the movable block, and the static hull in the body 

frame 

𝑟 
distance from the center of mass of the movable block to the X-axis in 

the body frame 

𝑽𝒄, 𝒗𝒄 ocean current velocity in the inertial frame and the body frame 

𝒗𝒓 = (𝑣𝑟𝑥 𝑣𝑟𝑦 𝑣𝑟𝑧)𝑇 relative velocity of the movable mass in the body frame 

𝒘𝒓 = (𝑤𝑟𝑥 𝑤𝑟𝑦 𝑤𝑟𝑧)𝑇 relative angular velocity of the movable mass in the body frame 

𝛼 the attack angle 

𝛽 the slip angle  

𝜼𝒆 = (𝑷𝒆 𝑳𝒆)
𝑇 

𝑷𝒆 linear momentum of the static mass in the inertial frame, 

𝑳𝒆 angular momentum of the static mass in the inertial frame 

𝜼𝒃 = (𝑷𝒃 𝑳𝒃)
𝑇 

𝑷𝒃 linear momentum of the static mass in the body frame, 

𝑳𝒃 angular momentum of the static mass in the body frame 

𝜆 rotation angle of the movable mass about the X-axis in the body frame 
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APPENDIX 

This section presents the Pareto frontiers obtained from multiple optimization computations conducted 

in this study. Specifically, Figures 17 and 18 illustrate the optimization results of a single profile under static 

water conditions using MOPSO and NSGA-III, respectively. Figure 19 depicts the optimization results of a 

single profile motion under downstream flow conditions using NSGA-III. 

 

Fig. 17  Pareto frontier of multi-objective optimization for the single-profile using MOPSO. 

 
Fig. 18  Pareto frontier of multi-objective optimization for the single-profile using NSGA-III. 

 
Fig. 19  Pareto frontier of multi-objective optimization for the single-profile in current conditions. 

Figure 20 presents the optimization results of multiple profile motions under static water conditions 

using NSGA-III. Figure 21 illustrates the optimization results of multiple profile motions under counterflow 

conditions using NSGA-III. 

  



Y. Zhang et al. Brodogradnja Volume 76 Number 2 (2025) 76208 

 

35 

 

 
Fig. 20  Pareto frontier of multi-objective optimization for the long-range multi-profile. 

 
Fig. 21  Pareto frontier of multi-objective optimization for the long-range multi-profile in current conditions. 


