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A B S T R A C T  

A significant percentage of fuel consumption and emissions from transportation 

activities is related to maritime transportation. Hence, accurate prediction models for 

fuel consumption are quite important. Machine learning offers a data-driven approach 

to improving fuel consumption prediction, thereby promoting environmental 

sustainability, lowering operational costs, and enhancing financial viability. This work 

explores several machine learning approaches by employing statistical measures, 

including mean squared error (MSE), coefficient of determination (R²), and Kling-

Gupta efficiency (KGE), to develop main engine fuel consumption (MEFC) prediction 

models. Hyperparameter optimization via grid search was conducted to improve the 

generalizability and robustness of the models. With the lowest test MSE (0.69), a 

robust testing R² (0.9867), and a high KGE (0.9681), the Random Forests proved to be 

the most appropriate model for MEFC modeling among all others. Extreme Gradient 

Boosting followed closely with competitive accuracy, with MSE values of 0.75 and a 

robust testing R² (0.9856). Using Shapley additive explanations and Local interpretable 

model-agnostic explanations, this study improves model interpretability even more and 

indicates that main engine speed and wind speed were revealed to be the most 

important factors controlling MEFC. Explainable artificial intelligence techniques 

offer transparency in decision-making, thereby helping marine operators maximize 

fuel economy. Employing reliable and interpretable predictive modeling, this study 

offers insightful information for sustainable shipping, hence lowering operating costs 

and emissions. 

1. Introduction 

As the backbone of international trade, maritime transport accounts for over 80% of global trade volume 
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and plays a crucial part in global commerce and economic growth [1, 2]. However, with the expansion of 

shipping and maritime activities, annual greenhouse gas emissions (GHG) from vessels have surpassed one 

billion tons [3, 4]. Therefore, the International Maritime Organization (IMO) has implemented various 

regulatory measures to mitigate emissions, including the Energy Efficiency Design Index (EEDI), the Energy 

Efficiency Operational Indicator (EEOI), and the Carbon Intensity Indicator (CII), all aimed at improving ship 

energy efficiency and decreasing GHGs [5-7]. Since 1997, the IMO has enacted progressive policies to address 

maritime emissions, culminating in the adoption of the Initial GHG Strategy in 2018, and subsequently, the 

2023 Revised GHG Strategy [8, 9]. The updated strategy issued in 2023 outlined ambitious decarbonization 

targets, seeking to reduce GHG emissions by 30% by 2030 and 80% by 2040, relative to 2008 levels [9, 10]. 

Efforts to decarbonize maritime activities require a comprehensive strategy that combines technological 

innovations, operational enhancements, and the use of alternative fuels [11-14]. The IMO has underscored the 

significance of low-carbon and zero-carbon fuels, including ammonia, hydrogen, and biofuels, in attaining the 

ambitious objectives outlined in the 2023 GHG Strategy [9, 15]. The transition to alternative fuels necessitates 

substantial infrastructural advancements, including the retrofitting of current fleets and the establishment of 

fuel supply lines, presenting economic and logistical obstacles [16, 17]. In addition, innovations in energy 

efficiency technology such as waste heat recovery [18, 19] and hull optimization [20, 21] have been 

progressively investigated to improve fuel economy and reduce emissions. Digitalization and artificial 

intelligence (AI) can enhance these initiatives by facilitating real-time monitoring and predictive maintenance, 

therefore optimizing voyage planning and reducing fuel usage [22, 23]. Notwithstanding these achievements, 

considerable obstacles persist in the shift towards a low-carbon maritime industry. The substantial capital 

expenditures required for converting vessels and implementing modern propulsion systems pose financial 

obstacles, especially for small and medium-sized maritime enterprises [24, 25]. Additionally, uncertainty in 

international regulatory frameworks and the absence of a globally unified carbon pricing mechanism deter 

investment and innovation in sustainable technologies. Addressing these issues requires coordinated action 

among stakeholders like governments, shipowners, operators, and research institutions to develop supportive 

legislation and incentive frameworks that encourage low-emission technology adoption [26, 27]. More 

importantly, regional regulatory regimes, including the European Union’s Fit for 55 packages and the 

incorporation of maritime emissions into the Europe Emissions Trading System, impose supplementary 

compliance obligations on ship operators [28, 29]. Although these methods expedite the implementation of 

sustainable practices, they also pose a risk of generating market discrepancies among various shipping 

corridors. The implementation of carbon intensity regulations has compelled industry stakeholders to 

investigate fuel-blending techniques and hybrid propulsion systems to achieve compliance standards [30]. 

Indeed, attaining the IMO's decarbonization objectives necessitates a comprehensive and flexible strategy that 

harmonizes technological advancement with economic viability. Ongoing legislative enhancements and 

industry-driven initiatives will be crucial in advancing a resilient and environmentally sustainable maritime 

sector [31, 32].  

During a vessel's operational cycle, fuel consumption, EEOI, EEDI, and CII are directly correlated with 

its emission levels [33]. To adhere to these requirements and sustain a competitive advantage, shipping 

companies are proactively pursuing measures to reduce fuel use [34, 35]. Consequently, predictive models for 

fuel use have become indispensable in the maritime industry. Accurate forecasting of fuel use under diverse 

ship and climatic conditions is essential for assessing emissions and energy efficiency. Furthermore, accurate 

forecasts enable informed decision-making concerning route optimization, speed modifications, and other 

operational methods designed to enhance overall ship efficiency [36, 37]. Despite various modeling efforts, 

traditional statistical methods often fail to capture the nonlinear relationships and complex interactions 

between operational parameters and environmental factors influencing main engine fuel consumption 

(MEFC). Conventional regression methods limit their capacity to consider dynamic marine circumstances 

since they assume linear dependencies. Moreover, empirical models are less flexible to fit different ship 

profiles, paths, and weather conditions since they may demand great domain expertise and parameter tuning 

[38, 39]. These constraints draw attention to a notable literature gap and underline the need for sophisticated 

data-driven methods able to manage complicated connections and offer strong MEFC projections. Harnessing 

the capabilities of nonlinear modeling, feature interaction capture, and adaptive learning, machine learning 



A.T. Hoang et al. Brodogradnja Volume 76 Number 4 (2025) 76405 

 

3 

 

(ML) algorithms such as Extreme Gradient Boosting (XGBoost), Decision Trees (DT), Extra Trees, and 

Random Forests (RF) have shown significant potential for improving MEFC prediction models [40-42]. 

