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A B S T R A C T  

This study addresses vessel path planning and anchorage allocation through a 

reinforcement learning approach. To improve maritime safety and efficiency, we 

developed an integrated system that combines Deep Q-Network and Artificial 

Potential Field concepts for path generation. The model implements a specialized grid 

extension method that accounts for actual vessel dimensions and wind direction, while 

incorporating differentiated safety distances for each anchorage area. Experimental 

validation using Automatic Identification System (AIS) data demonstrated that the 

system successfully generated efficient routes while maintaining all safety distance 

requirements during both navigation and anchoring phases. Additionally, the system 

ensured practicality through path simplification using the Douglas-Peucker algorithm 

while maintaining safety standards. The visualized optimal paths enhance navigational 

guidance, thereby improving both maritime traffic safety and port operational 

efficiency. 

1. Introduction 

Maritime logistics serves as a cornerstone of the global economy, driving international trade and 

economic development. Busan Port, as South Korea's premier trading port and a major logistics hub in 

Northeast Asia, consistently maintains a high ranking among world ports. As of 2023, according to the Busan 

Port Authority's Container Cargo Handling Statistics, Busan Port handles 23,154,000 TEUs of container cargo 

annually, ranking 7th globally in terms of container throughput. In transshipment volume, it ranks 2nd 

worldwide with 12,409,000 TEUs [1]. The port's significance is further evidenced by its high vessel traffic 

volume, with 90,453 vessels entering and departing in 2023 based on the Ministry of Oceans and Fisheries' 

Annual Vessel Entry and Departure Statistics [2]. At the same time, with the rapid development of science 

and technology, ships are moving towards intelligence, large-scale, and high-speed development, and the 

maritime navigation environment has become increasingly complex [3]. 

The efficient and safe management of this large-scale vessel traffic volume is a critical task that directly 

impacts national economic stability and growth beyond port operations. In particular, among various aspects 
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of port operations, anchorage allocation and optimal route planning are the most crucial elements. The 

efficiency of these processes directly affects overall port performance and determines both vessel safety and 

efficient utilization of port resources. According to ESKI and Tavacioglu [4], maritime accidents most 

frequently occur during navigation and anchorage operations, with a particularly high incidence during 

bunkering operations while at anchor. 

These challenges highlight the need for digital transformation in maritime logistics and smart port 

development. The fourth industrial revolution, represented by artificial intelligence, big data, quantum 

information, and other technologies, is coming [5]. As one of the traditional transportation industries, maritime 

transportation is also developing towards automation and intellectualization [6]. In this context, artificial 

intelligence technologies are gaining attention for automating and optimizing complex decision-making 

processes like anchorage allocation. Among these technologies, Reinforcement Learning has emerged as a 

particularly effective approach for solving such complex decision-making problems. Reinforcement Learning 

is a branch of machine learning where agents learn optimal policies through trial-and-error interactions with 

their environment [7], and it can complement human limitations and support objective decision-making in 

optimal path planning and resource allocation problems that require complex decision-making [8]. The key 

advantages of Reinforcement Learning are as follows [9-11]: 

1. Dynamic Environment Adaptation: The system can adapt to changing environments and find optimal 

solutions, making it suitable for complex and uncertain maritime environments. 

2. Sequential Decision Making: It demonstrates effective handling of sequential decision-making 

problems, such as route planning. 

3. Long-term Reward Optimization: The system is capable of making decisions considering both 

immediate and long-term outcomes. 

4. Non-linear Problem Solving: It excels at learning complex non-linear relationships, making it 

suitable for port operations involving multiple interrelated variables. 

5. Autonomous Learning: The system possesses the ability to self-improve through experience without 

explicit programming. 

Based on these characteristics, this study proposes a system that plans optimal vessel routes using 

reinforcement learning, following objective and consistent criteria. Specifically, we implement optimal 

decision-making in complex maritime environments using Deep Q-Network (DQN), which has shown 

excellent performance in recent vessel path planning research [12-14]. Additionally, we incorporate the 

Potential Field concept, proven effective in vessel obstacle avoidance, to balance obstacle avoidance and goal 

tracking [15-17]. Notably, the Potential Field method has been successfully applied to vessel collision 

avoidance and path planning in studies conducted by Lyu and Yin [18] and Liu et al. [19], and in our research, 

we combine this with DQN for more effective path planning. Furthermore, we achieve practical route 

simplification through the Douglas-Peucker algorithm, which has proven effective in path simplification and 

practicality enhancement in studies by Du et al. [20], Guo et al. [21], and Lee and Kim [22]. 

The core functionality of this system is to automatically calculate and visually present optimal trajectories to 

anchoring positions for each vessel. This visualization capability can enhance safety and efficiency in 

maritime operations. The implementation of this system is expected to support VTS operator decision-making 

and enhance safety. As a result, overall port operational efficiency will improve while significantly reducing 

safety incident risks. 

This paper is organized as follows. 
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Section 2 systematically reviews recent reinforcement learning studies related to vessel path planning to 

establish the academic positioning of this research. 

Section 3 describes the simulation design modeling Busan Port's anchorage environment. In particular, it 

details methodologies for accurately reflecting real port conditions, including Busan Port's geographical 

characteristics, anchorage rules, grid-based framework, anchored vessel grid extension methods, and optimal 

anchoring position determination procedures. Because these environmental constraints and parameters form 

the basis for defining the agent's state, action, and reward structures, Section 4 then builds upon the simulation 

environment to present the reinforcement learning model. 

Section 4 explains the reinforcement learning model implementation, providing detailed descriptions of state 

space, action space, dynamic modeling, reward function definitions, and the DQN algorithm implementation 

process. 

Section 5 analyzes experimental results, conducting quantitative performance evaluations by comparing actual 

vessel paths with optimal paths generated by the proposed model for each anchorage area, focusing on path 

length reduction rates, safety distance compliance, and anchored vessel avoidance. 

Finally, Section 6 summarizes the research achievements and suggests future research directions, including 

safety distance settings considering anchor chain length. 

2. Literature Review 

A comprehensive literature review was conducted using the Web of Science (WOS) database in 

November 2024 to identify relevant studies in vessel path planning using reinforcement learning. Initially, a 

search for 'Reinforcement Learning' AND 'anchorage' across all years yielded 10 documents, but none were 

directly relevant to reinforcement learning-based anchorage allocation. This indicated a research gap in the 

specific application of reinforcement learning to anchorage planning. 

To understand recent research trends, we then focused on the past five years (2020-2024), broadening 

our search to include general vessel path planning studies using reinforcement learning. The search terms 

'Reinforcement Learning' AND ('vessel path planning' OR 'ship path planning') initially returned 410 results. 

After excluding underwater vessel-related studies, 387 papers remained. Through careful review of titles, 

abstracts, and content, 16 papers were identified as directly relevant to our research focus. These papers were 

systematically analyzed and are summarized in Table 1. 
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Table 1  Summary of Related Studies in Maritime Path Planning 

No. Author(s) 
Geographical 

Scope 

Main 

Algorithm 
Evaluation Method Performance Metrics 

1 
Xu et al. 

[12] 
Coastal water MAPF-DQN 

Comparative analysis with 

A-STAR and DQN 

algorithms 

Path safety (minimum distance 

from obstacles), Path efficiency 

(path length), Planning success 

rate, Number of waypoints 

2 
Xiao et al. 

[23] 

Simulated 

environment 

Beta policy-

based PPO 

Comparative analysis with 

traditional algorithms (A-

STAR, IDA-STAR, 

Dijkstra) 

Planning time, Path length 

3 
Gao et al. 

[13] 
Coastal water 

Improved 

DQN 

Comparative analysis with 

Original Q-learning, 

Original DQN, Double 

DQN, Dueling DQN 

algorithms 

Planning success rate in 

different scenarios, Planning 

time, Path length, Model 

stability 

4 
Du et al. 

[20] 

Simulated 

environment 

DDPG with 

LSTM 

Comparative analysis with 

DDPG, RRT, RRT*, APF, 

A-STAR, and BUG2 

algorithms in multiple test 

environments 

Path length, Number of turning 

points, Planning time, Model 

convergence speed 

5 
Yuan et al. 

[14] 

Inland 

waterways 
DQN 

Comparative analysis 

between trained model and 

actual ferry trajectories 

with both undefined and 

defined crossing patterns 

Convergence speed, Navigation 

safety (DCPA, TCPA, relative 

distances), Path efficiency 

(voyage length, navigation 

time), Crossing pattern 

accuracy 

6 
Guo et al. 

[21] 

Simulated 

environment 

(Electronic 

chart-based) 

DQN 

Comparative analysis with 

traditional DQN, Q-

learning, DDPG, A-STAR, 

BUG2, and APF algorithms 

in multiple test scenarios 

Path length, Planning time, 

Number of path corners, 

Convergence speed, Model 

stability 

7 
Kim et al. 

[8] 
Port area Q-learning 

Comparative analysis with 

A-STAR algorithm and PD 

controller 

Route safety (UKC & 

navigation rules), Fuel 

efficiency, Path smoothness, 

Route deviation, Rudder angle 

changes 

8 
Chun et al. 

[24] 

Simulated 

environment 

PPO-based 

DRL 

Comparative analysis with 

A-STAR algorithm in 

various scenarios 

Minimum distance between 

ships, Maximum collision risk, 

Travel distance, Model 

convergence speed 

9 
Li et al. 

[25] 

Coastal and 

inland 

waterways 

DQN 

Comparative analysis with 

DQN, DDPG, RRT, A-

STAR, and APF algorithms 

Path trajectory smoothness, 

Distance to destination, 

Displacement distance, 

COLREGS compliance 

10 
Lee and 

Kim [22] 

