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A B S T R A C T  

Dual fuel engines are crucial for ensuring the safe navigation of ships. Predicting the 

working status of these engines can provide advanced knowledge of their condition 

and thereby guarantee safe navigation. In this study, a novel deep learning model, the 

CNN-BiLSTM-KAN, was designed to forecast exhaust gas temperature (EGT) in dual 

fuel engines operating in gas mode. The model integrated convolutional neural 

networks (CNN), bidirectional long short-term memory (BiLSTM) networks, and 

Kolmogorov-Arnold networks (KAN) to perform feature extraction from multi-

dimensional time series data, autonomously identify temporal patterns within the data, 

and directly learn parameterized nonlinear activation functions, respectively. The 

results reveal that the model obtained a mean square error (MSE) of 0.000051, a root 

mean square error (RMSE) of 0.007135, a mean absolute error (MAE) of 0.003185, 

and a mean absolute percentage error (MAPE) of 0.000386. The proposed model 

demonstrated higher accuracy compared to other forecasting models. Additionally, 

residual value distribution curves and statistical process control methods were 

employed to set alarm thresholds for residuals. A sliding window approach was used 

to establish the alarm threshold for residual standard deviation, with an upper boundary 

of the residual threshold set at 0.15 and a lower boundary at -0.1. The upper boundary 

of the residual standard deviation was set at 0.343. Furthermore, the model was 

validated through a fault dataset. The findings suggest that this approach effectively 

achieved fault warnings for marine dual-fuel engines. This research provides new 

references for studies on fault prediction and health management of dual-fuel engines 

for ships.

1. Introduction 

The engine is crucial to the power plant of a ship, and its safety can directly affect the operation of the 

ship, [1]. Networked construction is becoming increasingly advanced in the field of ship maintenance and 

support attributed to the rapid progress and widespread application of computer technology and artificial 

intelligence technology. It provides valuable reference and solid technical support for the development of ship 

intelligence while reinforcing the importance of ship maintenance and supporting system management in 

modern economic development and safety assurance [2]. Compared with marine diesel engines, dual fuel 

engines with the highest economy and low emissions have become one of the vital technical measures to 
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comply with the strict economic and emission regulations of the International Maritime Organization in the 

future [3]. Therefore, there is a huge demand in the domestic and international markets. However, dual-fuel 

engines, which have complex structures and diverse operating modes, are influenced by sea temperature and 

humidity, resulting in a relatively humid operating environment and harsh working conditions. The existing 

maintenance methods primarily include two categories: post maintenance and preventive maintenance. Post 

maintenance and preventive maintenance have the phenomenon of "insufficient maintenance" and over 

maintenance of equipment, respectively [4-5]. Conventional monitoring and alarm technologies are incapable 

of providing early warning of faults or sending out alarm signals in advance before faults occur [6]. 

Additionally, current research on marine engines focuses on diesel engines, and there is little research on dual-

fuel engines [7]. Many studies and innovations have been performed on dual-fuel engine fault prediction 

technology to guarantee that dual-fuel engines can provide safe, reliable, and continuous power, reduce the 

possibility of threatening the safety of ship personnel and property, and achieve an early understanding of 

faults before they occur [8-10]. Therefore, it is of great significance to investigate the warning technologies 

for marine dual-fuel engines. 

At present, fault diagnosis methods typically include physics-based [11], expert system-based [12], and 

data-driven approaches [13]. The physics approach requires the construction of precise mathematical or 

physical models to describe the predicted object [14]. However, ship equipment is generally in a constantly 

changing situation, rendering it difficult to build accurate models. With the knowledge of domain experts, the 

expert system approach predicts failures through experience and logic. This approach commonly requires 

significant expert experience and knowledge accumulation. Improved methods such as combining expert 

systems with neural networks [15] and fusing expert systems with fault trees [16] have also been proposed. 

The data-driven approach can be employed to collect historical operational data of devices [17], and process 

and analyse the data with algorithms to establish a fault warning model, thereby achieving fault warning. As 

various intelligent algorithms achieving good results in various fields, fault warning based on data methods 

has gradually attracted many researchers’ attention [18] and has been introduced into the fault warning of ship 

equipment. 

Exhaust gas temperature (EGT) is one of the critical thermodynamic performance parameters of marine 

dual fuel engines for evaluating and optimizing the performance of marine dual fuel engines [19]. It is related 

to multiple aspects such as combustion efficiency, emission control, thermal management, and power output 

of the engine, involves. extensive status information on dual-fuel engines and reflects the combustion and 

dynamic characteristics of dual-fuel engines [20]. The surveillance and forecasting of EGT in dual-fuel 

engines can provide real-time insights into their health status owing to the characteristics of slow changes in 

EGT, minimal interference, and pronounced fault signals [21]. This allows for fast identification of potential 

faults and timely measurement to address them. 

Ozsari et al. [22] employed artificial neural networks to forecast engine power and emissions for 

container ships, cargo ships, and oil tankers, experimenting with various configurations of hidden neurons to 

refine the model structure. The analysis yielded highly accurate results in terms of MSE and MAPE for both 

regression and error metrics. Yao et al. [23] introduced a deep transfer reinforcement learning framework with 

long short-term memory (LSTM) networks to manage the challenges of RUL prediction in scenarios with 

scarce fault data. They transferred a deep reinforcement learning model, initially trained on fault data, to a 

new RUL prediction instrument. This method demonstrates high accuracy and good adaptability.  

Sahu et al. [24] established a pioneering method to estimate the RUL of bearings through the integration of a 

health indicator with the LSTM deep learning model. The experimental results confirmed the superior 

performance of the method. Lin et al. [25] proposed a prediction mechanism combining the random forest 

method and LSTM for the predictive maintenance of wind turbines. The forecast model, with certain 

advantages in prediction accuracy and recall rate, can effectively anticipate wind turbine malfunctions.  