XGBoost, an improved Gradient Boosting method, employs iterative learning and regularization to improve 

the prediction accuracy. XGBoost is suitable for capturing complex fuel consumption patterns under many 

operating circumstances [41, 42]. Conversely, DT models provide interpretable decision-making frameworks 

that effectively segregate the data depending on influential characteristics, therefore enabling organized and 

rule-based MEFC estimates. Extra tree regression models are observed to be resilient against overfitting. Extra 

tree regression is an ensemble learning method that helps to lower variance by utilizing randomized feature 

selection and multiple decision trees, thus helping to improve model generalization [43, 44]. These ML models 

are particularly effective in processing high-dimensional input features such as vessel speed, shaft power, 

wind speed, wave height, and ocean currents. Unlike conventional models, they do not rely on predefined 

equations to capture relationships but learn directly from data patterns [45]. Their ability to incorporate real-

time operational inputs allows for adaptive forecasting, supporting dynamic and informed fuel management 

decisions. Such capabilities position ML-based approaches as superior alternatives to traditional statistical 

methods in MEFC modeling. Notwithstanding these developments, present models can suffer from 

interpretability and fail to accurately measure individual feature impacts, so restricting their practical value 

for end users. For evidence-based decision-making, these gaps in the literature impede the operational 

transparency ship operators demand. Through Shapley additive explanations (SHAP) and Local interpretable 

model-agnostic explanations (LIME), the extraction of transparent and actionable insights from intricate ML 

models helps to overcome these constraints, strengthening trust and enabling more informed fuel management 

policies. 

The primary objective of this study is to develop a robust and interpretable ML framework for MEFC 

prediction by integrating multiple ML algorithms to improve predictive accuracy and generalizability, thereby 

addressing key limitations and gaps identified in the current body of literature. The development of an 

interpretable white-box modeling framework will be used to explore feature importance and underlying 

decision-making logic, thereby ensuring transparency, reliability, and practical applicability in real-world 

maritime fuel management scenarios. The study intends to use two different interpretable approaches, SHAP 

and LIME to attain interpretability and model transparency. Together, SHAP and LIME bridge the critical gap 

between ML accuracy and model transparency, often cited as a limitation in black-box ML approaches. Their 

inclusion ensures that the developed predictive models are not only highly accurate but also interpretable and 

trustworthy, which is essential for practical deployment in maritime operations. The integration of explainable 

AI tools within the MEFC modeling framework thus empowers maritime decision-makers with transparent, 

data-driven insights, supporting more effective and accountable fuel management. 

2. Materials and methods 

2.1 Data collection and background 

The data used in this analysis comes from a published research project by Uyanik et al. [46] analyzing 

a ship’s MEFC using noon reports gathered through a 35-day trip. The adoption of this dataset is justified by 

its empirical basis since it is obtained from actual operational data kept on a commercial vessel. Traditionally 

utilized for ship performance monitoring, noon reports offer insightful analysis of important operational 

factors, including fuel usage, speed, weather, and engine performance. This work ensured that the fuel 

consumption calculations were based on real-world voyage conditions by using this dataset, thereby 

improving the dependability and resilience of the developed ML models. Furthermore, using actual voyage 

data helps to reduce the restrictions related to theoretical models that might not adequately explain the 

complexity of actual marine operations. 
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2.2 Machine learning algorithms 

2.2.1 Random Forest 

Random Forest (RF) is a powerful ensemble learning technique that enhances predictive performance 

by combining multiple DTs. The fundamental concept is to create several separate DTs and combine their 

results to produce a final aggregated prediction [47]. Using a method known as bootstrapping aggregating, 

each tree in the forest is trained on a randomly chosen portion of the data, thus improving generalization and 

lowering overfitting [48, 49]. Furthermore, a random subset of features is selected for the split at every node 

of a tree, therefore guaranteeing variety among the trees and thereby reducing overfitting. RF uses majority 

voting - that is, each tree votes for a class, where the class with the most votes ends as the final prediction in 

classification problems [50, 51]. In regression, a reduction in variance results from averaging the outputs from 

all trees. This averaging approach guarantees consistency in forecasts and builds the model to be strong against 

noisy data. The capacity of RF to efficiently manage high-dimensional data is one of its main benefits. 

Operating on several subsets of features, it remains robust against irrelevant or redundant features. RF has a 

few shortcomings, notwithstanding its merits. First, especially in cases of a lot with trees, the model can lead 

to higher computational costs [52, 53]. As the number of trees increases, training and inference times likewise 

change dramatically. Furthermore, even if it works well on structured data, it might not be as successful on 

very complicated patterns where XGBoost or Gradient Boosting could produce better outcomes. RF is a 

dependable tool for many ML applications, including medical diagnosis, fraud detection, and recommendation 

systems, since it balances bias with variance generally. In predictive modeling, this popular and extensively 

used method can generalize effectively across several datasets and combined resistance to overfitting. 

2.2.2 Gradient Boosting 

Gradient Boosting (GB) is a sequential ensemble learning technique that builds models iteratively, with 

each new tree correcting the errors of the previous ones. GB creates trees consecutively, maximizing a preset 

loss function at every step, unlike RF, in which trees are built randomly [54]. This method produces a model 

with decreasing bias and enhanced predictive accuracy that is ever more sophisticated. GB’s basic idea is to 

fit trees to the residuals (errors) of the prior model, thereby reducing the loss function. Each tree is trained to 

minimize the error in anticipating the variation between the actual values and the model's current predictions 

rather than on the raw labels. Through the capture of complex, data-driven relationships, this iterative 

improvement technique ensures that every new tree enhances the performance of the model [55, 56]. The 

learning rate of GB is a fundamental factor since it determines the degree of contribution each tree makes to 

the resultant prediction. Whereas a high learning rate may cause overfitting, a lower learning rate produces 

slower but more steady learning. While subsampling generates randomization by choosing a part of the data 

for every tree, hence lowering variance, shrinkage scales down the contribution of every tree [57, 58]. GB has 

certain disadvantages, even if it boasts great accuracy. Particularly for big datasets, the sequential character 

makes it computationally costly. Furthermore, being sensitive to hyperparameters, it calls for careful 

optimization of the learning rate, tree depth, and tree count to reach the best performance. The model can 

overfit the training data without appropriate tweaking, thereby reducing generalization to unprocessed input. 