Coastal waters 

between major 

ports 

DQN 

Comparative analysis with 

Q-learning and A-STAR 

algorithms 

Navigation safety (adherence to 

rules), Path efficiency (distance 
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reduction), Waypoint 

optimization 

11 
Wang et 

al. [26] 

Simulated 

environment 

Hybrid bi-level 

planning 

combining 

improved 

Comparative analysis with 

standard PSO and 

traditional APF 

Path length, Convergence 

speed, Computing time, 

Obstacle avoidance capability 

12 
Xie et al. 

[27] 

Simulated 

environment 

A3C with 

LSTM 

Comparative analysis with 

model-free A3C and 

traditional optimization-

based methods 

Learning efficiency, Collision 

avoidance safety (CRI, 

minimum distances), Path 

optimization (rudder actions, 

heading errors), Model 

convergence 

13 
Chen et al. 

[28] 

Simulated 

environment 

Multi-agent 

DRL 

Comparative analysis 

across three typical 

COLREGs scenarios 

Collision avoidance safety, 

Cooperation effectiveness, 

COLREGs compliance, Path 

efficiency, Convergence in 

narrow waters 

14 
Guo et al. 

[29] 

Simulated 

environment 
DDPG 

Comparative analysis with 

DQN, AC, DDPG and Q-

learning algorithms across 

multiple encounter 

scenarios 

Path length, Training 

convergence speed, Collision 

avoidance safety, Rule 

compliance, Decision time, 

Navigation stability 

15 
Cao et al. 

[30] 

Inland 

waterways 
Improved RRT 

Comparative analysis with 

real ship AIS trajectories 

Average error rate, Maximum 

error rate, Planning time, Path 

length, Safety distance 

maintenance 

16 
Zhen et al. 

[31] 
Port area 

Improved A-

star 

Comparative analysis with 

traditional A-star algorithm 

in simulation and real 

scenarios 

Navigation safety (collision 

risk, grounding risk), Path 

length, Number of turns, 

Traffic rule compliance, Path 

smoothness, Computational 

efficiency 

To systematically analyze the prior studies summarized in Table 2, we first examine their geographical 

scope followed by their algorithmic approaches. Through this analysis, we can identify the characteristics and 

limitations of maritime areas targeted by each study, while the analysis of algorithmic approaches provides 

insights into the current applications and development trends of reinforcement learning technologies. 

2.1 Geographical Scope 

Prior studies can be broadly categorized into two groups based on their geographical scope: research 

targeting actual maritime areas and research using simulated environments. Within these categories, studies 

of actual maritime areas can be further divided into those focusing on real ports and coastal waters versus 

inland waterways. Similarly, simulation-based studies can be subdivided into simplified virtual environments 

and electronic chart-based environments. Importantly, this classification reveals distinctive differences in 

research objectives and application scope. 

Studies focused on actual ports and coastal waters made significant efforts to reflect realistic navigation 

environments. For instance, Gao et al. [13] conducted research in the Bohai Bay area  

(36.5°N-41.1°N, 117.0°E-125.5°E), specifically addressing complex terrain and maritime traffic 

characteristics. Kim et al. [8] validated path planning algorithms in real vessel operating conditions by 

studying the specific waters between Busan Port and Gamcheon Port (34°59'37"N-35°07'52"N,  
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128°57'08"E-129°09'37"E). Furthermore, Lee and Kim [22] investigated path optimization for long-distance 

navigation between Busan and Gwangyang ports. 

Studies targeting inland waterways focused on specialized navigation conditions in restricted waters. 

Notable examples include research by Yuan et al. [14] and Cao et al. [30]. In particular, Cao et al. [30] studied 

path planning in narrow channels and complex traffic situations by examining the Shanghai waterway  

(20 km × 20 km) and Zhenjiang waterway (10 km × 10 km) of the Yangtze River. These studies emphasized 

the importance of precise navigation planning in confined waters. 

Studies utilizing simulation environments demonstrated two main approaches. First, studies using 

simplified virtual environments focused on verifying basic algorithmic performance. Xiao et al. [23] 

conducted research using a 480×480 px environment with the Box2D physics engine, while Du et al. [20] 

performed studies in a virtual environment incorporating static obstacles and coastline information. In addition, 

studies using electronic chart-based environments structured their data to enable computer simulation while 

preserving real environmental characteristics. Guo et al. [21] utilized electronic charts quantified into 400×350 

grids, while Zhen et al. [31] converted actual port data from Zhoushan Port and Hainan Port into electronic 

chart format. 

Notably, the selection of geographical scope was closely related to each study's objectives. Research 

targeting actual maritime areas showed strengths in validating applicability within specific operational 

environments but faced difficulties in conducting repeated experiments across various scenarios. Specifically, 

studies by Gao et al. [13] in Bohai Bay and Kim et al. [8] in Busan Port accurately reflected actual maritime 

characteristics but struggled to control various variables such as weather conditions and maritime traffic 

volume changes. 

Conversely, studies utilizing simulation environments offered the advantage of enabling repeated 

experiments under various conditions. Most notably, the research by Xiao et al. [23] and Du et al. [20] allowed 

systematic verification of algorithmic stability and scalability. However, these simulation-based studies had 

limitations in perfectly replicating the complex environmental elements of actual maritime areas. Although 

studies by Guo et al. [21] and Zhen et al. [31] using electronic chart-based environments attempted to reduce 

this gap, they still faced constraints in reflecting real-time maritime traffic situations and weather conditions. 

2.2 Algorithmic Approaches 

The algorithmic approaches in previous studies can be broadly categorized into single reinforcement 

learning-based approaches and hybrid approaches. Single reinforcement learning approaches directly applied 

algorithms such as DQN, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization 

(PPO), while hybrid approaches combined reinforcement learning algorithms with existing path planning 

methods or control techniques. 

In particular, DQN was the most widely used algorithm in single reinforcement learning approaches. 

Gao et al. [13] proposed an improved DQN combining k-means clustering and prioritized experience replay, 

which demonstrated superior performance compared to conventional Q-learning, standard DQN, Double DQN, 

and Dueling DQN. Yuan et al. [14] developed a DQN with modified state space, action space, and reward 

functions for ferry crossing behavior, which was validated through comparison with actual ferry trajectories. 

Additionally, Guo et al. [21] enhanced coastal vessel path planning performance by applying optimized reward 

functions to DQN, including potential energy rewards, target area rewards, and risk zone penalties. 

Furthermore, more advanced forms of reinforcement learning algorithms were actively studied. Xiao et 

al. Xiao et al. [23] proposed a beta policy-based distributed sampling PPO, showing improved results in terms 

of planning time and path length compared to conventional A-STAR, IDA-STAR, and Dijkstra algorithms. 

Chen et al. [28] developed a multi-agent Deep Reinforcement Learning (DRL) to solve cooperative collision 

avoidance problems between vessels in narrow channels. Notably, this study demonstrated the possibility of 

efficient path planning while complying with International Regulations for Preventing Collisions at Sea 

(COLREGS) regulations. 
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Regarding hybrid approaches, researchers attempted to combine reinforcement learning with existing 

methodologies to leverage their respective advantages. Xu et al. [12] proposed Modified Artificial Potential 

Field-Deep Q-Network (MAPF-DQN), combining Artificial Potential Field (APF) with DQN. Specifically, 

this method enabled safer and more efficient path planning by combining APF's local obstacle avoidance 

capabilities with DQN's global path optimization abilities. Du et al. [20] integrated Long Short-Term Memory 

(LSTM) and optimized reward functions into DDPG, along with the Douglas-Peucker algorithm to improve 

path smoothing. Wang et al. [26] proposed a hybrid bi-level planning method combining improved Particle 

Swarm Optimization (PSO) for global path planning with enhanced APF for local obstacle avoidance. 

Of particular significance were approaches related to collision avoidance. Li et al. [25] integrated APF-

enhanced reward functions and COLREGS-based collision avoidance zones into DQN. Chun et al. [24] 

combined quantitative collision risk assessment using vessel domain and Closest Point of Approach (CPA) 

with PPO-based DRL. These studies effectively demonstrated methods for incorporating safety and regulatory 

compliance into the reinforcement learning framework. 

Furthermore, some studies proposed post-processing methods to enhance path practicality.  

Guo et al. [21] and Lee and Kim [22] used the Douglas-Peucker algorithm to optimize path waypoints. This 

approach proved effective in simplifying calculated paths for easier vessel following while maintaining the 

essential characteristics of the original route. 

Based on the analysis of these previous studies, we can present the distinctiveness and contributions of 

this research as follows: 

First, while most previous studies focused solely on route planning, they did not address practical port 

operation issues such as anchorage allocation. In contrast, our study proposes realistic and practical solutions 

by explicitly considering Busan Port's actual anchorage operation rules and vessel size-based anchorage 

assignment criteria. 

Second, previous studies typically validated algorithmic performance using data from limited time 

periods. However, our study utilized actual Automatic Identification System (AIS) data over a seven-day 

period from June 3 to June 9, 2023, verifying algorithmic performance under various temporal and operational 

conditions. In particular, by analyzing real vessel data, we more reliably demonstrated the algorithm's practical 

applicability. 

Third, existing studies largely simplified vessels' physical dimensions to a single point. In contrast, our 

study presents realistic anchorage space modeling by expanding grids based on vessels' actual Length Overall 

(LOA) and considering bow direction changes according to wind direction. This approach significantly 

contributes to efficient utilization and safety assurance of anchorage areas. 

Fourth, while previous studies mainly considered theoretical safety distances, our study applied 

differentiated safety distances for each anchorage area, reflecting actual operational rules of Busan Vessel 

Traffic Service (VTS). Specifically, we implemented graduated safety distances ranging from 120 m to 900 

m for anchorages N-1 through N-5, proposing more realistic anchorage operation methods. 