Batool et al. [26] applied deep learning techniques to software fault prediction and forecasted software faults 

using LSTM, bidirectional LSTM (BiLSTM), and radial basis function network (RBFN). The findings suggest 

that while LSTM and BiLSTM outperformed in accuracy, RBFN offered swift predictions, contributing to a 

more precise and efficient approach to software defect forecasting. 
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Bazai et al. [27] adopted two techniques to predict the behaviour of complex systems such as fluidized 

beds: computational fluid dynamics (CFD) and convolutional neural networks (CNN). They revealed that the 

combination of these two techniques enabled CNN to learn faster and better while lowering the amount of 

computation, making the entire process more efficient. Bai et al. [28] established a novel network called the 

time convolutional network (TCN) based on dilated convolution and residual connection design. Through 

multiple experiments, they verified that this method performed significantly better than general cyclic 

architectures in complex sequence modelling tasks. Haung et al. [29] proposed a novel periodic time series 

forecasting model grounded in DA-RNN to overcome the shortcomings of existing deep learning models in 

handling periodic and long-distance dependency sequences. The proposed model has advantages in capturing 

the periodicity and long-range dependency features of sequences. Wadie Bendali et al. [30] combined a Deep 

Echo State Network with a Binary Genetic Algorithm to develop predictions of energy consumption over 

different time ranges. The proposed model demonstrated a faster processing speed. In different time ranges of 

prediction, the error index is the best. Jiang et al. [31] designed an enhanced slime mold algorithm (SMA) to 

optimize the interpolation points of the trajectory modelling, managing the precise demands for trajectory 

tracking control of autonomous underwater vehicles. This improved SMA was compared with the artificial 

fish swarm algorithm, particle swarm optimization, and compact cuckoo search, unveiling that the refined 

SMA shortened the search duration, efficiently sidestepped local optima, and produced high-precision 

trajectory models more quickly. Zhang et al. [32] proposed a new method to simulate and monitor the dynamic 

performance of high-speed bearings. Combining short time Fourier transform (STFT) with Convolutional 

Neural Networks and incorporating Multi-Head Attention Mechanism provide an innovative perspective for 

fault diagnosis and performance evaluation of high-speed bearings in complex production environments. 

In existing research, fault warning methods typically consist of state forecasting and state  

classification, [33]. The latter requires a lot of fault data, whereas there is very little early fault data for marine 

dual-fuel engines. Therefore, a CNN-BiLSTM-KAN-based state forecast model was introduced in this paper 

to forecast the EGT of marine dual-fuel engines in gas mode. Specifically, statistical methods were employed 

to examine the discrepancies between predicted and actual values, known as residual, and set a residual alarm 

limit. Attributed to the limitations of the model itself, significant differences between predicted and actual 

values appear even under normal conditions, bringing about erroneous alarms. With the purpose of avoiding 

this situation, the sliding window algorithm was adopted to determine the standard deviation of residuals, and 

the alarm threshold was set accordingly. The system only triggered an alert when both the residual and its 

standard deviation surpassed the predefined limits. Finally, the effectiveness of this method was validated 

through experiments. 

The rest of this paper is organized as follows. Section 2 introduces the deep learning theory used, 

including CNN, BiLSTM, and KAN. Section 3 details the source of predicted sample data and the procedures 

for data pre-processing. Particularly, the construction of the forecast model involved the optimal selection of 

hyperparameters and verified the advantages of the established marine dual fuel engine fault warning model 

through comparative experiments. In Section 4 of the fault warning, a method for determining the alarm 

threshold is provided and validated through experimentation. Finally, conclusions and outlook are drawn in 

Section 5. 

2. Deep learning model theory 

2.1 Convolutional neural network (CNN) 

CNN primarily comprises input layer, convolutional layer, pooling layer, fully connected layer, output 

layer, and activation function [34], as depicted in Figure 1. CNN can automatically learn features and patterns 

suitable for specific tasks without manually designing features while minimizing the number of parameters by 

utilizing shared convolutional kernels, hereby lessening the model's complexity and computational  

demands, [35]. Moreover, it can automatically extract feature information, effectively avoiding manual feature 

extraction, [36]. 
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Fig. 1  Structure diagram of Convolutional Neural Network 

The convolutional layer and pooling layer constitute the feature extractor of CNN [37]. In convolutional 

layers, each neuron only connects adjacent neurons, and each convolutional layer contains several feature 

maps composed of rectangular units [38]. In the same feature map, each node shares a weight, which is the 

convolution kernel. The initialization of it applies a random decimal matrix, which is trained to obtain 

appropriate weights [39]. Its core advantage lies in that it can effectively curtail the connections between 

different levels and minimize the risk of overfitting. The pooling layer consists of both average and maximum 

pooling. Pooling is essentially a special convolution operation that significantly diminishes the complexity of 

the model and the number of parameters it contains. The fully connected layer synthesizes the features gleaned 

from the convolutional and pooling layers for classification, recognition, or forecast. 

Through convolution, pooling operations, and weight sharing, CNN can better capture local features in 

feature data, revealing the advantages in feature extraction of data. One-dimensional convolutional neural 

networks (1DCNNs) are particularly adopted to analyse time series data, a domain where traditional two-

dimensional CNNs (2DCNNs) are not well-suited due to dimensionality mismatch. These 1DCNNs excel at 

extracting local features from time series and thus reinforce the precision and reliability of forecast  

models, [40]. 

 

Fig. 2  The schematic diagram of the LSTM structure 
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2.2 Long short-term memory network (LSTM) 

LSTM, based on Recurrent Neural Networks (RNN), solves the short-term memory deficiency that 

exists when processing sequential data [41]. The structure of LSTM is illustrated in Figure 2. LSTM controls 

the storage, updating, and discarding of memory states through three gate structures: input gate, output gate, 

and forget gate. Additionally, there is a storage long-term memory control unit 𝐶. The advantage of LSTM is 

that it selectively remembers both long-term and short-term information from multiple time series through 

gate structures. Since the storage long-term memory control unit 𝐶 in LSTM, similar to a conveyor belt, only 

performs a small amount of information exchange, the information can remain relatively stable during 

transmission and will not undergo significant changes [42]. 

In the figure, 𝑥𝑡  denotes the input value at the current time; ℎ𝑡−1  indicates the output value of the 

previous moment; 𝐶𝑡−1  represents the state of the memory control unit from the previous moment; ℎ𝑡 

embodies the output value at the current time; 𝐶𝑡 refers to the current state of the memory control unit. Besides, 

𝑓𝑡, 𝑖𝑡, 𝐶𝑡
′ , and 𝑂𝑡 form the gate computing structure of the LSTM network, describing the forget gate, the 

memory gate, the temporary cell state, and the output gate, respectively. 𝜎 expresses the activation function 

sigmoid and tanh is the hyperbolic tangent function operation. The operation process of LSTM is to forget 

the information of neurons and retain new information, transmit valuable information for subsequent 

operations, remove unnecessary information, and output the hidden state ℎ𝑡 at each step. The forget gate 𝑓𝑡, 
memory gate 𝑖𝑡, and output gate 𝑂𝑡 in an LSTM architecture are responsible for managing the forgetting, 

memory retention, and output functions, respectively. These gates are derived from the interaction between 

the previous hidden layer state ℎ𝑡−1 and the current input 𝑥𝑡 [43]. The calculation formula is: 

{
 
 
 
 
 

 
 
 
 