Predictive analytics is a great tool because of its ability to replicate intricate patterns and interactions among 

features. 

2.2.3 XGBoost  

XGBoost is an optimized implementation of GB that improves both computational efficiency and 

predictive performance. Popular for large-scale machine-learning projects and competitions, it combines many 

improvements over conventional GB [59]. XGBoost improves over GB by including second-order derivatives, 

therefore producing more accurate updates, while conventional GB reduces the loss function using first-order 

gradients [60, 61]. Furthermore, included in the model are regularizing terms in the goal function, hence 

guiding tree complexity and avoiding overfitting. XGBoost uses shrinkage to improve generalization by 

lowering the impact of every tree's input and therefore facilitating more gradual learning. It also presents 

column subsampling, in which at each split a random subset of features is chosen to foster diversity and lower 
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variation. XGBoost's capacity to effectively manage missing values using a sparsity-aware algorithm, which 

gives ideal default directions for missing data during tree building, adds a significant advantage [62].  

XGBoost's parallelized execution, which distributes computations over several CPUs, therefore 

accelerates training and is a computational advantage. XGBoost uses backward pruning, eliminating pointless 

splits to increase efficiency, unlike conventional boosting techniques that develop trees in a depth-first way 

[63, 64]. The weighted quantile sketching method also improves performance on imbalanced data, therefore 

guaranteeing better treatment of rare classes. XGBoost needs careful hyperparameter adjustment to avoid 

overfitting, even if it offers benefits. Maximizing performance depends on choosing the regularization 

parameters, tree depth, and an ideal learning rate. XGBoost is increasingly applied in fields such as fraud 

detection, consumer analytics, and automated trading systems because of its great efficiency and high 

accuracy. Among the most potent gradient-boosting systems available in contemporary ML, its mix of speed, 

adaptability, and strength is quite effective. 

2.2.4 Linear Regression  

Linear Regression (LR) is a statistical method that models the relationship between a dependent variable 

and one or more independent variables using a linear function. The model assumes a linear relationship 

between the independent variables and the corresponding variations in the dependent variable. By using the 

ordinary least squares function, the regression coefficients are approximated, hence reducing the sum of 

squared residuals [65, 66]. The error term explains the inexplicable variance. The model cannot be effective 

without certain important assumptions being satisfied: linearity, homoscedasticity, absence of 

multicollinearity, and lack of normality of residuals. Although LR suffers from capturing nonlinear 

relationships, it is basic and interpretable. In the case of high-dimensional datasets, overfitting becomes a 

problem and calls for Lasso Regression using an L1 penalty to enhance generalization, and ridge regression 

using an L2 penalty. Due in great part to its computing efficiency and simplicity of interpretation, LR is 

extensively applied in many disciplines, including economics, social sciences, and engineering, despite its 

restrictions [67, 68]. Non-linear models such as DT, RF, or neural networks often exceed LR in predicting 

accuracy, but in situations where interactions between variables are complicated. 

2.2.5 Decision Tree 

A Decision Tree (DT) is a non-parametric, tree-based ML model used for both classification and 

regression tasks. It works by recursively partitioning the input space into homogeneous subsets based on 

feature values, forming a tree-like structure. Each internal node represents a decision rule on a feature, while 

branches show several results, and leaf nodes have final forecasts. Built using techniques such as classification 

and Regression Trees, which choose the optimum feature splits depending on parameters such as Gini impurity 

for classification or mean square error. The tree grows until it reaches a minimum number of samples per leaf 

or a maximum depth, therefore satisfying a stopping criterion. One of the primary advantages of decision trees 

is their interpretability. They provide transparent decision paths and can handle both categorical and numerical 

variables without assuming any underlying data distribution. Moreover, they require minimal preprocessing, 

making them suitable for a wide range of practical applications [69, 70]. DT has a significant disadvantage in 

that it overfits, particularly in deep trees that pick up noise in the training data. Pruning removes branches that 

do not significantly affect prediction accuracy, helping to reduce this overfitting problem. Control overfitting 

also comes from methods including minimum impurity decrease and maximum depth restriction. 

Notwithstanding their restrictions, DT constitutes the basis for strong ensemble techniques such as RF and 

GB, which use several trees to raise predictive performance. Applications including credit scoring, client 

segmentation, and medical diagnosis all benefit from DT’s efficiency and interpretability [71, 72]. 

2.2.6 Support Vector Regression  

Support Vector Regression (SVR) is an extension of Support Vector Machine for regression tasks. SVR 

seeks to discover a function that deviates from the actual target values by no more than a defined margin (), 

while also being as smooth as possible, unlike conventional regression models that minimize the error directly. 

Maintaining a tolerance level for deviations, SVR creates a hyperplane in a high-dimensional feature space 
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that best fits the data. The aim is to minimize the epsilon-insensitive loss function, which solely penalizes 

deviations beyond this threshold and ignores errors smaller than  [73, 74]. SVR is robust enough to work 

against noise in data and minor fluctuations. Using kernel functions, e.g., linear, polynomial, radial basis 

function, could allow SVR to model complicated, nonlinear relationships by converting data into a higher-

dimensional space where an LR function may be used. The selection of the kernel greatly affects model 

performance and should be done depending on the distribution of the data. SVR comprises two important 

hyperparameters: The regularization parameter manages the trade-off between preserving model simplicity 

and reducing error [75, 76]. Although a greater regularization parameter produces a better fit, overfitting may 

follow from this. Defines the error tolerance threshold, and epsilon margin. Greater flexibility and lessening 

of extreme sensitivity to noise are made possible by a higher . SVR offers more flexibility and is quite 

successful for small-to-medium-sized datasets with complicated relationships than conventional LR. But as it 

solves quadratic optimization issues, its computational cost may be high, especially for big datasets. Because 

SVR can easily manage both linear and nonlinear regression problems with great accuracy, it is extensively 

used in traffic prediction, financial forecasting, and biological modeling.  