Fifth, while most previous studies focused solely on improving reinforcement learning algorithm 

performance, our study attempted a practical approach considering integration with actual VTS systems.  

These distinctive features demonstrate that our research goes beyond theoretical approaches to provide 

practical solutions directly applicable to actual port operations. In particular, our comprehensive approach to 

anchorage operation issues, based on real data and operational rules, represents a unique contribution of this 

study. 

Through this analysis of previous research, we have identified current trends in reinforcement learning-

based vessel path planning and our study's distinctiveness. Building on this theoretical foundation, the next 

section explains the specific implementation methodology of our proposed reinforcement learning-based 

anchorage allocation system. 
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3. Simulation Environment 

This section provides a detailed explanation of the realistic simulation environment design for 

reinforcement learning agent training. This environment, which was developed based on the actual topography 

and anchorage information around Busan Port, incorporates various elements for safe navigation and efficient 

anchorage allocation. 

All simulations were performed in a general computing environment, with calculations conducted on a 

system with sufficient computational capabilities. The hardware specifications used are shown in Table 2. 

Table 2  Experimental platform and environment 

Category Details 

CPU AMD Ryzen 5 2600 Six-Core Processor 3.40 GHz 

GPU NVIDIA Geforce RTX 3060 Dual OC D6 12GB 

RAM 16GB 

Language Python 3.8.18 

Operating system Windows 10 x64 

Deep learning Framework Tensorflow 2.10.0 

3.1 Modeling of Busan Port Environment 

To maximize the reflection of actual navigation conditions, the simulation environment was constructed 

based on nautical chart images of Busan Port. These charts are based on the World Geodetic System 1984 

(WGS84) coordinate system, which expresses locations in terms of latitude and longitude. The spatial scope 

and anchorage classification used in the simulation environment are shown in Figure 1. 

 

Fig. 1  Spatial scope and anchorage classification of Busan Port used in simulation environment 



G. H. Shin and H. Yang Brodogradnja Volume 76 Number 3 (2025) 76305 

 

9 

 

In Figure 1, the red area indicates the spatial scope used in this study. Additionally, the green areas 

represent the anchorage zones, covering a total area of approximately 29 km². The anchorage is classified into 

five zones from N-1 to N-5. The area and characteristics of each anchorage zone, as specified in the Rules on 

Navigation of Busan Port published by Busan Regional Office of Oceans and Fisheries, are presented in  

Table 3 [32]. 

Table 3  Classification and Characteristics of Anchorage Areas in Busan Port 

Anchorage 
Area 

(km²) 

Target Vessels 

(Gross Tonnage) 

Minimum Safety 

Distance 

Between Vessels (m) 

Maximum Number 

of Vessels 

N-1 1.13 ~ 1,000 t 120 8 

N-2 1.77 1,000 ~ 2,999 t 360 7 

N-3 6.80 3,000 ~ 9,999 t 540 18 

N-4 7.27 10,000 ~ 29,999 t 720 8 

N-5 12.02 30,000 t ~ 900 7 

Furthermore, to ensure accurate position estimation in the simulation environment, the coordinate 

system of the nautical charts was aligned with the simulation coordinate system. This alignment enabled the 

mapping of pixel coordinates from the chart images to actual geographical coordinates. 

The simulation environment was implemented as a ShipEnv class using OpenAI's Gym library. This 

environment interacts with the reinforcement learning agent and incorporates the concepts of state, action, and 

reward. Specifically, the state represents various parameters such as the vessel's current position and direction 

to the target point, while actions define possible movement directions for the vessel. The reward quantifies 

how much the agent's actions contribute to achieving the target objective. 

3.2 Anchorage Area Rules 

Anchorage rules are essential considerations for ensuring safe navigation and anchoring of vessels. In 

this study, we implemented these rules in the simulation environment to enable agents to learn under realistic 

constraints. The following key elements were applied based on the rules used by Busan VTS: 

1. Vessels are assigned to anchorage areas based on their gross tonnage. This implementation follows 

the 'Rules on Navigation of Busan Port' [32], allocating appropriate anchorage areas according to vessel 

tonnage. Specifically, larger vessels are assigned to larger anchorage areas to ensure vessel stability and 

efficient use of port facilities. 

2. When arriving at their destination, vessels must maintain minimum safety distances from maritime 

obstacles and other vessels. Although there are no standardized regulations, this can be applied according to 

each port's VTS rules. In this study, we applied Busan Port's 'Minimum Safety Distance Rules for Anchoring' 

(Table 4). These safety distances vary depending on vessel size and navigation conditions, thereby minimizing 

collision risks. 

3. During navigation toward the destination, vessels must maintain minimum safety distances from 

maritime obstacles and other vessels. This requirement applies more relaxed rules compared to arrival 

conditions, implementing Busan VTS's navigation safety distance of 100 m. This approach ensures that vessels 

maintain safety distances while efficiently approaching their destinations. 

4. To ensure safety in boundary zones between anchorage areas, minimum safety distances from each 

anchorage boundary line were defined. These distances are based on Busan VTS safety regulations and are 

differentially applied considering anchorage scale and vessel size capacity. Specifically, minimum safety 

distances were set at 180 m for N-1, 240 m for N-2, 300 m for N-3, 360 m for N-4, and 400 m for N-5 

anchorage areas. For conservative safety measures, the larger safety distance value was applied at boundaries 
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between adjacent anchorage areas. For example, 360 m was applied to the boundary between N-3 and N-4, 

and 400 m to the boundary between N-4 and N-5. 

5. Since certain areas are restricted or prohibited from navigation, the agent was designed to avoid these 

zones. In this experiment, shallow water areas, maritime obstacles, land masses, and port entry/exit channels 

were designated as no-navigation zones.  

These restrictions are strictly enforced within the simulation environment, with penalties applied if the 

agent violates these zones. 

By meticulously incorporating these Busan Port anchorage rules into the simulation environment, we 

enabled the reinforcement learning agent to learn safe and efficient routes while considering various 

constraints that may be encountered in actual navigation situations. 

3.3 Grid-Based Simulation Framework 

To enhance the accuracy and efficiency of the simulation environment, we subdivided the waters around 

Busan Port into grids of 60 m × 60 m size. This grid division was implemented to ensure spatial precision 

considering both the nautical chart image resolution and actual geographical distances. 

To divide the simulation area into an 𝑁lat × 𝑁lon  sized grid, we first established the latitude and longitude 

ranges for the entire maritime area. Each grid cell was set to a fixed size of 60 m × 60 m, enabling uniform 

division of the area. To generate the grid, we calculated Δlat and Δlon, which represent the latitude and 

longitude ranges divided by the number of rows and columns in the grid: 

Δlat =
latmax − latmin

𝑁lat − 1
 (1) 

Δlon =
lonmax − lonmin

𝑁lon − 1
 (2) 

Here, latmin  and latmax  represent the minimum and maximum latitudes of the simulation area, 

respectively, while lonmin and lonmax denote the minimum and maximum longitudes. Additionally, 𝑁lat and 

𝑁lon represent the number of rows and columns in the grid, respectively. 

The center latitude and longitude of each grid cell (𝑖, 𝑗) are calculated using the following equations: 

lat𝑖,𝑗 = latmin + 𝑖 × Δlat (3) 

lon𝑖,𝑗 = lonmin + 𝑗 × Δlon (4) 

In these equations, 𝑖  represents the row index and 𝑗  represents the column index, where 𝑖 =
0,1,2, … , 𝑁lat − 1 and 𝑗 = 0,1,2, … , 𝑁lon − 1. 

For each grid cell (𝑖, 𝑗), we generate a safety distance map 𝐷safe(𝑖, 𝑗) by calculating the minimum safety 

distance from surrounding obstacles and vessels. To accomplish this, we utilize the Haversine formula to 

calculate distances between two points. 

The Haversine formula, which calculates the shortest distance between two points on a sphere, is expressed 

as follows: 

𝑑 = 2𝑅arcsin (√sin2 (
Δ𝜙

2
) + cos (𝜙1)cos (𝜙2)sin2 (

Δ𝜆

2
)) (5) 

Here, 𝑅 represents the Earth's mean radius, which we calculate as 6,371 km. 𝜙1 and 𝜙2 represent the 

latitudes of the two points in radians, while 𝜆1 and 𝜆2 denote their longitudes, also in radians. 

Using this formula, we define 𝐷safe(𝑖, 𝑗) by calculating the minimum safety distance between each grid 

cell (𝑖, 𝑗) and surrounding obstacles or vessels as follows: 
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𝐷safe(𝑖, 𝑗) = 𝑚𝑖𝑛{𝑑haversine((lat𝑖,𝑗, lon𝑖,𝑗), (latobs, lonobs))} (6) 

where (lat𝑖,𝑗, lon𝑖,𝑗)  represents the central coordinates of grid cell (𝑖, 𝑗) , and (latobs, lonobs)  denotes the 

coordinates of obstacles or anchored vessels. Specifically, 𝐷safe(𝑖, 𝑗) is set as the distance to the nearest 

obstacle or anchored vessel from each grid cell, thereby ensuring that vessels maintain safety distances when 

utilizing these grid cells. 

3.4 Grid Extension for Anchored Vessels 

In this simulation, we extended the grid area representing anchored vessels beyond the single grid cell 

representation to account for the actual vessel dimensions, while considering wind direction. This extension 

was deemed necessary for two critical reasons: to reflect the characteristic positioning of AIS antennae at the 

stern of vessels and to secure adequate safety zones that account for the physical dimensions of anchored 

vessels. The grid extension was implemented exclusively along the vessel's length dimension. Notably, 

analysis of vessel data from June 3 to June 9, 2023, revealed that beam-wise extension was unnecessary, as 

the maximum vessel beam width of 58 m remained below the standard grid cell dimension of 60 m. The extent 

of longitudinal extension was determined based on the maximum vessel length recorded for each anchorage 

area during the same period. 