 𝜎(𝑥) =

1

1 − 𝑒−𝑥

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

𝑓𝑡 = 𝜎(𝑊𝑓
𝑇 × ℎ𝑡−1 + 𝑈𝑓

𝑇 × 𝑥𝑡 + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖
𝑇 × ℎ𝑡−1 + 𝑈𝑖

𝑇 × 𝑥𝑡 + 𝑏𝑖)

𝐶𝑡
′ = tanh(𝑊𝑐

𝑇 × ℎ𝑡−1 + 𝑈𝑐
𝑇 × 𝑥𝑡 + 𝑏𝑐)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡
′

𝑂𝑡 = 𝜎(𝑊𝑜
𝑇 × ℎ𝑡−1 + 𝑈𝑜

𝑇 × 𝑥𝑡 + 𝑏𝑜)
ℎ𝑡 = 𝑂𝑡 ∗ tanh( 𝐶𝑡)

 (1) 

where 𝑊 and 𝑈 represent the weight parameters corresponding to the gate structure, and 𝑏 denotes bias. 

Compared with RNN, LSTM is particularly suitable for processing sequence data with large time spans 

and can effectively address long-term dependency issues. It has excellent data-fitting ability, high robustness, 

and wide applicability [44]. Besides, the recurrent layers of LSTM adopt the same network parameters and do 

not change as the time series span increases. 

2.3 Bidirectional long short-term memory neural network (BiLSTM) 

Since the operating status of ship engines is influenced by both historical and forthcoming information, 

traditional LSTM can only apply historical information to predict future state outputs and cannot obtain 

previous information from later information. Given this issue, a bidirectional LSTM has been proposed [45]. 

BiLSTM integrates past and future information and comprehensively analyses time series data through 

forward and backward propagation mechanisms to more accurately predict the current operating status of ship 

engines [46] and capture bidirectional temporal dependencies [47]. Therefore, BiLSTM can provide more 

representative feature representations, stronger modelling capabilities, and more accurate prediction 

capabilities in marine engine fault prediction problems, making it an effective model structure. The BiLSTM 

structure diagram is illustrated in Figure 3. 
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Fig. 3  Structure of a bidirectional long short-term memory neural network 

As observed from Figure 3, the input sequence is fed into both the backward LSTM's hidden layer ℎ𝑏𝑡 

and the forward LSTM's hidden layer ℎ𝑓𝑡. Subsequently, these two layers are merged and linked to the output 

layer to generate predictions, culminating in the BiLSTM model's output ℎ𝑡. The calculation formula is: 

{

ℎ𝑓𝑡 = 𝑓(𝑤1𝑥𝑡 + 𝑤2ℎ𝑓𝑡−1 + 𝑏𝑓𝑡)

ℎ𝑏𝑡 = 𝑓(𝑤3𝑥𝑡 + 𝑤5ℎ𝑏𝑡−1 + 𝑏𝑏𝑡)
ℎ𝑡 = 𝑔(𝑤4ℎ𝑓𝑡 + 𝑤6ℎ𝑏𝑡 + 𝑏𝑜𝑡)

 (2) 

where 𝑤1 denotes the weight coefficient from the input layer to the preceding LSTM; 𝑤2 signifies the weight 

coefficient among the forward LSTM unit layers; 𝑤3 indicates the weight coefficient from the input layer to 

the backward LSTM; 𝑤5 represents the weight coefficient between the layers of the backward LSTM unit; 𝑤4 

embodies the weight coefficient from the forward LSTM to the output layer ;𝑤6  stands for the weight 

coefficient from the backward LSTM to the output layer; 𝑏𝑓𝑡, 𝑏𝑏𝑡, and 𝑏𝑜𝑡 correspond to the bias matrices 

associated with their respective components. 

2.4 Kolmogorov–Arnold networks (KAN) 

KAN is based on the Kolmogorov Arnold representation theorem. It was proposed by two Russian 

mathematicians in 1957 to represent any continuous multivariate function using simple functions, expressed 

as [48]: 

𝑓(𝑥) = ∑ 𝛷𝑞

2𝑛+1

𝑞=1

(∑𝜙𝑞,𝑝(𝑥𝑝)

𝑛

𝑝=1

) (3) 

where 𝑥 refers to the input; 𝜙𝑞,𝑝(𝑥𝑝) denotes basic unary functions, and the inner layer summation is to put 

them together; 𝛷𝑞 represents the outer function, each accepting the sum of the inner layers as input. The outer 

summation ∑ indicates that the entire function 𝑓(𝑥) is the sum of the subfunctions 𝛷𝑞. 

The principle of the entire KAN network architecture is presented in Figure 4, where many sine functions 

similar to three-quarters of a period can be combined to fit any shape of function. 
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Fig. 4  Structure of Kolmogorov–Arnold Networks neural network 

Figure 4 demonstrates a combination of two scales or resolutions: coarse-grained and fine-grained grids, 

which more accurately capture and adapt to changes in the function while maintaining computational 

efficiency. 

The KAN layer is a one-dimensional function matrix, expressed as: 

Φ = {𝜙𝑞,𝑝},        𝑝 = 1, 2,⋯ , 𝑛𝑖𝑛,        𝑞 = 1, 2,⋯ , 𝑛𝑜𝑢𝑡 (4) 

Among them, function 𝜙𝑞,𝑝 has trainable parameters, the internal function forms a KAN layer of 𝑛𝑖𝑛 =

𝑛, 𝑛𝑜𝑢𝑡 = 2𝑛 + 1, and the external function forms a KAN layer of 𝑛𝑖𝑛 = 2𝑛 + 1 , 𝑛𝑜𝑢𝑡 = 1. Simply stacking 

them allows for deeper function. Simply put, it aims to find the transition matrix between the input and output 

of each layer, expressed as: 

𝑥𝑙+1 = 

(

 
 

   𝜙𝑙,1,1(⋅)         𝜙𝑙,1,2(⋅)      ⋯        𝜙𝑙,1,𝑛𝑙(⋅)  

   𝜙𝑙,2,1(⋅)         𝜙𝑙,2,2(⋅)      ⋯        𝜙𝑙,2,𝑛𝑙(⋅)  

       ⋮                   ⋮                           ⋮
  𝜙𝑙,𝑛𝑙+1,1(⋅)       𝜙𝑙,𝑛𝑙+1,2(⋅)     ⋯      𝜙𝑙,𝑛𝑙+1,𝑛𝑙(⋅))

 
 