2.2.7 Extra Tree Regressor 

The Extra Tree Regressor (ETR) is an ensemble learning method similar to RF, but with a key 

difference: it introduces additional randomness when constructing DTs. ETR chooses feature splits at random, 

hence reducing variance and accelerating training durations; RF chooses the optimum feature split by 

optimizing impurity reduction. Each tree in the ETR ensemble is constructed from the entire training set 

without bootstrapping, and at each node, a random feature is chosen together with a random threshold value 

for splitting [77, 78]. While guaranteeing strong generalization, this enhanced randomness reduces the model's 

overfitting susceptibility. ETR are more efficient than RF since they do not need to look for the ideal split at 

every node, hence, accelerating training speed is one of their various benefits. Furthermore, they offer 

improved regularization since the extra randomization lowers variance and improves model stability, 

especially in noisy data. Moreover, ETR show great resistance against overfitting and perform well on high-

dimensional datasets without much hyperparameter adjustment needed [79, 80]. The ETR has a bigger bias 

than RF, though, since the random splits could produce fewer ideal trees, therefore lowering the general 

accuracy. It also lacks the interpretability of more basic models such as DTs, which makes it less appropriate 

for uses where explainability is important [81]. ETR are beneficial for uses including bioinformatics, climate 

modeling, and real estate price prediction, even with these restrictions, since they show great efficiency in 

managing huge datasets with complex feature relationships. 

2.2.8 Kernel Ridge Regression 

Kernel Ridge Regression (KRR) combines Ridge Regression with Kernel methods to model complex, 

nonlinear relationships. Using kernel techniques could extend LR and enable LR to capture complex patterns 

without clearly changing input features. With an L2 regularization term, ridge regression reduces the sum of 

squared residuals, hence punishing high coefficients and avoiding overfitting [82, 83]. By substituting a 

higher-dimensional feature space created by kernel functions such as polyn, Gaussian, and sigmoid kernels 

for the input space, KRR improves this even more. This change allows the LR function to work in the 

transformed domain, hence capturing nonlinear dependencies in the data. Strong generalization is one of the 

various benefits KRR presents since regularizing helps to reduce overfitting while preserving model 

flexibility. For nonlinear modeling, it is quite successful since kernel methods enable it to capture complicated 

interactions without explicit feature engineering. Furthermore, KRR provides an analytical solution, so it is 

computationally effective for small datasets, unlike iterative gradient-based techniques. KRR has certain 

restrictions, too, including high computational costs resulting from kernel-based transformations, which can 

be costly for big datasets and poorly scaled with sample count [84, 85]. It is also memory-intensive since 

storing kernel matrices calls for a lot of memory, therefore restricting its use to really big datasets. 

Notwithstanding these difficulties, KRR has been extensively applied in fields including signal processing, 

geographic modeling, and biological data analysis, where nonlinear interactions abound. Particularly for 

structured or very complicated data, KRR offers a strong substitute for conventional regression methods by 
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aggregating the strengths of ridge regression and kernel approaches [86, 87]. A schematic showing a flowchart 

of the ML implementation is depicted in Figure 1. 

 

Fig. 1  Schematic flow chart of ML implementation for MEFC 

 

2.3 Explainable machine learning approach 

2.3.1 SHapley additive explanations 

Robust interpretability method SHapley additive explanations (SHAP) quantifies the contribution of 

every input feature in ML-based prediction models. It is based on cooperative game theory, which considers 

all conceivable feature combinations to guarantee a fair distribution of feature importance. SHAP aids in the 

identification of important factors that greatly affect fuel consumption in MEFC prediction, including vessel 

speed, weather conditions, and wave height [88]. The system improves ML models by including local and 

global explanations, therefore helping ship operators maximize fuel economy. Whereas dependence and force 

charts provide instance-specific information, the SHAP summary plot presents a whole picture of feature 

contributions [89]. In the maritime industry, in which fuel expenses and pollutants are the main issues, this 

interpretability is important. Using SHAP allows academics and business experts to create more accurate 

models and make data-driven decisions to raise operational efficiency and sustainability in shipping [90]. The 

flowchart for SHAP analysis is given in Figure 2.  
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Fig. 2  Flowchart for SHAP analysis 

 

2.3.2 Local interpretable model-agnostic explanations 

Local interpretable model-agnostic explanations (LIME) is an interpretability method that explains 

individual predictions of ML models. Unlike global techniques, LIME highlights the most important elements 

in every instance by producing local surrogate models around particular predictions. LIME can help to clarify 

in MEFC forecast how factors like speed, sea state, and wind speed support a specific fuel consumption 

estimate [91]. LIME generates interpretable linear approximations by varying input values and examining 

their effects, so guiding marine operators in their understanding of decision-making. Real-time monitoring, 

anomaly identification, and fuel economy optimization all benefit particularly from this approach. LIME's 

visual explanations make ML models' outputs more transparent and actionable, thus enhancing trust in them. 

By allowing shipowners and engineers to adjust operational methods, this improved interpretability helps to 

save fuel costs and emissions while yet guaranteeing environmental compliance [92, 93]. The schematic 

flowchart of LIME is depicted in Figure 3. 

 

Fig. 3  Schematic flowchart for LIME 
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2.4 Statistical metrics for model evaluation  

In the present work, three statistical measures namely mean squared error (MSE), coefficient of 

determination (R²), and Kling-Gupta efficiency (KGE) were employed to assess the predictive performance 

of the ML models. Each one of these measures provides a different angle of view on the performance traits of 

the models. The mean of the squared variations between predicted and observed values is measured by MSE. 

A lower MSE value closer to 0 denotes higher prediction accuracy. In addition, R² represents the proportion 

of variance in the observed data that the model can explain. R² values fall between 0 and 1, while higher values 

indicate a better fit of the model for the observed variance. Moreover, KGE is the composite measure of three 

fundamental components correlation, bias, and variability. The following expressions were used for the 

measurement of MSE [94], R2 [95], and KGE [96]: 

𝑅2 = 1 − [𝛴(𝑦ᵢ − ŷᵢ)2/𝛴(𝑦ᵢ − ȳ)2] (1) 

𝑀𝑆𝐸 = (1/𝑛)𝛴(𝑦ᵢ − ŷᵢ)2 (2) 

𝐾𝐺𝐸 = 1 −√(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (3) 

Herein, 𝑦ᵢ denotes the actual value, ŷᵢ represents the predicted value, ȳ denotes the mean of actual values, 

n is the number of observations, r is the Pearson correlation coefficient, 𝛼  =  𝜎ŷ/𝜎𝑦 (ratio of standard 

deviations), 𝛽 = 𝜇ŷ/𝜇𝑦 (ratio of means). 