The grid extension size for anchored vessels in each anchorage area was calculated using the following 

equation, which accommodates both linear (east, west, north, south) and diagonal (northeast, northwest, 

southeast, southwest) wind directions: 

𝐺𝑟𝑖𝑑ext = ⌈
𝐿𝑂𝐴max

𝐺𝑟𝑖𝑑side
⌉ (7) 

where 𝐺𝑟𝑖𝑑ext represents the total number of extended grid cells, 𝐿𝑂𝐴max denotes the maximum vessel length 

(in meters) in the respective anchorage area, and 𝐺𝑟𝑖𝑑side represents either the length of a grid cell side (60 

m) for linear wind directions or the diagonal length (approximately 84.85 m) for diagonal wind directions. 

The ceiling function ⌈𝑥⌉ returns the smallest integer greater than or equal to 𝑥. Applying Eq. (7) yielded the 

following grid extension results for each anchorage area: 

1. For linear wind directions (east, west, north, south): 

1.1 N-1 anchorage (maximum vessel length 100 m): 𝐺𝑟𝑖𝑑ext = ⌈
100

60
⌉ = 2 (1 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

1.2 N-2 anchorage (maximum vessel length 110 m): 𝐺𝑟𝑖𝑑ext = ⌈
110

60
⌉ = 2 (1 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

1.3 N-3 anchorage (maximum vessel length 142 m): 𝐺𝑟𝑖𝑑ext = ⌈
142

60
⌉ = 3 (2 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

1.4 N-4 anchorage (maximum vessel length 179 m): 𝐺𝑟𝑖𝑑ext = ⌈
179

60
⌉ = 3 (2 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

1.5 N-5 anchorage (maximum vessel length 399 m): 𝐺𝑟𝑖𝑑ext = ⌈
399

60
⌉ = 7 (6 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

2. For diagonal wind directions (northeast, northwest, southeast, southwest): 

2.1 N-1 anchorage (maximum vessel length 100 m): 𝐺𝑟𝑖𝑑ext = ⌈
100

84.85
⌉ = 2 (1 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

2.2 N-2 anchorage (maximum vessel length 110 m): 𝐺𝑟𝑖𝑑ext = ⌈
110

84.85
⌉ = 2 (1 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

2.3 N-3 anchorage (maximum vessel length 142 m): 𝐺𝑟𝑖𝑑ext = ⌈
142

84.85
⌉ = 2 (1 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

2.4 N-4 anchorage (maximum vessel length 179 m): 𝐺𝑟𝑖𝑑ext = ⌈
179

84.85
⌉ = 3 (2 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

2.5 N-5 anchorage (maximum vessel length 399 m): 𝐺𝑟𝑖𝑑ext = ⌈
399

84.85
⌉ = 5 (4 𝑔𝑟𝑖𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

Figure 2 provides a visual representation of the extended grids for each anchorage area under easterly 

wind conditions, demonstrating the practical implementation of these calculations. 
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Fig. 2  Grid extension patterns for anchored vessels in each anchorage area under easterly wind conditions 

In Figure 2, light blue cells indicate AIS antenna positions at the stern, while green cells represent the 

extended areas, with the final cell marking the bow position. The grid extension is oriented eastward to reflect 

the prevailing wind conditions, demonstrating how vessels typically align their bows with the wind direction. 

This extension methodology enhances simulation realism by incorporating both vessel physical dimensions 

and environmental factors, enabling safer anchorage allocation. In particular, the application of different 

extension sizes for each anchorage area ensures adequate space for the safe anchoring of vessels of varying 

dimensions. 

3.5 Target Position Optimization 

To enable objective comparison between the reinforcement learning agent's performance and actual 

vessel paths, we established a fundamental principle of setting the agent's target position (anchoring position) 

identical to the vessel's final anchoring position. However, since maintaining safety distances during anchoring 

is crucial for preventing serious maritime accidents such as vessel collisions, adjustments become necessary 

when actual vessel anchoring positions violate existing safety distance requirements. To address this challenge, 
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we propose an optimization method that identifies the nearest target position that satisfies all safety 

requirements while maintaining proximity to the actual anchoring position. 

To evaluate safety with respect to anchored vessels at any position 𝑞 = (lat, lon), we define a safety 

distance function 𝐷safe(𝑞) and a violation indicator function 𝑉(𝑞) as follows: 

𝐷safe(𝑞) = min
𝑖∈𝐴

 {𝑑haversine(𝑞, 𝑞𝑖)}, 𝑉(𝑞) = {
1    if 𝐷safe(𝑞) < 𝐷min

0 𝑜therwise
 (8) 

where 𝐴 represents the set of positions of all currently anchored vessels, 𝑞𝑖 denotes the position of the 𝑖th 

anchored vessel, 𝑑haversine is the Haversine distance defined in Eq. (5), and 𝐷min represents the minimum safety 

distance requirement for the respective anchorage area, as specified in Table 4. 

Based on these safety evaluation functions defined in Eq. (8), we consider three constraints for assessing 

the suitability of a target position 𝑞actual: 

𝐷safe(𝑞) ≥ 𝐷min, 𝑞 ∈ 𝑅anchorage, 𝑁(𝑞) = 1 (9) 

where 𝑅anchorage represents the valid region of the respective anchorage area, and 𝑁(𝑞) is a binary function 

indicating navigability at position 𝑞, returning 1 for navigable positions and 0 otherwise. 

When any of the three conditions in Eq. (9) is not satisfied, we search for a new target position through 

the following optimization problem: 

minimize
𝑞∈𝑅anchorage,   𝑁(𝑞)=1

𝑑haversine(𝑞, 𝑞actual) 

(10) 

subject to: 𝐷safe(𝑞) ≥ 𝐷min 

This optimization problem aims to find a position 𝑞 that is closest to the actual anchoring position 𝑞actual 

while satisfying all safety conditions. Given that this problem must simultaneously satisfy various safety-

related constraints, an efficient search method is required. In this study, we employed an appropriate search 

algorithm to determine the optimal target position. 

For example, if the distance between a vessel's actual anchoring position and the nearest anchored vessel 

in anchorage N-3 is 450 m, this violates the minimum safety distance requirement of 540 m (Table 4) for that 

anchorage area. In this case, the optimization algorithm is applied to determine a new target position that is 

closest to the original while satisfying all constraints. 

The proposed target position optimization method offers several key features. Through its objective 

function that minimizes distance from the actual anchoring position, it maximally preserves the VTS operator's 

original intent. Furthermore, it fundamentally prevents collision risks during anchoring by strictly maintaining 

minimum safe distances from other anchored vessels. Additionally, by comprehensively considering various 

operational constraints such as anchorage boundaries, it provides a foundation for the reinforcement learning 

agent to plan realistic and safe routes. 

As a result, this method is expected to enhance overall port operational efficiency while significantly 

reducing safety incident risks. 

Throughout Section 3, we have provided a detailed examination of the simulation environment design where 

the reinforcement learning agent learns and operates. Building upon this simulation framework, 

Section 4 presents the design and implementation of the reinforcement learning model for optimal 

route planning. 

4. Reinforcement Learning Model 

This section provides a detailed explanation of the design and implementation of the reinforcement 

learning model for optimal ship route planning. Reinforcement learning is a method where agents learn 

optimal policies through trial-and-error interactions with their environment, making it particularly effective 

for complex decision-making problems. In this study, we implemented a reinforcement learning model based 
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on the Deep Q-Network (DQN) algorithm. One of the key advantages of DQN is its ability to enable effective 

learning even in high-dimensional state spaces by approximating state-action value functions using deep 

neural networks. This section first describes the definitions of the core elements of the reinforcement learning 

model: state space, action space, and reward function. Subsequently, we detail the implementation 

specifications and learning process of the DQN algorithm. 

4.1 State Space Definition 

The state information provided to the reinforcement learning agent must include the vessel's current 

position, distance and direction to the target point, and safety distances from the surrounding environment. 

This comprehensive state information plays a crucial role in enabling the agent to accurately understand its 

environment and learn optimal routes. To achieve this, we defined the following state variables. First, we 

normalized the position information. The vessel's current grid indices (𝑖, 𝑗) were normalized to the range  

[0, 1] by dividing by the total number of rows and columns in the grid, as follows: 

𝑠1 =
𝑖

𝑁lat − 1
, 𝑠2 =

𝑗

𝑁lon − 1
 (11) 

where 𝑠1  and 𝑠2  represent the normalized position information in the latitude and longitude directions, 

respectively. 

Second, we normalized the distance and direction to the target point. For the target point, the Haversine 

distance from the current position to the target point was calculated and normalized by dividing by the 

maximum possible distance 𝑑max within the simulation area as follows: 

𝑑goal = 𝑑haversine((lat𝑖,𝑗, lon𝑖,𝑗), (latgoal, longoal)) (12a) 

𝑠3 =
𝑑goal

𝑑max
 (12b) 

where 𝑑goal  represents the distance from the current position to the target point, and 𝑑max  denotes the 

maximum possible distance within the simulation area. 