⏟                              
𝛷𝑙

𝑥𝑙 (5) 

where 𝑙 denotes the layer number, with the right side and left side as the input and output, respectively. The 

left image in Figure 4 illustrates the corresponding relationship. Because the input is 2, the second layer  

has 2 ∗ 2 + 1 = 5 . Besides, 𝜙𝑙,𝑖,𝑗  denotes the activation function on each edge, which is a nonlinear 

transformation. It is equivalent to having 5 clones of each 𝑥 and then combining them separately. Among them, 

𝑖 and 𝑗 mark the nodes of the current layer and the next layer, respectively. The output of each node 𝑥𝑙,𝑖 is 

processed by activation function 𝜙𝑙,𝑖,𝑗 and contributes to the computation of all the next layers 𝑥𝑙+1,𝑗.The left 

figure in Figure 4 exhibits 2 nodes in the input layer and 5 nodes in the second layer, and thus the matrix  

is 5 ∗ 2. The first column of the matrix represents the 5 activation functions corresponding to 𝑥0,1, the second 

column corresponds to 𝑥0,2, and then they are combined pairwise. Notably, the number of nodes in the KAN 

network layer is determined by the number of input nodes n, which is 2𝑛 + 1, and the required parameters or 

connections are (2𝑛 + 1) ∗ 𝑛, which is significantly less than fully connected. 

Overall, the original two-layer KAN network had a shape of [𝑛, 2𝑛 + 1, 1]. Nonetheless, it has become 

a multi-layer cascade, further relaxing the structural constraint of 2𝑛 + 1 and enabling the number of hidden 

nodes to be freely determined. 
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3. Prediction process 

3.1 Data acquisition and processing 

The complete model of the W6X72DF marine dual fuel engine built using GT-POWER software is 

illustrated in Figure 5. The relevant technologies and performance parameters applied in the process of 

building the model were based on the diesel engine bench test report issued by HSD Engine, which was 

certified by China Classification Society and possesses the credibility and authority required for modelling. It 

has imperative reference significance for modelling and simulation research. 

 

Fig. 5  Engine simulation model in GT-POWER 

Following the engine bench test report issued by HSD Engine, the effectiveness of the engine simulation 

model was calibrated, verified, and validated in this study when the load is 25 %, 50 %, 75 %, and 100 % 

stable operation under two fuel modes. Notably, the fuel consumption of the engine when operating in gas 

mode is not calculated upon the consumption of diesel fuel under this operating condition. Instead, the total 

fuel consumption was calculated based on the minimum calorific value of the ignited diesel and natural gas 

consumed during operation under this operating condition. The low calorific value of diesel is 42.920 MJ/kg, 

and the low calorific value of natural gas is 47.555 MJ/kg. EGT refers to the EGT behind the cylinder. 
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(1) Diesel mode 

 

Fig. 6  Comparison between simulation value and experiment value in diesel mode 

Table 1  Simulation error of the diesel mode 

Load (%) 25 50 75 100 

Error (%) 

Power (kW) -1.44 1.67 -0.95 1.01 

Maximum combustion pressure (bar) 3.47 1.79 3.09 -0.06 

Fuel consumption rate (g/kWh) 1.41 -1.65 0.90 -0.11 

Intake pressure (bar) -0.30 1.54 0.02 -0.36 

Inlet temperature (K) 0.11 -1.45 -0.90 0.25 

Explosive pressure (bar) 3.45 1.77 3.07 -0.05 

Compression pressure (bar) 1.61 3.06 1.74 -1.18 

EGT (K) -0.55 -1.31 -0.91 -0.81 
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Fig. 7  The simulation error under different working conditions 

Figures 6 and 7, and Table 1 reveal that the simulation outcomes for the dual fuel engine model, which 

is developed for the steady diesel model, closely match the bench test data. The parameters such as power 

output, peak combustion pressure, fuel consumption, intake pressure, intake temperature, ignition pressure, 

compression pressure, and EGT exhibit minimal discrepancies, with all relative errors falling below 5 %. 

(2) Gas mode 

 

Fig. 8  Comparison between simulation value and experiment value in gas mode 
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Table 2  Simulation error of the gas mode 

Load (%) 25 50 75 100 

Error (%) 

Power (kW) 1.98 -3.35 -3.91 -4.02 

Maximum combustion pressure (bar) 0.58 -4.13 1.16 0.38 

Fuel consumption rate (g/kWh) -4.86 -0.62 3.10 3.80 

Intake pressure (bar) 1.93 1.04 1.39 -1.27 

Inlet temperature (K) -0.45 0.61 -1.30 -1.34 

Explosive pressure (bar) 0.58 -4.13 1.16 0.38 

Compression pressure (bar) 4.24 2.38 4.66 3.11 

EGT (K) -1.49 0.20 -0.79 -0.89 

 

Fig. 9  The simulation error under different working conditions 

Figures 8 and 9, and Table 2 demonstrate that the simulation outcomes for the dual fuel engine model, 

which is developed for the steady gas model, are consistent with the bench test data. The parameters such as 

power output, peak combustion pressure, fuel consumption, intake pressure, intake temperature, ignition 

pressure, compression pressure, and EGT exhibit minimal discrepancies, with all relative errors falling  

below 5 %. 

Therefore, the main performance parameter errors of the dual fuel engine simulation model built in both 

diesel and gas modes are within 5 %, implying that the engine simulation model can simulate real situations 

and should be further studied. 

Gas mode is the main operating mode distinguishing dual fuel engines from traditional diesel  

engines [49], Therefore, this paper focuses on modelling and simulation research of gas models. The 

comparison and error between simulation values and experimental values in fuel mode and gas mode suggest 

that the simulation model built has the best simulation effect at 100 % load. Hence, simulation analysis in gas 

mode at 100 % load was conducted. Additionally, a data point was recorded every 2 s for data simulation, 

with a total of 7200 data points selected, to decrease the number of calculations, improve processing speed, 

and simulate the real situation of dual-fuel engines as much as possible. This model of dual fuel engine has 

selected a total of 7 operational parameters, as detailed in Table 3. These thermodynamic parameters include 

extensive details regarding the engine's condition. EGT is indicative of combustion efficiency and overall 

engine performance. Excessively high EGT levels reflect either incomplete combustion or engine malfunction. 

The EGT after the turbine reveals the combustion efficiency. The concentration of NOx specifies the 
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combustion process and fuel quality. The outlet temperature of the cooler implies the circulation effect of the 

engine cooling water and the thermal load of the engine. Power indicates the operating status and fuel 

efficiency of the engine. The fuel consumption rate unveils the fuel economy and operating efficiency of the 

engine. The temperature at the compressor outlet demonstrates both the main engine's combustion efficiency 

and the operational condition of the compressor itself. 