3. Results and discussion 

3.1 Dendrogram analysis with correlation heatmap 

The graphic shown in Figure 4 displays a correlation heatmap integrated with a hierarchical clustering 

dendrogram to examine the links among several metrics associated with a ship's performance and 

environmental circumstances. The heatmap illustrates the Pearson correlation coefficients among main engine 

speed (MES, rpm), shaft power (SP, kW), wind speed (WS, kts), wave height (WH, m), current speed (CS, 

kts), and main engine fuel consumption (MEFC, tons) since these parameters were found to affect the MEFC 

the most [97]. Notable findings from the correlation values reveal a robust positive correlation of 0.88 between 

MES and SP, which is rational, as an increase in engine speed typically leads to elevated shaft power. 

Likewise, MES and MEFC exhibit a correlation of 0.89, signifying that increased engine speeds result in 

elevated fuel consumption. SP and MEFC exhibit a robust correlation of 0.79 since heightened power 

production necessitates greater fuel consumption. Indeed, WS exhibits a moderate correlation with MES 

(0.76) and MEFC (0.68), indicating that increased wind intensity affects ship resistance and fuel consumption. 

Conversely, WH and CS demonstrate weaker correlations with other variables, suggesting that these 

environmental elements may not significantly influence engine power and fuel consumption compared to 

speed-related measures. 

The dendrogram on the left categorizes analogous parameters according to their correlation values. 

MES, MEFC, and SP constitute a closely associated cluster, indicating their direct correlation with engine 

performance and fuel efficiency. WH and CS clusters operate independently, as their impact on engine 

performance is diminished. WS is situated between these clusters, influencing ship resistance, however, it is 

not as intimately associated with engine operations as MES or SP. Practically, the clustering suggests that 

enhancing engine speed and power can augment fuel efficiency, whilst environmental variables such as WH 

and CS exert a minimal effect on direct fuel use, although they may still affect overall energy efficiency. 

Operational parameters, including velocity, energy consumption, and fuel efficiency, must be optimized while 

accounting for external environmental factors. The findings are corroborated by the pairwise correlation 

matrix in Figure 5. 
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Fig. 4  Dendrogram with correlation heatmap 

 

Fig. 5  MEFC data’s pairwise correlation matrix 
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3.2 Descriptive statistics 

The dataset comprises 35 observations across six variables about ship operations and environmental 

conditions. The descriptive statistics are listed in Table 1. The primary engine speed averages 50.59 rpm, with 

a standard deviation of 33.24, signifying considerable fluctuation. The speed has a median of 71.83 rpm, and 

the maximum rpm value is 75.32 rpm, signifying that the engine frequently operates close to its upper 

threshold. The mean shaft power is 2919.42 kW, accompanied by a substantial standard deviation of 2248.65 

kW, indicating considerable variability. The power varies from 0 to 9824.72 kW, with a median of 3926.73 

kW, indicating that power usage frequently exceeds the average. The average WS is 16.99 knots, with a 

standard deviation of 7.44, and it ranges from 6.9 to 33.9 knots. The median of 16.9 knots indicates that the 

majority of data cluster around the mean, implying a generally normal distribution. The average wave height 

is 0.87 meters, with a standard deviation of 0.91, ranging from 0 meters in calm waters to a maximum of 2 

meters. A median of 1 meter signifies that the majority of waves are rather modest. The CS has a mean of 0.39 

knots, a standard deviation of 0.43 knots, and a maximum of 1.71 knots, suggesting predominantly weak 

currents. The fuel consumption of the main engine exhibits considerable variability, averaging 12.89 tons with 

a standard deviation of 7.71. The lowest of 0 tons implies non-operational intervals, whereas the median of 

18.1 tons signifies elevated consumption during active phases. 

Table 1  Descriptive statistics 

Column Count Mean std. Min 25% 50% 75% Max 

MES, rpm 35 50.59 33.24 0 0 71.83 74.045 75.32 

SP, kW 35 2919.42 2248.65 0 0 3926.73 4296.17 9824.72 

WS, kts 35 16.99 7.44 6.9 10.9 16.9 21.9 33.9 

WH, m 35 0.87 0.91 0 0 1 2 2 

CS, kts 35 0.39 0.43 0 0 0.30 0.65 1.71 

MEFC, tons 35 12.89 7.71 0 4.22 18.1 18.46 19.25 

3.3 Prediction model development 

Python-based code was written to employ the predictive modeling ML framework with multiple 

approaches, including ensemble methods, tree-based methods, and neural approaches. It utilized fundamental 

Python modules, including pandas for data manipulation, numpy for numerical analysis, and scikit-learn for 

ML functionalities. XGBoost performed gradient-boosted regression, while matplotlib facilitated 

visualization. To ensure a uniform model assessment, the dataset was imported via pandas, randomized, and 

subsequently divided into training and testing subsets in a ratio of 8:2. Several regression models were trained 

and tested, including XGBoost, RF, GB Regression, DTs, SVR, and KRR. The evaluation of model 

performance was conducted utilizing MSE, R², and KGE. The accuracy of predictions was enhanced through 

model training and hyperparameter optimization employing a grid search approach. The statistical evaluation 

of the models is listed in Table 2, while the range of hyperparameters used and their optimized values are 

shown in Table 3. 
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Table 2  Statistical evaluation of developed models for MEFC 

Metrics MSE R2 KGE 

Model Train Test Train Test Train Test 

RF 6.89 0.69 0.8834 0.9867 0.8861 0.9681 

GB 6.39 0.76 0.8918 0.9854 0.9213 0.9218 

XGBoost 6.39 0.75 0.8918 0.9856 0.9211 0.9101 

LR 13.33 2.63 0.7741 0.9491 0.8303 0.9628 

DT 6.39 1.05 0.8918 0.9796 0.9213 0.9569 

SVR 16.77 3.64 0.7162 0.9295 0.8456 0.8695 

ETR 6.39 0.75 0.8918 0.9854 0.9213 0.9409 

KRR 59.17 238.46 -0.0015 -3.6126 0.2509 -1.006 

Table 3  Range of training hyperparameters and their optimized values  

Model Hyperparameters range Selected values 

RF 
Number of estimators: range (50 to 200) and 

Maximum depth: range (5 to 20) 
100 and 10 

GBR 

Number of estimators: range (50 to 200), learning 

rate (0.01 to 0.2), and Maximum depth: range (5 to 

20) 