Regarding the direction to the target point, we calculated the azimuth angle from the current position to 

the target point and normalized it to the range [0, 1] using the following equations: 

𝜃goal = arctan 2(sin (Δ𝜆)cos (𝜙goal), cos (𝜙𝑖,𝑗)sin (𝜙goal)

− sin (𝜙𝑖,𝑗)cos (𝜙goal)cos (Δ𝜆)) 
(13a) 

𝑠4 =
𝜃goal + 𝜋

2𝜋
 (13b) 

where 𝜙𝑖,𝑗 represents the latitude of the current position, 𝜙goal is the latitude of the target point, 𝜆𝑖,𝑗 is the 

longitude of the current position, 𝜆goal is the longitude of the target point, and Δ𝜆 denotes 𝜆goal − 𝜆𝑖,𝑗. All 

angular measurements are expressed in radians. 

Third, the safety distance from the surrounding environment was normalized by dividing 𝐷safe(𝑖, 𝑗) 

derived from Eq. (6) by the maximum safety distance 𝐷max: 

𝑠5 =
𝐷safe(𝑖, 𝑗)

𝐷max
 (14) 

where 𝐷safe(𝑖, 𝑗) represents the safety distance at grid cell (𝑖, 𝑗), and 𝐷max  denotes the maximum safety 

distance defined in the simulation environment. 

Therefore, the final state vector 𝑆 is defined as: 
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𝑆 = [𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5] (15) 

Each component of the state vector represents a specific aspect of the vessel's navigational state: 𝑠1 and 

𝑠2  represent the normalized position in latitude and longitude respectively, 𝑠3  indicates the normalized 

distance to the target point, 𝑠4 represents the normalized direction angle to the target point, and 𝑠5 denotes the 

normalized safety distance from surrounding obstacles and vessels. 

4.2 Action Space Definition 

The action space is defined as the set of all possible actions that the agent can select. In this study, we 

configured the vessel to move in eight directions. These actions consist of cardinal movements (up, down, left, 

right) and diagonal movements (up-left, up-right, down-left, down-right), with each action represented by an 

index 𝑎 ∈ {0,1, … ,7}. The grid movements corresponding to each action are shown in Figure 3. 

 
Fig. 3  Definition of Eight-Directional Action Space for Grid-Based Exploration 

Here, 𝑎 represents the action index, while Δ𝑖 and Δ𝑗 denote the changes in grid indices according to 

action 𝑎. This definition of action space provides a foundation for the reinforcement learning algorithm to 

effectively learn vessel movements while enabling the simulation of various movements that may occur in 

actual navigation situations. Through this action space, the agent selects the vessel's movement direction and 

uses it as a basis for exploring optimal routes. 

4.3 Dynamic Modeling of States and Actions 

The reinforcement learning agent selects an action 𝑎𝑡 in the current state 𝑆𝑡 and transitions to a new  

state 𝑆𝑡+1. In this section, we mathematically define the dynamic model of states and actions related to vessel 

movement in the grid-based simulation environment. 

First, the state vector at time 𝑡 can be defined as follows, referring to the definition in Eq. (11): 

𝑆𝑡 = [𝑠1,𝑡, 𝑠2,𝑡, 𝑠3,𝑡, 𝑠4,𝑡, 𝑠5,𝑡] (16) 

where 𝑠1,𝑡 and 𝑠2,𝑡 represent the normalized position information as defined in Eq. (7): 

𝑠1,𝑡 =
𝑖𝑡

𝑁lat − 1
, 𝑠2,𝑡 =

𝑗𝑡

𝑁lon − 1
 (17a) 

Here, 𝑖𝑡 and 𝑗𝑡 are the grid cell indices at time 𝑡, and 𝑁lat and 𝑁lon represent the number of rows and 

columns in the grid, respectively. For example, when 𝑁lat = 100 and 𝑁lon = 100, if (𝑖𝑡, 𝑗𝑡) = (50,50), then 

𝑠1,𝑡 = 0.505 and 𝑠2,𝑡 = 0.505 after normalization. 

𝑠3,𝑡 represents the normalized distance to the target point as defined in Eq. (8b): 

𝑠3,𝑡 =
𝑑goal,𝑡

𝑑max
 (17b) 
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where 𝑑goal,𝑡 is the distance from the current position to the target point, and 𝑑max represents the maximum 

possible distance within the simulation area. 

𝑠4,𝑡 is the normalized azimuth angle as defined in Eq. (9b): 

𝑠4,𝑡 =
𝜃goal,𝑡 + 𝜋

2𝜋
 (17c) 

where 𝜃goal,𝑡  is the azimuth angle from the current position to the target point, measured in radians. For 

example, when 𝜃goal,𝑡 = 2.356, 𝑠4,𝑡 is normalized to approximately 0.833. 

𝑠5,𝑡 is the normalized safety distance as defined in Eq. (10): 

𝑠5,𝑡 =
𝐷safe(𝑖𝑡, 𝑗𝑡)

𝐷max
 (17d) 

where 𝐷safe(𝑖𝑡, 𝑗𝑡) represents the safety distance at the current position, and 𝐷max is the maximum safety 

distance. In this study, we set the maximum safety distance 𝐷max to 900 m (As shown in Table 4, this distance 

is the safety distance for anchorage N-5 and represents the largest maximum safety distance used in the study). 

For example, if 𝐷safe(𝑖𝑡, 𝑗𝑡) = 450 m, then 𝑠5,𝑡 is normalized to 0.5. 

Next, when the agent selects an action 𝑎𝑡 ∈ {0,1, … ,7}  at time 𝑡 , the new position (𝑖𝑡+1, 𝑗𝑡+1)  is 

determined by the grid index changes Δ𝑖(𝑎𝑡) and Δ𝑗(𝑎𝑡) as defined in Fig. 4: 

𝑖𝑡+1 = 𝑖𝑡 + Δ𝑖(𝑎𝑡) (18a) 

𝑗𝑡+1 = 𝑗𝑡 + Δ𝑗(𝑎𝑡) (18b) 

where Δ𝑖(𝑎𝑡) and Δ𝑗(𝑎𝑡) represent the changes in grid indices according to action 𝑎𝑡, as defined in Fig. 4. For 

example, when action index 𝑎𝑡 = 0 indicates northward movement, Δ𝑖(𝑎𝑡) = −1 and Δ𝑗(𝑎𝑡) = 0. 

The new position (𝑖𝑡+1, 𝑗𝑡+1) must satisfy several conditions. First, the vessel must remain within the 

simulation grid boundaries: 

0 ≤ 𝑖𝑡+1 < 𝑁lat, 0 ≤ 𝑗𝑡+1 < 𝑁lon (19a) 

Second, the vessel must navigate within navigable areas: 

navigable(𝑖𝑡+1, 𝑗𝑡+1) = True (19b) 

where navigable(𝑖𝑡+1, 𝑗𝑡+1)  is a function indicating whether grid cell (𝑖𝑡+1, 𝑗𝑡+1)  is navigable, returning 

𝐹𝑎𝑙𝑠𝑒 for cells containing obstacles or no-navigation zones. This condition must be satisfied for the vessel to 

move to that position. For example, port entry/exit channels or shallow water areas are designated as no-

navigation zones, and movement is restricted when entering these areas. 

Third, the vessel must maintain minimum safety distances at the new position (𝑖𝑡+1, 𝑗𝑡+1). The safety 

distance 𝐷safe(𝑖𝑡+1, 𝑗𝑡+1) must satisfy: 

𝐷safe(𝑖𝑡+1, 𝑗𝑡+1) ≥ 𝐷min (19c) 

where 𝐷safe(𝑖𝑡+1, 𝑗𝑡+1)  represents the safety distance at the next position (𝑖𝑡+1, 𝑗𝑡+1) , and 𝐷min  is the 

minimum safety distance set according to each anchorage area's rules (Table 4). The safety distance 

requirements in our study are categorized into two distinct phases: First, during navigation, vessels must 

maintain a minimum safety distance of 100 m from obstacles and other vessels to ensure safe passage. Second, 

at the final destination (anchoring position), more stringent safety distances are applied according to each 

anchorage area's specific requirements. For example, in anchorage N-3, the minimum safety distance from 

other vessels is set to 540 m when anchoring. These dual-phase safety requirements act as constraints to 

minimize collision risks throughout the entire journey while ensuring proper spacing at anchor. Therefore, 
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when a vessel moves to a new position, it must verify that the area is navigable and that the appropriate safety 

distances for the current phase are maintained. 

Only when these conditions are satisfied can the vessel move to the new position, and the new state 

vector 𝑆𝑡+1 is updated as follows. First, the position information is updated by normalizing the new grid 

indices: 

𝑠1,𝑡+1 =
𝑖𝑡+1

𝑁lat − 1
, 𝑠2,𝑡+1 =

𝑗𝑡+1

𝑁lon − 1
 (20) 

Next, we calculate and normalize the distance 𝑑goal,𝑡+1 from the new position to the target point: 

𝑑goal,𝑡+1 = 𝑑haversine((lat𝑖𝑡+1,𝑗𝑡+1
, lon𝑖𝑡+1,𝑗𝑡+1

), (latgoal, longoal)) (21a) 

𝑠3,𝑡+1 =
𝑑goal,𝑡+1

𝑑max
 (21b) 

where 𝑑haversine is the distance calculation function using the Haversine formula defined in Eq. (5), and 

lat𝑖𝑡+1,𝑗𝑡+1
 and lon𝑖𝑡+1,𝑗𝑡+1

 represent the latitude and longitude of the new position as defined in Eqs. (3) and 

(4). Additionally, we calculate and normalize the azimuth angle 𝜃goal,𝑡+1 from the new position to the target 

point: 

𝜃goal,𝑡+1 = arctan2(sin(Δ𝜆𝑡+1)cos(𝜙goal), cos(𝜙𝑖𝑡+1,𝑗𝑡+1
)sin(𝜙goal)

− sin(𝜙𝑖𝑡+1,𝑗𝑡+1
)cos(𝜙goal)cos(Δ𝜆𝑡+1)) 

(22a) 

𝑠4,𝑡+1 =
𝜃goal,𝑡+1 + 𝜋

2𝜋
 (22b) 

where 𝜙𝑖𝑡+1,𝑗𝑡+1
 represents the latitude of the new position, 𝜙goal is the latitude of the target point, and Δ𝜆𝑡+1 

denotes the longitude difference. Finally, we calculate 𝑠5,𝑡+1  by normalizing the safety distance 

𝐷safe(𝑖𝑡+1, 𝑗𝑡+1) at the new position by the maximum safety distance: 

𝑠5,𝑡+1 =
𝐷safe(𝑖𝑡+1, 𝑗𝑡+1)

𝐷max
 (23) 

Using these updated values, the new state vector 𝑆𝑡+1 is defined as: 

𝑆𝑡+1 = [𝑠1,𝑡+1, 𝑠2,𝑡+1, 𝑠3,𝑡+1, 𝑠4,𝑡+1, 𝑠5,𝑡+1] (24) 

Through this dynamic modeling, the agent learns to select appropriate actions in the current state and 

understands how these actions affect the environment. The state 𝑆𝑡 consists of information such as the vessel's 

position, distance and direction to the target point, and safety distances from surrounding obstacles, and the 

agent selects one of the possible actions based on this state. The selected action changes the vessel's position 

on the grid, and a new state 𝑆𝑡+1 is calculated. The new state provides information about whether the agent's 

movement has brought it closer to the target point and maintained safe routes, compared to the previous state. 