Table 3  Table of characteristic parameter types for dual fuel engines 

Characteristic parameter Symbol Unit 

EGT T1 K 

EGT after turbine T2 K 

NOx concentration NOx ppm 

Cooler outlet temperature T3 K 

Power P kW 

Fuel consumption rate BSFC g/kWh 

Compressor outlet temperature T4 K 

A ship dual fuel engine EGT forecast dataset was established with the obtained data, with 70 % for 

training and 30 % for testing, to predict the ship dual fuel engine EGT and verify its effectiveness. Choosing 

input variables is crucial for constructing a prediction model. Considering that the EGT of dual-fuel engines 

is majorly predicted in this study, feature variables having a strong correlation with EGT should be selected 

when selecting input variables to minimize the model's input dimensionality and to avoid overfitting stemming 

from high input dimensionality. 

Pearson correlation coefficients (PCCs) quantify the correlation among various variables, with the 

strength of the relationship indicated by the magnitude of these coefficients [50], expressed as: 

𝑟𝑋,𝑌 =
∑ (𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
𝑛
𝑖=1

√∑ (𝑋𝑖 − 𝑋)2
𝑛
𝑖=1

√∑ (𝑌𝑖 − 𝑌)2
𝑛
𝑖=1

 
(6) 

where 𝑟𝑋,𝑌 represents the correlation size between variables 𝑋 and 𝑌, with a range of [-1,1]. The absolute value 

of 𝑟𝑋,𝑌 is directly proportional to the degree of correlation between variables. 𝑋𝑖 denotes the 𝑖-th sample in 

variable 𝑋; 𝑌𝑖 indicates the 𝑖-th sample in variable 𝑌; 𝑋embodies the average value of all samples in variable 

𝑋; 𝑌 refers to the average value of all samples in variable 𝑌. The evaluation indicators for PCCs are listed in 

Table 4. 

Table 4  The evaluation criteria for Pearson correlation 

The range of values for |𝑟| Relevance level 

|𝑟| ∈ [0.0,0.2) Very weakly correlated or unrelated 

|𝑟| ∈ [0.2,0.4) Weak correlation 

|𝑟| ∈ [0.4,0.6) Moderately related 

|𝑟| ∈ [0.6,0.8) Strong correlation 

|𝑟| ∈ [0.8,1.0] Very strongly correlated 

Table 5 presents the correlation degree between various thermodynamic parameters collected through 

PCCs analysis and EGT. According to Table 5, the coefficient dimension of EGT and nitrogen oxides after 

the turbine of the dual-fuel engine has the highest correlation with EGT. Furthermore, the correlation 

coefficients for the outlet temperature, power, fuel consumption rate, and EGT of the cooler are all above 0.7, 

verifying a strong correlation. Consequently, these five thermodynamic parameters are considered influential 
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factors and employed together with EGT as inputs for the prediction model to forecast the future trend of EGT 

changes. 

Table 5  Result of operating parameters correlation analysis 

Parameter type T1 T2 NOx T3 P BSFC T4 

T1 1 0.937 0.857 0.740 -0.738 0.727 0.149 

T2 0.937 1 0.650 0.476 -0.755 0.747 -0.202 

NOx 0.857 0.650 1 0.971 -0.715 0.704 0.585 

T3 0.740 0.476 0.971 1 -0.591 0.581 0.744 

P -0.738 -0.755 -0.715 -0.591 1 -1.000 0.018 

BSFC 0.727 0.747 0.704 0.581 -1.000 1 -0.026 

T4 0.149 -0.202 0.585 0.744 0.018 -0.026 1 

Given the disparate scales and substantial fluctuations among the parameters serving as inputs for the 

forecast model, all dataset variables should be standardized before their introduction into the model. The 

process of normalization is delineated by: 

𝑋𝑁 =
𝑋 − 𝑋1
𝑋2 − 𝑋1

 (7) 

where 𝑋𝑁 represents normalized data; 𝑋 denotes raw parameters; 𝑋2 and 𝑋1 stand for the upper and lower 

bounds of the parameters, respectively. 

Concerning the different input formats of different neural networks, the data must be transformed into a 

format that meets the requirements of the neural network. In this study, sliding window technology was 

utilized to adjust data, as depicted in Figure 10. Among them, 𝑥𝑖 represents the raw data of time 𝑖. Specifically, 

𝑥𝑖𝑗 is the value of the 𝑗-th feature at time 𝑖. Figure 10 suggests that the size of the window is 8, with the first 

six data (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) used as input samples and the remaining data (𝑥7, 𝑥8) in the window used as 

output labels. Then, the window one step is shifted to the right to obtain the next input sample and output label, 

contributing to the establishment of a complete dataset. Figure 11 displays the time serialization method, and 

the left image presents the original dataset, which contains 6 features. It is transformed into a matrix through 

a sliding window method to fulfil the input specifications of the prediction model. A 𝑠 indicates that each 

input sample contains historical data from the past 𝑠 time periods, and 𝑛 represents the number of features 

contained in the input data. In this paper, the value of 𝑛 is 6. 

 

Fig. 10  The sliding window method 
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Fig. 11  Data time serialization method 

Mahalanobis distance can be used to measure the gap between multivariate data and effectively tackle 

the issue of non-independent and non-identically distributed dimensions within high-dimensional linear 

datasets. In this experiment, this distance measure was utilized to identify and exclude outliers, which are data 

points markedly diverging from the norm. After correlation analysis, the Mahalanobis distance, which 

quantifies the separation between EGT and the remaining five features, is ascertained through the computation 

of this distance metric, expressed as: 

𝐷𝑀 = √(𝑥𝑖 − 𝑦𝑖)𝑆−1(𝑥𝑖 − 𝑦𝑖) (8) 

where 𝐷𝑀 indicates the calculated Mahalanobis distance; 𝑥𝑖 and 𝑦𝑖 refer to column vectors; 𝑆−1 describes the 

inverse matrix of covariance. 

The Chi-square test was performed to identify outliers within the EGT data. A total of 5 degrees of 

freedom was considered for the dataset. The critical value for Mahalanobis distance was set at a significance 

level of 0.005. The calculation formula for the Chi-square test is: 

𝑥2 =∑
(𝐴𝑖 − 𝑛𝑝𝑖)

2

𝑛𝑝𝑖

𝑘

𝑖=1

 (9) 

where 𝑥2 denotes the Chi-square degree of freedom, 𝐴𝑖 represents the cell observation value, and 𝑝𝑖 embodies 

the expected frequency of the cell. 

Since the Chi-square test calculates a Chi-square degree of freedom of 16.74960, the points with a 

Mahalanobis distance greater than 16.74960 are considered outliers. Through this method, 24 outlier points 

were successfully eliminated from the sample data, contributing to tackling the headache of inaccurate 

simulated engine operation data caused by the model itself and enhancing the accuracy of EGT forecasting. 