 

100, 0.1 and 5 

LR Fit of intercept: (True or False) True 

DT 
Maximum depth: range (3 to 10) 

 
10 

SVR 

C: (0.1, 1, and 10); 

epsilon: (0.01, 0.1, to 0.2); 

and kernel: linear or rbf 

1, 0.1, and linear 

 

ETR 
Number of estimators: range (50 to 200) and 

Maximum depth: range (5 to 20) 
100 and 10 

KRR alpha: (0.1, 1, 10) and kernel: linear or rbf 1 and rbf 

XGBoost 
Number of estimators: range (50 to 200), learning 

rate (0.01 to 0.2), and Maximum depth: range (3 to 

10) 
100, 0.1, and 5 

3.3.1 Random Forest regressor 

The RF model demonstrated robust predictive efficacy as shown in Figure 6a, with a training MSE of 6.89 

and a lower test MSE of 0.69. This implied that the model generalized effectively without overfitting. 

Statistical measures of the RF model are listed in Table 2. The R² values were on the higher side for both 

training (0.8834) and testing (0.9867), indicating that the model efficiently elucidates the variance in MEFC. 

The KGE values of 0.8861 for training and 0.9681 for testing corroborated the model's reliability in identifying 

patterns within the dataset. Good results can be obtained since the RF has ensemble characteristics; the RF 

leverages several DTs by collaborating to reduce variation and enhance prediction stability. The low error 

distribution, as shown in Figure 6b, further corroborates these findings. As an ensemble approach, it 

necessitated considerable computational resources and hyperparameter manipulation, including the number 

of estimators and tree depth, to enhance performance. This model proved especially effective in managing 

non-linearity, rendering it an appropriate option for forecasting MEFC under diverse scenarios. 
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(a)  

 

(b) 

Fig. 6  RF-based MEFC model: (a) Measured vs. predicted (b) Error distribution 

3.3.2 Gradient Boosting regressor 

Gradient Boosting (GB) regressor, as illustrated in Figure 7a, demonstrated robust performance with a 

training MSE of 6.39 and a notably low test MSE of 0.76. Statistical measures of the GB regression model are 

listed in Table 2. The substantial decrease in error throughout testing demonstrated that the model effectively 

adapted to novel data, likely benefiting from its iterative learning process that rectified errors from prior trees. 

The R² values of 0.8918 for training and 0.9854 for testing underscored its capacity to elucidate the majority 

of the variance in fuel usage, indicating exceptional generalization. The KGE values of 0.9213 for training 

and 0.9218 for testing further corroborated its predictive reliability. 

 

(a)  
 

(b)  

Fig. 7  GB-based MEFC model; (a) Measured vs. predicted (b) Error distribution 

Error distribution plot depicted in Figure 7b shows that errors were low. Nonetheless, despite its 

precision, GB proved computationally demanding, necessitating meticulous hyperparameter optimization to 

avert overfitting. The model's dependence on sequential learning resulted in slower training compared to 

parallelizable models such as RF. Nevertheless, its robust test results indicated that it may serve as an effective 

model for forecasting fuel use, especially in the context of intricate, nonlinear interactions. 

3.3.3 Extreme Gradient Boosting 

The Extreme Gradient Boosting (XGBoost) Regressor exhibited a minimal test MSE of 0.75, markedly 
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surpassing the performance of alternative models in terms of error minimization, as shown in Figure 8a, while 

the error distribution is depicted in Figure 8b. Statistical measures of the XGBoost model are listed in Table 

2. The training MSE was 6.39, signifying a well-fitted model devoid of significant overfitting. The R² values 

were notably high, measuring 0.8918 for training and 0.9856 for testing, so affirming its efficacy in capturing 

variance. The KGE scores of 0.9211 for training and 0.9101 for testing indicated a robust concordance 

between anticipated and actual values. The model's outstanding performance resulted from its optimized 

boosting structure, which effectively integrated weak learners to create a highly accurate predictive model. 

Nonetheless, XGBoost exhibited greater computational complexity compared to more straightforward tree-

based models, requiring meticulous adjustment of parameters such as learning rate and tree depth. Moreover, 

its susceptibility to outliers and skewed datasets necessitated preprocessing to ensure stability. 

Notwithstanding these issues, its exceptional test performance indicated that it was one of the most dependable 

choices for predicting MEFC. 

 
(a)  

 
(b)  

Fig. 8  XGBoost-based MEFC model; (a) Measured vs. predicted (b) Error distribution 

3.3.4 Linear Regression 

The LR model plotted in Figure 9a had moderate predictive power, with a training MSE of 13.33 and a 

higher test MSE of 2.63. The prediction errors over the entire data range are depicted in Figure 9b. Statistical 

measures of the LR model are listed in Table 2. The model's R² value decreased markedly from training 

(0.7741) to testing (0.9491), suggesting it had difficulty generalizing effectively. The KGE values exhibited a 

comparable trend, featuring a substantially elevated training score of 0.8303, contrasted with a diminished test 

score of 0.9628. This indicated that the model did not overfit to the training data. As a parametric model, LR 

presumes a linear correlation between input features and fuel usage, which may not apply to actual maritime 

data. Although it is straightforward and interpretable, this restriction rendered it less appropriate for the 

extremely varied fuel consumption patterns observed in ships. 
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(a)  

 
(b)  

Fig. 9  LR-based MEFC model; (a) Measured vs. predicted (b) Error distribution 

3.3.5 Decision Tree Regressor  

As illustrated in Figure 10a, the Decision Tree (DT) model attained a training MSE of 6.39, which is 

significantly lower than its test MSE of 1.05. Statistical measures of the DT model are listed in Table 2. The 

R² values of 0.8918 for training and 0.9796 for testing demonstrated that the model proficiently captured 

variation and exhibited strong performance on unseen data. KGE scores exhibited a comparable pattern, 

recording 0.9213 for training and 0.9569 for testing, thus affirming the model’s predictive reliability. The low 

error distribution as shown in Figure 10b, further corroborates these findings. DTs inherently offer 

interpretability, facilitating a straightforward display of feature significance and decision paths. Nevertheless, 

in the absence of meticulous pruning and parameter optimization, they frequently experienced overfitting, 

which was not evident in this instance. The robust test results indicated that the model effectively reconciled 

complexity and generalization. Although it exhibited comparable performance to ensemble approaches, its 

independent architecture may have constrained its efficacy in managing high-dimensional data. 