The agent experiences these state changes repeatedly and proceeds with learning to find optimal routes. 

4.4 Reward Function Design 

In reinforcement learning, the reward function serves as a fundamental element that determines the 

learning direction of the agent. To optimize vessel navigation while ensuring safety, this study employs the 

concept of Potential Field to design the reward function. The APF method, originally proposed by Khatib [33] 

for robot motion planning and later applied in maritime research such as [20, 21, 25, 26]. 

In the classical APF theory, the total potential energy is expressed as the sum of attractive and repulsive 

components: 
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𝑈total(𝑞) = 𝑈att(𝑞) + 𝑈rep(𝑞) (25a) 

where 𝑈att(𝑞) represents the attractive potential pulling the agent toward the goal, and 𝑈rep(𝑞) denotes the 

repulsive potential pushing the agent away from obstacles. 

Following standard reinforcement learning notation, the agent in state 𝑆𝑡  at time 𝑡  selects action 𝑎𝑡  and 

transitions to a new state 𝑆𝑡+1. The reward 𝑟𝑡 for this transition is defined as: 

𝑟𝑡 = (𝑈(𝑆𝑡) − 𝑈(𝑆𝑡+1)) × 𝑤potential + (𝑑prev − 𝑑current) × 𝑤distance + 𝑅goal × 𝛿goal

− 𝑅penalty × 𝛿penalty 
(25b) 

where 𝑈(𝑆) represents the potential energy at state 𝑆, 𝑤potential is the weighting factor for potential energy 

changes, 𝑑prev and 𝑑current denote the previous and current distances to the target point, respectively, and 

𝑤distance is the weighting factor for distance changes. Additionally, 𝑅goal represents the reward for reaching 

the target point with 𝛿goal being a binary indicator (1 if the target is reached, 0 otherwise), while 𝑅penalty 

denotes the penalty magnitude with 𝛿penalty  being a binary indicator (1 if safety distance violations or 

restricted area entry occur, 0 otherwise). 

For computational efficiency in our reinforcement learning framework, we implement a simplified 

version of the attractive potential function: 

𝑈(𝑆) =
1

𝑑goal + 1
 (26) 

where 𝑑goal represents the distance to the target point. This formulation ensures that the potential energy 

decreases as the vessel approaches its target point, thereby providing increasingly positive rewards for 

successful navigation toward the destination. The repulsive potential from obstacles is implicitly handled 

through the penalty term 𝑅penalty × 𝛿penalty , which creates steep potential barriers around safety-critical 

regions. 

This combined approach integrates the theoretical foundations of APF with the practical requirements 

of reinforcement learning in maritime environments, resulting in a theoretically sound reward mechanism that 

effectively balances goal-seeking behavior with safety constraints. 

The weighting factors in Eq. (25) were determined through systematic experimentation. We conducted 

a grid search approach, testing values of [1, 5, 10, 50, 100, 200] for each weight parameter. The final values 

(𝑤potential = 100,  𝑤distance = 10, 𝑅goal = 100, 𝑅penalty = 200)  were selected based on their ability to 

balance safety requirements with path efficiency. Specifically, 𝑤potential = 100  effectively encouraged  

target-oriented navigation while maintaining obstacle avoidance capability. The 𝑤distance = 10  provided 

sufficient influence on path optimization without overly sacrificing safety constraints. The penalty magnitude 

𝑅penalty  was set to twice the goal achievement reward (𝑅goal) to ensure the agent prioritized safety rule 

compliance over merely reaching the destination. Through extensive testing, we found that 𝑅penalty values 

below 200 occasionally resulted in the agent choosing unsafe shortcuts, while values above 300 led to overly 

conservative paths with unnecessary length increases. 

Furthermore, the reward mechanism implements a comparative approach: if the agent moves closer to 

the target point compared to its previous state, it receives a positive reward; conversely, if it moves farther 

away, a penalty is applied. This dynamic reward structure is further enhanced by additional rewards when the 

agent reaches its target point, while penalties are imposed for safety distance violations or entry into restricted 

navigation zones. Through this comprehensive reward system, the agent receives rewards at each step and 

continuously improves its policy through the reinforcement learning algorithm. Of particular significance is 

the implementation of the potential field concept, which enables the agent to naturally navigate toward the 

target point while simultaneously learning to avoid obstacles and hazardous zones in its vicinity. This dual-

objective learning approach ensures optimal path learning while maintaining safe navigation parameters. 
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Having established the reward function design, we now turn our attention to the implementation of the DQN 

algorithm, which effectively utilizes this reward structure to learn optimal navigation policies. 

4.5 Deep Q-Network Algorithm 

In this study, we employed the DQN algorithm to enable the agent to learn optimal policies. DQN 

approximates the state-action value function 𝑄(𝑆, 𝑎)  through deep neural networks, enabling effective 

learning even in high-dimensional state spaces. 

The agent, at time 𝑡, is in state 𝑆𝑡  and transitions to a new state 𝑆𝑡+1 after selecting action 𝑎𝑡 . The  

Q-value is updated according to the following equation: 

𝑄(𝑆𝑡, 𝑎𝑡) ← 𝑄(𝑆𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾max
𝑎′

 𝑄(𝑆𝑡+1, 𝑎′; 𝜃−) − 𝑄(𝑆𝑡, 𝑎𝑡; 𝜃)] (27) 

where 𝛼 represents the learning rate, determining how quickly new information is incorporated into existing 

Q-values. 𝑟𝑡 is the reward at time 𝑡, calculated by the reward function. 𝛾 is the discount factor, indicating the 

importance of future rewards relative to immediate ones. Additionally, 𝑎′ is a new variable representing all 

possible actions available in the next state 𝑆𝑡+1. 𝜃 and 𝜃− denote the weights of the current Q-network and 

target Q-network, respectively. 

The agent updates Q-values through Eq. (27) and learns optimal policies through this process. In this 

learning framework, the introduction of experience replay memory and target networks plays a crucial role in 

enhancing learning stability and efficiency. 

Experience replay memory serves as a buffer that stores the agent's experiences (𝑆𝑡, 𝑎𝑡, 𝑟𝑡, 𝑆𝑡+1, done) 

acquired through interactions with the environment, from which mini batches are randomly sampled. This 

approach reduces data correlation and improves learning efficiency by utilizing diverse and rich experiences. 

The target network 𝜃− is updated periodically with the weights 𝜃 of the current network, mitigating potential 

instabilities during Q-value updates. 

The neural network architecture consists of input layers, multiple hidden layers, and output layers. 

Specifically, the input layer receives the state vector 𝑆𝑡, which includes information such as the agent's current 

position and bearing to the target point. The hidden layers comprise multiple neurons and employ ReLU 

(Rectified Linear Unit) as the non-linear activation function to learn complex patterns and features. The output 

layer produces 𝑄(𝑆𝑡, 𝑎; 𝜃) for all possible actions 𝑎, which is utilized for the agent's policy decisions. This 

architectural design enables the agent to effectively evaluate the value of each action in any given state. 