Missing values were fixed by the mean interpolation method to address the issue of intermittent temporal 

data after removing outliers. The general average interpolation method was employed to interpolate this 

attribute through the average value of all data. From a practical perspective, the exhaust data at a specific 

moment is closely related to its previous short-term data, while the original dataset is the data spanning a 

longer period of time. Using the average of the overall data for direct interpolation does not conform to natural 

laws. Therefore, an optimized window mean interpolation method was established in this study. 

The window size 𝑆 was manually set and adjusted according to the characteristics of the data. Starting 

from the missing values, 𝑆/2 sampling points were taken on each side. If the number of sampling points on 

one side is less than 𝑆/2, it will expand to the other side, keeping the number of sampling points within the 

window at 𝑆. As revealed in Figure 12, 𝑆 is 6, and three different situations exist. The six data points near 

missing 𝑛𝑢𝑙𝑙 are 𝑥𝑎, 𝑥𝑏, 𝑥𝑐, 𝑥𝑑, 𝑥𝑒 and 𝑥𝑓. Finally, the missing values were replaced with the calculated mean 

of the six data points. 
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Fig. 12  Three cases of missing value 

 

Fig. 13  Structure of the CNN-BiLSTM-KAN prediction model 

3.2 Prediction model 

The complexity requirements for fault warning of current marine dual fuel engines exceed the 

capabilities of traditional single neural networks. Therefore, a fault prediction method for marine dual-fuel 

engines was proposed in this paper based on the CNN-BiLSTM-KAN neural network. CNN can effectively 

capture local features in data, which are crucial for understanding the operational state of marine dual fuel 

engines based on their EGT. These local features lay a vital foundation for subsequent fault warnings. BiLSTM 

processes forward and backward temporal information simultaneously, enabling it to be well-suited for the 

time-series nature of EGT data. It can identify long-term dependencies within these sequences to enhance fault 
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prediction accuracy. The KAN layer directly learns parameterized nonlinear activation functions, further 

strengthening the expressiveness and generalization capabilities of the model. This enhancement also 

improves training efficiency and prediction accuracy. Overall, the CNN-BiLSTM-KAN model integrates the 

strengths of each component to effectively manage the complex EGT data from marine dual-fuel engines, to 

reinforce the accuracy and real-time performance of fault warnings. 

The combustion process of a marine dual-fuel engine in gas mode is influenced by multiple factors, such 

as fuel properties, substitution rate, load, and engine speed. Variations in these factors trigger fluctuations in 

EGT, complicating the prediction process. Additionally, EGT data demonstrate clear time-series 

characteristics, with changes affected by not only current operating conditions but also historical states. These 

dynamic changes necessitate models that can capture long-term dependencies for accurate temperature 

forecasting. Abnormal variations in EGT indicate potential failures, highlighting the importance of real-time 

monitoring and precise prediction. Since the EGT patterns of dual-fuel engines vary under different operating 

conditions, the model must possess robust feature extraction capabilities. Moreover, the complex operating 

environment of ships demands high real-time and accuracy standards for fault warnings, requiring the model 

to quickly and accurately detect anomalies and issue timely alerts. Considering these unique challenges of 

EGT prediction, the CNN-BiLSTM-KAN model is chosen for this study. The structure diagram of the  

CNN-BiLSTM-KAN forecasting model is displayed in Figure 13. 

3.3 Model evaluation indicators 

The precision and efficacy of the model were evaluated, and various models were compared to determine 

which one performed better. Furthermore, these metrics can be used to gradually improve the performance of 

the model. Four commonly used prediction evaluation indicators were selected, including MSE, RMSE, MAE, 

and MAPE. A lower value of these metrics indicates higher predictive accuracy. MSE measures the fit of a 

model by calculating the mean of the sum of squares of the difference between predicted and true values. 

RMSE evaluates the precision of predictions by taking the square root of the mean of these squared 

discrepancies. MAE denotes the mean of the absolute value of the difference between forecasts and true values. 

MAPE reflects the average relative error as a percentage and measures the proportionate error between 

predictions and actuals, independent of the scale of absolute errors. The formula is: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑀𝑆𝐸 =

1

𝑁
∑(𝑌̂𝑖 − 𝑌𝑖)

2

𝑁

𝑁=1

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌̂𝑖 − 𝑌𝑖)2
𝑁

𝑁=1

𝑀𝐴𝐸 =
1

𝑁
∑|𝑌̂𝑖 − 𝑌𝑖|

𝑁

𝑁=1

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑌̂𝑖 − 𝑌𝑖
𝑌𝑖

|

𝑁

𝑁=1

 (10) 

where 𝑌𝑖 represents the actual value of EGT; 𝑌̂𝑖 denotes the forecast value of EGT; 𝑁 refers to the number of 

samples in the test set. 

3.4 Neural network hyperparameter selection 

The neural network proposed in this paper has six input parameters, bringing about six neurons at the 

input level. Because the sole predicted output of the model is the EGT, there is a single neuron in the output 

layer. The architecture is composed of a CNN layer, a BiLSTM layer, and a KAN layer. Variables were 

controlled to refine the architecture of the BiLSTM model, to ascertain hyperparameters including the number 

of layers. When exploring the impact of model layers on performance, other parameters were kept constant 

and only the number of layers was adjusted to assess model efficacy. As suggested in the experimental results 
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in Table 6, all evaluation indicators reach their lowest when the BiLSTM model is set to 1 layer, demonstrating 

the best state. An increase in the number of layers leads to higher indicator values, suggesting overfitting. 

With the same approach, the optimal CNN-BiLSTM-KAN model was trained, with other parameter settings 

detailed in Table 7. 

Table 6  Outcomes of predictions of BiLSTM with different numbers of network layers 

BiLSTM network layers MAE RMSE MSE MAPE 

1 0.001532 0.002034 0.000004 0.002843 

2 0.001841 0.002449 0.000006 0.003437 

3 0.002426 0.003025 0.000009 0.004526 

4 0.002099 0.002759 0.000008 0.003919 

Table 7  CNN-BiLSTM-KAN network structure parameters 

Hyperparameter Name Optimal parameter values 

CNN layer 3 

CNN Kernel 3 

Activation function ReLU 

Pooling layer Max Pool 

LSTM layers 1 

Input size 6 

Hidden size 32 

Sequence length 8 

Batch size 100 

Epochs 1000 

Learning rate 0.005 

Dropout 0.4 

Loss MSE loss 

Optimizer Adam 

3.5 Prediction result analysis 

In this study, the processed multidimensional data were input into the established forecast model. The 

predicted results are presented in Figure 14. As observed in Figure 14, the output EGT of the prediction model 

appears a small deviation from the actual EGT value, in line with the actual value. The evaluation indicators 

for the predicted results are provided in Table 8, specifying that the CNN-BiLSTM-KAN forecasting model 

has high accuracy and precision. 