 
(a)  

 
(b)  

Fig. 10  DT-based MEFC model’s (a) Measured vs. predicted (b) Error distribution 
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(a) 

 
(b) 

Fig. 11  SVR-based MEFC model: (a) Measured vs. predicted (b) Error distribution 

3.3.6 Support Vector Regression 

SVR demonstrated inferior performance relative to the tree-based models, evidenced by a training MSE of 

16.77 and a test MSE of 3.64, as plotted in Figure 11a. Statistical measures of the SVR model are listed in 

Table 2. The R² values of 0.7162 for training and 0.9295 for testing indicated a good performance in explaining 

variance, especially for unseen data. KGE values exhibited a comparable trend, recording 0.8456 for training 

and an improved 0.8695 for testing, signifying reduced consistency in predictions. In addition, the error 

distribution as depicted in Figure 11b also reveals lower errors in this model. SVR, although theoretically 

sound for high-dimensional issues, frequently necessitated meticulous adjustment of kernel values and 

regularization terms to avert suboptimal performance. The substantial rise in error for test data indicated that 

the model may not have generalized effectively, possibly due to suboptimal kernel selection or inadequate 

feature scaling. While SVR may be effective in certain contexts, its suboptimal performance in this instance 

rendered it unsuitable for predicting MEFC. 

3.3.7 Extra Trees Regressor  

The Extra Trees Regressor (ETR) model exhibited commendable performance, with a training MSE of 

6.39 and a testing MSE of 0.75, as depicted in Figure 12a, while the error distribution over the entire data 

range is depicted in Figure 12b. The statistical measures of the ETR model are listed in Table 2. It could be 

seen that the R² values were 0.8918 for training and 0.9854 for testing, indicating robust predictive accuracy. 

KGE values of 0.9213 for training and 0.9409 for testing demonstrated strong concordance between predicted 

and actual MEFC values. Moreover, ETR, as an ensemble method, utilized randomly chosen splits at each 

node, enhancing variety and diminishing variation. In comparison to RF, it incorporated greater randomness, 

which improves generalization. The marginal improvement in KGE during testing indicated good 

generalization of the model on the unseen data supplied. Its computational efficiency was analogous to that of 

RF; nevertheless, hyperparameter adjustment was essential to equilibrate bias and variance. Due to its stability 

and robust testing performance, ETR emerged as a viable choice for predicting fuel usage. 
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(a) 

 
(b) 

Fig. 12  ETR-based MEFC model; (a) Measured vs. predicted (b) Error distribution 

3.3.8 Kernel Ridge Regression  

Kernel Ridge Regression (KRR) in Figure 13a exhibited the poorest performance among all models, 

demonstrating an exceedingly high training MSE of 59.17 and an even greater test MSE of 238.46. Statistical 

measures of the KRR model are listed in Table 2. The R² values were markedly low at -0.0015 for training 

and -3.6126 for testing, signifying that the model inadequately accounted for the variance in MEFC. KGE 

values exhibited a comparable pattern, registering 0.2509 for training and -1.006 for testing, thus affirming its 

poor generalization. The error distribution was on the higher side as shown in Figure 13b further corroborates 

that it was a poor model. The negative R² and KGE indicated that the model's predictions were substantially 

inaccurate, potentially due to an unsuitable kernel function or excessive regularization. Due to its inadequate 

predictive capability, it was improbable that it could serve as a feasible choice for forecasting MEFC without 

substantial alterations. 

 
(a)  

 
(b) 

Fig. 13  KRR-based MEFC model; (a) Measured vs. predicted (b) Error distribution 

3.4 Model comparison 

The examination of several ML models based on statistical measures such as MSE, R², and KGE reveals 

information on their prediction accuracy and dependability for MEFC modeling. RF achieved the lowest test 

MSE of 0.69 and the highest test R² of 0.9867 and test KGE of 0.9681, indicating strong accuracy and 

generalization. GB and XGBoost showed nearly identical training MSE (6.39) and R² (0.8918), with test MSEs 
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of 0.76 and 0.75, respectively. GB and XGBoost showed almost exactly similar training MSE (6.39) and R² 

(0.8918). Though their test R² values were close at 0.9854 and 0.9856, GB's test KGE of 0.9218 somewhat 

exceeded XGBoost's 0.9101. Although it had a higher test MSE of 1.05 and somewhat lower test R² (0.9796) 

and KGE (0.9569), DT also shared the same training metrics as GB and XGBoost, making it less favorable. 

Strong performance was indicated by ETR matching GB and XGBoost in training metrics, recording a test 

MSE of 0.75, test R² of 0.9854, and test KGE of 0.9409. Although their test R² values, 0.9491 and 0.9295, 

remain reasonable, LR and SVR had notably higher test MSEs (2.63 and 3.64). Their lower KGE scores 

(0.9628 and 0.8695), however, indicated less dependability. With negative R² and KGE values on the test set 

and an exceptionally high test MSE of 238.46, KRR performed the lowest across all measures. RF, GB, and 

XGBoost are the top three performing models based on a balanced evaluation of MSE, R², and KGE; they 

show both high accuracy and strong generalizing capability. 

3.5 Development of explainable machine learning 

The first plot shown in Figure 14 is a SHAP summary plot, which provides insights into the impact of 

different features on the MEFC model. Every dot is a data point; colors show feature values, blue for low 

values and red for high values. With SHAP values ranging from almost -10 to +6, the MES characteristic has 

the most important impact since it indicates that changes in MES significantly affect the forecasts of the model. 

WH is also quite important as its SHAP values range from roughly -4 to +4. Though their effects are less 

apparent, other elements such as WS, CS, and SP have significance. 

 

Fig.14  MEFC model’s SHAP summary plot 

The second plot depicted in Figure 15 represents a LIME-based local explanation for a specific 

prediction, illustrating which features contributed the most. With a contribution of almost 6.5 units, the MES 

characteristic (71.83 MES ≤ 74.05) has the strongest positive impact. WH (1.00 < WH ≤ 2.00) also has a 

significant influence, adding roughly 2 units. By contrast, WS, CS, and SP barely contribute; their effects are 

shown by either tiny or almost zero values. Red bars show either minimal or negative effects; green bars show 

favorable contributions. Employing an explainable interpretation of the model's decision-making process, this 

LIME visualization aids in understanding how particular feature values form a given forecast. 