The key hyperparameters used in the learning process are summarized in Table 4. 
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Table 4  Hyperparameter Settings for the Reinforcement Learning Algorithm 

Hyperparameter Value Description 

Input Dimension 3 Number of input features (state space dimension) 

Hidden Layers [128, 128, 128] Three hidden layers with 128 neurons each 

Output Layer Size 8 
Number of neurons in output layer (action space 

dimension) 

Activation Function ReLU Activation function used between layers 

Learning Rate 0.01 
Learning rate applied during neural network weight 

updates 

Discount Factor 0.9 
Represents the importance of future rewards to current 

value 

Initial Exploration Rate 1.0 Initial degree of random exploration by the agent 

Minimum Exploration Rate 0.05 Minimum value of exploration rate 

Exploration Rate Decay Rate 0.995 Rate at which the exploration rate decreases each episode 

Mini-batch Size 256 Size of the mini-batch used during neural network training 

Experience Replay Memory 

Size 
10000 

Maximum number of experiences stored in the replay 

buffer for training 

Target Network Update 

Frequency 

Every 100 

episodes 

Frequency at which the target network weights are 

synchronized 

Potential Energy Weight 

(𝑤potential) 
100 Weight for potential energy change in the reward function 

Distance Change Weight 

(𝑤distance) 
10 

Weight for distance change to the goal in the reward 

function 

Goal Achievement Reward 

(𝑅goal) 
100 Reward given when the agent reaches the goal 

Safety Violation Penalty 

(𝑅penalty) 
200 Penalty applied for violating safety distances 

5. Experimental Data and Results 

This section presents a detailed analysis of experiments and results using real vessel’s AIS data from 

Busan Port to evaluate the performance of the proposed reinforcement learning-based anchorage allocation 

and optimal path planning system. Specifically, quantitative evaluations were conducted in the following key 

aspects: 

1. Optimization performance evaluation through analysis of path length and reduction rate compared to 

actual paths 

2. Safety assessment including violations of navigation safety distances, anchored vessel safety distances, 

and anchorage boundary violations 

3. Evaluation of practical applicability through path simplification using the Douglas-Peucker algorithm. 

The analysis of experimental results consists of three main parts. First, we describe the characteristics 

and selection criteria of the experimental dataset. Then, we present quantitative comparative analysis results 

between actual paths and optimized paths for each anchorage area. Finally, we discuss comprehensive 

evaluations of path optimization results, including safety rule violations, along with detailed analysis results 

considering the characteristics of each anchorage area. 
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5.1 Experimental Data 

The experiments utilized actual AIS path data from 115 vessels that anchored in anchorage areas N-1 

through N-5 of Busan Port during a seven-day period from June 3 to June 9, 2023. These vessels were 

distributed across anchorage areas as follows: 4 vessels in N-1, 22 vessels in N-2, 44 vessels in N-3, 26 vessels 

in N-4, and 19 vessels in N-5. For the experiments, one vessel was randomly selected from each anchorage 

area. 

The initial position of the reinforcement learning agent was set identical to the starting position of the 

actual vessel path. This setting enables direct comparison with real operational scenarios, allowing for realistic 

evaluation of the model's performance. As for the target positions, we applied the target position optimization 

method described in Section 3.5. Specifically, while using the actual vessel's anchoring position as a reference 

point, in cases where this position violated safety distance requirements, our optimization algorithm 

determined a new position that was closest to the original while satisfying all safety conditions. This approach 

enables the selection of anchoring positions that both preserve the VTS operator's original intent and ensure 

safety requirements are met. The detailed information of the selected vessels is summarized in Table 5. 

Table 5  Ship data used in experiments 

Anchorage MMSI 
Gross 

tonnage 
Ship type Start time 

Start point 

(Lat, Long) 
End time 

End point 

(Lat, Long) 

N-1 2733***** 651 
Fishing 

Vessel 

2023-06-05 

17:09:08 

35.0019, 

129.0961 

2023-06-05 

18:00:15 

35.0683, 

129.0359 

N-2 4415***** 2,994 Tanker 
2023-06-04 

10:15:26 

34.9882, 

129.0525 

2023-06-04 

10:50:20 

35.0641, 

129.0288 

N-3 4571***** 6,142 
General 

Cargo 

2023-06-09 

08:54:40 

35.0178, 

129.0950 

2023-06-09 

09:55:29 

35.0540, 

129.0580 

N-4 2736***** 16,949 
General 

Cargo 

2023-06-03 

05:58:22 

34.9863, 

129.0390 

2023-06-03 

06:30:57 

35.02879, 

129.0474 

N-5 3746***** 35,832 
General 

Cargo 

2023-06-08 

07:13:47 

34.9916, 

129.0771 

2023-06-08 

07:42:02 

35.0209, 

129.0654 

This data played a crucial role in model training and validation. Information for each vessel includes 

MMSI (Maritime Mobile Service Identity), gross tonnage, ship type, navigation start/end times, and 

departure/arrival position coordinates. As shown in the table, vessels selected for each anchorage area have 

appropriate tonnage ranges for their respective areas (from 651 t in N-1 to 35,832 t in N-5) and represent 

various vessel types (fishing vessels, tankers, general cargo ships). This diversity allowed the reinforcement 

learning model to adapt to different vessel characteristics and operational patterns. Additionally, the actual 

departure and arrival time information was utilized to construct simulation environments that accurately 

reflected the maritime traffic and weather conditions at those times. 

For these simulations using vessel data, the actual maritime conditions were accurately reflected by 

incorporating the positions of other vessels that were anchored at the time each test vessel began its journey. 

For instance, in the case of the test vessel in anchorage N-3, the simulation environment incorporated the 

positions of all vessels anchored in areas N-1 through N-5 as of 08:54:40 on June 9, 2023. Furthermore, the 

prevailing weather conditions, particularly wind direction, were considered in the simulation, affecting the 

bow orientation of anchored vessels. 

This approach enables the reinforcement learning agent to learn and plan routes under realistic maritime 

traffic conditions, thereby allowing for more accurate evaluation of the system's applicability in actual 

operational environments. 
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5.2 Experimental Results 

We applied the reinforcement learning-based optimal path planning algorithm to each anchorage area 

(N-1 through N-5) and conducted a comparative analysis between actual vessel paths and simulated paths. For 

path simplification, we implemented the Douglas-Peucker algorithm with dynamically adjusted epsilon values. 

The epsilon values were optimized to ensure that the simplified paths maintained all safety requirements while 

preserving the essential characteristics of the original paths. Figures 4 through 8 present visualizations 

comparing actual paths with optimized simulation paths for each anchorage area. 

In each figure, yellow grids represent independent obstacles such as buoys, while green and blue grids 

indicate the positions of anchored vessels with extended grid cells as explained in Figure 2. The orange regions 

surrounding anchored vessels visualize the minimum safety distances defined for each anchorage area. 

Regarding the paths, actual vessel paths are shown in magenta, while the optimal paths generated by the 

reinforcement learning agent are displayed as red solid lines (Optimal path (Original)), and the simplified 

optimal paths processed through the Douglas-Peucker algorithm are shown as royal purple solid lines (Optimal 

path (Simplified)). When the original optimal path (Optimal path (Original)) and the simplified path (Optimal 

path (Simplified)) coincide, they are uniformly represented in royal purple and labeled as "Optimal path 

(Original, Simplified)". 

The starting point of each path is marked with a green square, while the destinations are indicated by 

either a red asterisk for actual path goals or a yellow asterisk for optimized path goals. In cases where the 

actual path goal and the optimized path goal are identical, they are uniformly represented by a yellow asterisk. 

Simulation 1 was conducted using a fishing vessel with a gross tonnage of 651 t, which began its journey 

at 17:09:08 on June 5, 2023. The prevailing wind direction at the time was southeasterly. The maritime traffic 

conditions showed varying occupancy across anchorage areas, with no vessels in N-1, three vessels in N-2, 

five vessels in N-3, one vessel in N-4, and one vessel in N-5. In the figure, the blue dotted line represents the 

anchorage boundary between N-1 and N-2. Analysis of the actual path's destination reveals a safety violation 

where the vessel's anchoring position infringed upon the anchorage boundary safety distance (shown as a 

black dotted area in the figure). The optimized path generated by the reinforcement learning agent successfully 

avoids this violation while maintaining all required safety distances.  
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Fig. 4  Analysis of Actual and Simulated Paths in Anchorage N-1 

Safety Violation 

(Anchorage Boundary) 
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Fig. 5  Analysis of Actual and Simulated Paths in Anchorage N-2 

Simulation 2 utilized data from a tanker of 2,994 gross tonnage, operating under southeasterly wind 

conditions on June 4, 2023, at 10:15:26. At the time of simulation, the anchorage occupancy was distributed 

as follows: no vessels in N-1, three in N-2, three in N-3, one in N-4, and one in N-5. The actual path shows a 

safety violation with respect to a nearby independent obstacle (indicated by the black dotted area), while the 

optimized path successfully maintains all required safety margins.  

Safety Violation 

(Navigation 

Safety Distance) 
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Fig. 6  Analysis of Actual and Simulated Paths in Anchorage N-3 

Simulation 3 features a general cargo vessel of 6,142 gross tonnage, navigating under easterly wind 

conditions on June 9, 2023, at 08:54:40. The anchorage areas contained two vessels in N-1, two in N-2, five 

in N-3, two in N-4, and two in N-5. The actual path demonstrates a safety violation during navigation, 

specifically in maintaining the required distance from an anchored vessel in N-4 (highlighted by the black 

dotted area). The reinforcement learning algorithm generated an alternative path that maintains all safety 

requirements. 

Safety Violation 

(Navigation Safety 

Distance) 
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Fig. 7  Analysis of Actual and Simulated Paths in Anchorage N-4 

Simulation 4 analyzed a general cargo vessel of 16,949 gross tonnage, operating under northerly wind 

conditions on June 3, 2023, at 05:58:22. The anchorage occupation status showed no vessels in N-1, two in 

N-2, four in N-3, one in N-4, and two in N-5. In the figure, the blue dotted line represents the anchorage 

boundary between N-4 and N-5. Analysis of the actual path's destination identified two safety violations: 

insufficient anchoring distance from a vessel in N-5 and violation of the anchorage boundary safety distance 

(marked with black dotted area). The optimized path generated by the reinforcement learning agent 

successfully addresses these safety concerns. 

Safety Violation 

(Anchorage Boundary, 

Anchored Vessel Distance) 
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Fig. 8  Analysis of Actual and Simulated Paths in Anchorage N-5 

Simulation 5 examined a general cargo vessel of 35,832 gross tonnage, navigating under northwesterly 

wind conditions on June 8, 2023, at 07:13:47. The anchorage areas contained one vessel in N-1, one in N-2, 

three in N-3, one in N-4, and one in N-5. The actual path shows a navigation safety distance violation with an 

N-5 vessel (indicated by the black dotted area). The optimized path maintains all required safety distances 

while efficiently reaching the designated anchoring position. A comprehensive performance analysis of these 

optimization results, including detailed path comparisons and safety assessment, is presented in the following 

section. 