Table 8  Summary of the assessment of the predictive indicators of the combined model 

Evaluating indicator Optimal Model Evaluation Results 

MAE 0.003185 

RMSE 0.007135 

MSE 0.00005091 

MAPE 0.00038602 
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Fig. 14  CNN-BiLSTM-KAN prediction result graph 

 

Fig. 15  Comparing the results of different models 

The accuracy of the model was verified through experimental comparison to substantiate the efficacy 

and reliability of the combination forecast model introduced in this paper. The CNN-BiLSTM-KAN model 

was compared with eight alternative models: CNN, LSTM, BiLSTM, CNN-LSTM, CNN-BiLSTM, LSTM-

KAN, BiLSTM-KAN, and CNN-LSTM-KAN. Before experimental comparisons, the same standard dataset 

after data processing, was taken as the input dataset for each model, and the hyperparameters for the other 

models were aligned with those of the CNN-BiLSTM-KAN forecast model presented in this paper. These 

hyperparameters were obtained in the proposed model by the control variable method. Moreover, the 

hyperparameters included in the other comparison models were consistent with those of the proposed model 

to ensure that the influence of other factors is avoided in the model comparison experiments. This allows for 

a more accurate assessment of the prediction accuracy and training efficiency of the various models.  

Figure 15 illustrates the comparison of the prediction outcomes of various models. Figure 16 exhibits a scatter 
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diagram of predicted and true values from different models, with RMSE, R2, and linear fitting functions 

calculated. Among them, the black dashed line is the diagonal line used as a reference, and the red line is the 

straight line obtained from the scatter plot. 

 

Fig. 16  Scatter diagram of predicted values and true values from different models 
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The evaluation indicators for different models are presented in Table 9. 

Table 9  Overview of evaluation metrics for predictions across various models 

Prediction model MAE RMSE MSE MAPE 

CNN 0.584288 0.717325 0.514556 0.000902 

LSTM 0.609975 0.694120 0.481803 0.000942 

BiLSTM 0.543093 0.616961 0.380641 0.000838 

CNN-LSTM 0.442076 0.528623 0.279442 0.000683 

CNN-BiLSTM 0.478685 0.584917 0.342128 0.000739 

LSTM-KAN 0.003254 0.007843 0.000615 0.000463 

BiLSTM-KAN 0.003987 0.007251 0.000053 0.000616 

CNN-LSTM-KAN 0.008530 0.011211 0.000126 0.000565 

CNN-BiLSTM-KAN 0.003185 0.007135 0.000051 0.000386 

Figure 15 suggests that the CNN-BiLSTM-KAN forecast model outperforms other prediction models. 

Figure 16 demonstrates that the CNN-BiLSTM-KAN forecasting model exhibits the highest correlation with 

actual values, the best-fitting line, and the smallest dispersion. As observed from Table 9, the CNN-BiLSTM-

KAN model records the lowest error among the evaluation indices. In other words, the prediction results of 

the model have the smallest difference from the actual values and higher accuracy than other models. 

Furthermore, the residual box plot in Figure 17 reveals that the mean prediction error of all models in the 

experiment tends towards 0. Nonetheless, the CNN-BiLSTM-KAN model presents a markedly lower 

prediction error. In conclusion, CNN-BiLSTM-KAN has high predictive accuracy and significant advantages 

in time series data prediction, meeting the basic application of dual fuel engine EGT time series prediction. 

Particularly, the excellent feature extraction capability of the CNN layer, the good time series modeling 

capability of the BiLSTM layer, and the unique parametric nonlinear activation function of the KAN layer 

allow the proposed model to manage complex time series more comprehensively compared with other models. 

Moreover, the exhaust temperature of the marine dual-fuel engine is affected by various factors, and the model 

can automatically learn the relationship between these complex factors, making it more compatible with the 

experimental dataset. 

 

Fig. 17  Residual box line plots for different models 
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4. Research on fault warning 

4.1 Warning indicator setting 

The setting of warning indicators is a crucial aspect of ship fault warning research. Too high values of 

these indicators can impede timely alerts in the early stages of ship equipment failures. If the warning indicator 

has too low values, false alarms will occur when there are small fluctuations in equipment load. 

Feature selection is performed in this paper to simulate the normal operation data of a dual-fuel ship 

engine simulation model built with simulation software. The five thermodynamic parameters exerting the 

highest impact on EGT are selected as inputs for the proposed model, and the predicted value of EGT for the 

dual-fuel engine is obtained. The proposed real-time monitoring method for EGT of dual fuel ship engines 

can achieve a rapid evaluation of the stability and accuracy of dual fuel ship engines, ensuring the realization 

of fault warnings for dual fuel ship engines. During normal operation, the EGT of a dual-fuel engine is 

generally maintained at a relatively constant level, enabling the forecast model to accurately predict the EGT 

and maintain a small prediction error. Nevertheless, once there is a potential malfunction in the engine, the 

severity of the malfunction will gradually increase with the extension of operating time, and the EGT will 

exceed the normal fluctuation range, leading to a decrease in the accuracy of the prediction model. Therefore, 

residual value distribution curves and statistical methods are adopted to establish the upper and lower bounds 

for residual values [51]. Since few residual values deviate significantly beyond the set threshold range, the 

sliding window method is utilized to obtain the standard deviation of each window residual distribution, and 

a threshold upper limit for the standard deviation is established. The warning index for EGT of dual fuel ship 

engines is set following two calculated thresholds. The standard deviation of a sliding window is calculated 

by: 

𝑆 = √
1

𝑁 − 1
∑(𝑒𝑖 − 𝑋)2
𝑁

𝑖=1

 (11) 

where 𝑁  denotes the sliding window's size; 𝑒𝑖  signifies the residual value at position 𝑖  of the window; 𝑋 

indicates the average of all residual values within the window. 

Figure 18 displays the residual distribution curve derived from the prediction outcomes of the simulated 

normal operating data through the simulation model. As observed in Figure 18, the residuals generally vary 

between -0.1 and 0.15 when predictions are compared to actual values. The residual numbers of each region 

in Table 10 unveil that the cumulative percentage of residual numbers within the range of -0.1 to 0.15 is  

over 99 %. Thus, under normal conditions, there is a 99 % probability that the discrepancy between predicted 

and actual values falls within the range of -0.1 to 0.15. 