5.3 Comprehensive Performance Analysis and Discussion 

This section presents a comprehensive evaluation of the path optimization results across different 

anchorage areas, encompassing both quantitative analysis and broader implications of the experimental 

findings. The quantitative assessment primarily focuses on comparing actual versus optimized path lengths, 

Safety Violation 

(Navigation Safety 
Distance) 
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compliance with safety distance requirements, and path simplification outcomes. Furthermore, this section 

discusses how these results address the limitations of current VTS systems and their practical implications for 

maritime traffic control operations. Table 6 provides a quantitative summary of path optimization results for 

each anchorage area, where Safety Violations have been comprehensively evaluated to include both safety 

distance violations between the agent and anchored vessels as well as violations with respect to independent 

obstacles. 

Table 6  Quantitative Analysis of Path Optimization Results 

Path Analysis Safety Violations 

Anchorage 

Path 

Length 

(Actual/Optimal, 

m) 

Path 

length 

Reduction 

(%) 

Navigation Safety 

Distance 

(Actual/Optimal, n) 

Anchored Vessel 

Distance 

(Actual/Optimal, n) 

Anchorage 

Boundary 

(Actual/Optimal, 

n) 

N-1 10096.45/10035.95 0.60 No/No No/No Yes (1)/No 

N-2 9052.45/9484.32 − 4.55 Yes (1)/No No/No No/No 

N-3 9301.31/5245.89 43.60 Yes (1)/No No/No No/No 

N-4 4965.86/5377.21 − 7.65 No/No Yes (1)/No Yes (1)/No 

N-5 3733.11/3440.30 7.84 Yes (1)/No No/No No/No 

Analysis of the results revealed distinct path optimization patterns across different anchorage areas. 

While path length reductions were achieved in anchorages N-1, N-3, and N-5, anchorages N-2 and N-4 showed 

increased path lengths due to safety considerations. The detailed analysis for each anchorage area is as follows: 

In anchorage N-1, the actual path length of 10,096.45 m was reduced to 10,035.95 m through 

optimization, showing a path reduction rate of 0.60 %. This relatively modest reduction suggests that the 

vessel initially chose a fairly efficient route in terms of distance. However, from a safety perspective, the 

actual path's destination violated the anchorage boundary safety distance, indicating that both the VTS 

operator and vessel operator experienced significant difficulties in identifying a safe anchoring position. 

For anchorage N-2, a path reduction rate of -4.55 % was recorded, indicating an increase from the actual 

path length of 9,052.45 m to 9,484.32 m after optimization. This increase in path length resulted from the 

selection of a detour route to address the safety distance violation with an independent obstacle (buoy) 

observed in the actual path, exemplifying the system's design philosophy that prioritizes safety over simple 

distance minimization. 

Anchorage N-3 showed notable performance improvement through optimization. When comparing the 

complete trajectories from identical starting points to designated anchoring positions, the actual path followed 

by the vessel was considerably longer than the optimized path generated by our system. This difference 

highlights a common operational challenge in maritime traffic management, where vessels may follow 

inefficient routes due to practical limitations such as communication constraints between VTS operators and 

vessel captains, language barriers during VHF voice communications, or unfamiliarity with local anchorage 

zones for vessels entering Busan Port for the first time. 

In the case of anchorage N-4, the actual path length increased from 4,965.86 m to 5,377.21 m after 

optimization, resulting in a path reduction rate of -7.65 %. This was necessary to address both anchorage 

boundary violations and safety distance violations with anchored vessels, incorporating destination 

adjustments for a safer anchoring position. This case serves as a crucial example of how safety-based decision-

making should be implemented in actual operational environments. 

For anchorage N-5, the actual path length of 3,733.11 m was reduced to 3,440.30 m through optimization, 

achieving a path reduction rate of 7.84 %. The actual path showed navigation safety distance violations with 

another N-5 anchored vessel. This case simultaneously demonstrates both the challenges vessel operators face 

in real-time monitoring and maintaining safety distances from surrounding vessels, and the cognitive 
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limitations of VTS operators in immediately calculating and suggesting optimal routes and anchoring positions 

while monitoring multiple vessels simultaneously. 

Notably, by summing all path lengths from Table 7, the total distance for actual paths is approximately 

37,149.18 m, whereas the optimal paths total about 33,583.67 m. Hence, there is an overall distance reduction 

of roughly 3,565.51 m (about 9.6 %), indicating the potential for meaningful savings in fuel and transit time. 

In addition, a simple inspection of safety violations in Table 7 shows a total of six violations (across 

navigation safety distance, anchored vessel distance, and anchorage boundary) in the actual paths, whereas 

the optimized paths recorded zero. This result underscores the system’s ability to enhance navigational safety 

by systematically avoiding risk-prone areas. 

It is also important to note the characteristics of path patterns observed in Figures 5, 6, 8, and 9. The 

original optimal paths (shown as "Optimal path (Original)" in these figures) exhibit zigzag patterns due to the 

grid-based nature of the reinforcement learning environment. This pattern emerges naturally as the agent 

learns to navigate by moving between discrete grid cells. However, such paths present practical limitations 

for actual vessel operations, as they would require excessive directional changes. 

To address this limitation, we applied the Douglas-Peucker algorithm as a post-processing step for path 

simplification. This algorithm preserves the essential features of the path while removing unnecessary 

intermediate points, resulting in smoother trajectories with diagonal movements (shown as "Optimal path 

(Simplified)" in the figures). These simplified paths maintain the quantitative improvements shown in Table 

7 while significantly reducing the number of directional changes required during navigation, thereby 

enhancing maneuverability and practical applicability for vessel operations. 

These comprehensive analysis results demonstrate that the proposed system can effectively address the 

limitations of the current VTS system. The experiments validated several advantages: minimizing complex 

voice communications through visualized optimal path provision, resolving communication issues arising 

from language barriers, and enabling safe guidance to anchorage areas even for vessels without prior 

knowledge of the zones. Although some anchorage areas generated longer paths to ensure safety, this rather 

serves as evidence that the system can support efficient operations while strictly adhering to safety standards 

required in actual maritime environments. 

In particular, the significant drop in total safety violations (6 to 0) and the overall distance reduction of 

about 9.6 % clearly illustrate the potential operational gains and risk mitigation benefits. These characteristics 

not only promise overall maritime traffic safety improvements but also suggest potential fuel consumption 

reduction benefits through path length reductions achieved in most cases. 

6. Conclusion 

This study proposed a reinforcement learning-based optimal anchorage allocation and path planning 

system and validated its effectiveness using actual vessel operation data from Busan Port. The main 

achievements of this study are as follows: 

First, the proposed system achieved path length reduction in most anchorage areas compared to actual 

vessel paths. Notably, anchorage N-3 recorded a significant path reduction rate of 43.60 %, while anchorages 

N-1 and N-5 achieved reductions of 0.60 % and 7.84 %, respectively. Although anchorages N-2 and N-4 

showed path increases of 4.55 % and 7.65 % due to necessary detours for safety assurance, this reflects the 

system's design philosophy that prioritizes maritime safety. 

Second, the grid extension methodology proposed in this study enabled realistic anchorage space 

modeling that considers vessels' actual physical dimensions and wind direction. This is expected to 

significantly contribute to efficient utilization and safety assurance of anchorage areas. 

However, this study has the following limitations: 

First, due to the constraint of not knowing the exact anchor chain calculation length for each vessel, 

safety distances were set by positioning the vessel's bow as the center of the safety distance zone. In reality, 

additional extension is needed from the bow section, which is the last part of the extended cell, by the length 
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of the anchor chain calculation. Future research could achieve more precise and safer anchorage allocation by 

investigating the exact anchor chain calculation length for each vessel. 

Second, there is a limitation in that the grid extension distance was set based on the maximum length 

among vessels anchored during a certain period, rather than considering individual vessel lengths. This can 

lead to excessive occupation of anchorage space, and future research needs to develop a dynamic grid 

extension methodology that reflects the actual length of each vessel. 

Third, while this study validated the model using Busan Port data, its applicability to other ports with 

different geographical characteristics and operational regulations requires further investigation. However, the 

methodological framework developed in this study has potential for adaptation through reconfiguration of 

simulation parameters and retraining of the learning model to accommodate different port environments. 

Fourth. Although this study demonstrates promising results, its current computational overhead poses 

challenges for real-time VTS implementation. In particular, the detailed grid-based modeling and repeated 

learning iterations require considerable computational resources. Future research should thus explore more 

efficient or hybrid algorithms, high-performance computing resources, or localized path planning approaches 

to enable near-real-time decision-making under dynamic maritime conditions. 

Fifth, the study did not explicitly incorporate seasonal variations in weather conditions, which 

significantly impact anchorage operations. Seasonal weather patterns such as typhoons, fog, high waves, and 

varying wind conditions considerably influence anchorage management and vessel safety. Therefore, 

integrating seasonal and real-time weather conditions into the reinforcement learning framework is essential 

to enhance the practical applicability and robustness of the proposed model. 

Despite these limitations, the reinforcement learning-based anchorage allocation and path planning 

system proposed in this study demonstrated significant potential for improving the efficiency and safety of 

maritime traffic control operations. In particular, this study holds great significance in that it verified the 

system's practicality based on actual AIS data from real vessel operations in Busan Port. 

Future research is expected to enhance the system's practicality and safety by addressing the 

aforementioned limitations and adding functionalities to respond to various maritime situations, such as path 

planning in severe weather conditions and alternative route generation in emergency situations. Additionally, 

meaningful follow-up research could involve applying the methodology proposed in this study to other major 

ports to verify its effectiveness. 
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