Consequently, the upper threshold and lower threshold for the alert indicator are established  

at 0.15 and -0.1, respectively, as depicted in Figure 19. The figure demonstrates that most of the residual 

values are included within the established boundary range, whereas a small portion exceeds the range, and a 

very small number is far from the range. This difference may stem from the model itself, leading to false 

alarms. Standard deviation serves as a widely recognized metric for quantifying the dispersion within a dataset. 

Hence, sliding windows are employed to examine the residual distribution and compute the standard deviation 

of these residuals. Following practical knowledge, a window size of 30 is designated for calculating the 

standard deviation of residual values. Figure 20 illustrates the trend of the residual standard deviation from 

this processing. The highest value of standard deviation is 0.343 when the dual-fuel ship engine operates under 

stable conditions. Therefore, the residual alert range for dual fuel ship engines is -0.1~0.15, and the alert 

threshold for residual standard deviation is 0.343. The alarm will only be triggered when both alert values are 

surpassed simultaneously. 
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Fig. 18  Residual Distribution Chart 

Table 10  Number and cumulative percentage of residual values in different intervals 

Interval Quantity 
Cumulative 

Percentage 
Interval Quantity 

Cumulative 

Percentage 

−0.3 ≤ 𝑅 < −0.25 0 0 0 ≤ 𝑅 < 0.05 824 89.05923 

−0.25 ≤ 𝑅 < −0.2 1 0.06969 0.05 ≤ 𝑅 < 0.1 133 98.32753 

−0.2 ≤ 𝑅 < −0.15 1 0.13937 0.1 ≤ 𝑅 < 0.15 12 99.16376 

−0.15 ≤ 𝑅 < −0.1 0 0.13937 0.15 ≤ 𝑅 < 0.2 4 99.44251 

−0.1 ≤ 𝑅 < 0.05 15 1.18467 0.2 ≤ 𝑅 < 0.25 3 99.65157 

−0.05 ≤ 𝑅 < 0 437 31.63763 0.25 ≤ 𝑅 < 0.3 1 99.72125 

 

Fig. 19  Residual value threshold setting 
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Fig. 20  Standard deviation curve of residuals 

4.2 Verification of warning function 

Fault data is required to substantiate the efficacy of the proposed fault alert methodology. The typical 

faults of dual-fuel engines primarily include fuel supply pump failure, gas supply delay failure, and gas filter 

blockage failure. In this paper, gas supply delay failure is selected to validate the effectiveness of the suggested 

approach. The fault data can be obtained by simulating the gas supply delay fault in the built dual fuel engine 

simulation model. The specific operation is performed to modify the parameters of the crankshaft angle 

Injection-timing-Gas corresponding to the gas supply for simulating the actual situation of gas supply delay. 

Figure 21 demonstrates that all residual values are within the set range before sample point 1321. After 

the introduction of fault data at sample point 1321, the residual values begin to increase sharply, exceeding 

the set range. Figure 22 reveals that the residual value is within the set range, even though the standard 

deviation of the residuals has exceeded the set threshold at sample point 1261. Hence, the fault warning will 

not appear until sample point 1321. After a fault is set at sample point 1321, the residual value quickly exceeds 

the threshold, whereas the standard deviation has exceeded the set threshold at sample point 1261. This reflects 

that the dual fuel engine may have malfunctioned, resulting in a fault warning at sample point 1321. Therefore, 

the fault warning approach outlined in this paper can not only meet the real-time surveillance of EGT of the 

marine dual fuel engine but also issue alerts for anticipated EGT anomalies when the marine dual fuel engine 

malfunctions, satisfying the contemporary requirements for EGT fault warning in marine dual-fuel engines. 
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Fig. 21  Residual curve of abnormal working condition 

 

Fig. 22  Standard deviation curve of abnormal working condition 

5. Conclusion 

In this study, a CNN-BiLSTM-KAN prediction model was established to predict the EGT of marine 

dual-fuel engines. The crucial conclusions are summarized as follows. 

With PCCs, thermodynamic parameters highly correlated with EGT were selected as inputs for the 

prediction model, and the input data were normalized to reduce the dimensionality of the input data, simplify 

the architecture of the model, decrease computation time, and improve model prediction accuracy. 

Simultaneously, Mahalanobis distance was adopted to screen outliers and mitigate their detrimental effects on 

the model's computational efficiency and accuracy. 

The CNN-BiLSTM-KAN forecasting model proposed integrates CNN, BiLSTM, and KAN. The CNN 

is adept at extracting features from multidimensional time series, the BiLSTM automatically learns, and 
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extracts features from these series, and the KAN layer directly learns parameterized nonlinear activation 

functions. This method surpasses the constraints of previous single neural networks, and the inclusion of  

the KAN layer improves the predictive accuracy of the neural network. In this way, the spatiotemporal 

characteristics of EGT of marine dual fuel engines can be more comprehensively extracted, contributing to 

better prediction results. 

With the purpose of demonstrating the superiority of the proposed model, a comparative experiment 

was conducted to compare the predictive model with eight prediction models: CNN, LSTM, BiLSTM, 

CNN-LSTM, CNN-BiLSTM, LSTM-KAN, BiLSTM-KAN, and CNN-LSTM-KAN. As unveiled from the 

evaluation metrics, the CNN-BiLSTM-KAN model constructed in this study demonstrates high accuracy, 

highlighting its strengths in time series forecasting. 

By analyzing the predicted residual values, alarm thresholds are set for both the residuals and their 

standard deviation. Experimental validation and analysis confirm that the approach can timely identify 

anomalies in marine dual fuel engines while enlightening their state detection and health management. 

To encapsulate, this study aimed to investigate the marine dual-fuel engine, analyze its exhaust 

temperature by deep learning techniques, and hence achieve fault prediction and early warning capabilities. 

Deep learning was introduced into the condition prediction of marine equipment, offering a novel approach 

for its condition monitoring, health management, and the development of intelligent ships. The innovative 

contributions of this paper are twofold. First, it offers a novel perspective in selecting the research object. 

Different from most prior studies that focus on marine diesel engines, the gas mode of marine dual fuel  

engines - a key distinction from other marine engines, was examined in this study. This choice holds 

significant value for the development of marine dual-fuel ships. Second, a new prediction model architecture 

was constructed based on existing research. The experimental results demonstrate that the proposed model 

can effectively predict the state and trigger fault alarms for marine dual-fuel engines, providing insights into 

building fault warning models for these engines. In the future, our research group will concentrate on 

researching and analyzing the multi parameters of marine dual fuel engines. Furthermore, the model functions 

and fault warning method will be optimized and improved to achieve fault prediction classification and 

provide support for the development of intelligent ships. 
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