A.T. Hoang et al. Brodogradnja Volume 76 Number 4 (2025) 76405 

 

19 

 

 

Fig. 15  MEFC model’s LIME plots 

4. Conclusion 

Ship’s main engine fuel consumption (MEFC) is a critical factor in both economic and environmental 

sustainability, as the shipping industry seeks to reduce fuel costs and minimize emissions. Maximizing 

operational strategies, following legal requirements, and advancing green shipping projects all depend on 

accurate predictive modeling of fuel consumption. The present study used multiple ML approaches for the 

development of prediction models, combined with the use of explainable approaches of SHAP and LIME. 

Indeed, the RF attained the minimal test MSE of 0.69, the maximal test R2 of 0.9867, and the highest test KGE 

of 0.9681, signifying robust accuracy and generalization. GB and XGBoost exhibited nearly equivalent 

training MSEs (6.39) and R² (0.8918), with test MSEs of 0.76 and 0.75, respectively. In addition, GB's test 

KGE of 0.9218 marginally exceeded XGBoost's 0.9101, whereas their test R2 values were comparable at 

0.9854 and 0.9856. Moreover, the DT exhibited identical training metrics to GB and XGBoost; however, it 

recorded a higher test MSE of 1.05 and marginally lower test R2 (0.9796) and KGE (0.9569), rendering it less 

advantageous. ETR equalled GB and XGBoost in training metrics, achieving a test MSE of 0.75, a test R2 of 

0.9854, and a test KGE of 0.9409, signifying robust performance. LR and SVR exhibited markedly elevated 

test MSEs (2.63 and 3.64), while their test R2 values (0.9491 and 0.9295) remained acceptable. Nonetheless, 

their diminished KGE scores (0.9628 and 0.8695) indicated decreased reliability. KRR exhibited the poorest 

performance across all metrics, demonstrating negative R2 and KGE values on the test set, along with an 

exceptionally high test MSE of 238.46. 

In summary, findings from this current work provide a robust foundation for selecting appropriate 

machine learning models for MEFC optimization. SHAP and LIME were used to provide explainability, 

thereby improving the practical usability of the best model. The SHAP summary figure highlights the 

worldwide impact of important features, with MES and WH having the biggest influence on fuel consumption 

projections. MES exhibits SHAP values ranging from approximately -10 to +6, while WH has SHAP values 

between -4 and +4. Meanwhile, LIME offers localized explanations for individual forecasts, demonstrating 

that MES contributes roughly 6.5 units favorably and WH adds around 2 units, although WS, CS, and SP have 

minimal impact. This explainability ensures that the models are accurate and interpretable, allowing maritime 

operators to make informed decisions. In general, this work supports sustainable marine operations by using 

explainable machine learning. Future research could investigate hybrid models combining physics-based 

techniques with machine learning for even more accuracy and interpretability. 



A.T. Hoang et al. Brodogradnja Volume 76 Number 4 (2025) 76405 

 

20 

 

ACKNOWLEDGMENTS 

This work was supported by Ho Chi Minh City University of Transport, Vietnam, via project 

KHTĐ2441. The authors also wish to express their appreciation to the Ministry of Education and Training 

Vietnam for supporting this research under project B2024.DNA.12 entitled “Smart controller for engine fueled 

with flexible gaseous fuels in hybrid renewable energy system.” 

REFERENCES 

[1] UNCTAD, 2022. Review of Maritime Transport 2022. UNCTAD (United Nations Conference on Trade and Development)-

Review of Maritime Transport. 

[2] Prados, J. M. M., 2024. The decarbonisation of the maritime sector: Horizon 2050. Brodogradnja, 75(2), 1-26. 

https://doi.org/10.21278/brod75202 

[3] Trivyza, N. L., Rentizelas, A., Theotokatos, G., Boulougouris, E., 2022. Decision support methods for sustainable ship energy 

systems: A state-of-the-art review. Energy, 239, 122288. https://doi.org/10.1016/j.energy.2021.122288 

[4] Uyanık, T., Karatuğ, Ç., Arslanoğlu, Y., 2020. Machine learning approach to ship fuel consumption: A case of container 

vessel. Transportation Research Part D: Transportation Environment, 84, 102389. https://doi.org/10.1016/j.trd.2020.102389 

[5] Bayraktar, M., Yuksel, O., 2023. A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon 

intensity indicator (CII) regulations. Ocean Engineering, 278, 114295. https://doi.org/10.1016/j.oceaneng.2023.114295 

[6] Tzu, F.-M., Su, D.-T., 2024. Evaluation of carbon dioxide emission based on energy efficiency existing ship index during 

oceanographic navigation. Journal of Operational Oceanography, 17(3), 151-164. 

https://doi.org/10.1080/1755876X.2023.2254133 

[7] Ammar, N.R., Almas, M., Nahas, Q., 2023. Economic Analysis and the EEXI Reduction Potential of Parallel Hybrid Dual-

Fuel Engine‒Fuel Cell Propulsion Systems for LNG Carriers. Polish Maritime Research, 30(3), 59-70. 

https://doi.org/doi:10.2478/pomr-2023-0039 

[8] Ampah, J. D., Yusuf, A. A., Afrane, S., Jin, C., Liu, H., 2021. Reviewing two decades of cleaner alternative marine fuels: 

Towards IMO’s decarbonization of the maritime transport sector. Journal of Cleaner Production, 320, 128871. 

https://doi.org/10.1016/j.jclepro.2021.128871 

[9] IMO, 2023. 2023 IMO strategy on reduction of ghg emissions from ships, Annex 1. 

https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-

Ships.aspx. accessed 14th  March 2025. 

[10] Bilgili, L., Ölçer, A. I., 2024. IMO 2023 strategy-Where are we and what’s next?. Marine Policy, 160, 105953. 

https://doi.org/10.1016/j.marpol.2023.105953 

[11] Olszewski, W., Dzida, M., Nguyen, V. G., Cao, D. N., 2023. Reduction of CO2 Emissions from Offshore Combined Cycle 

Diesel Engine-Steam Turbine Power Plant Powered by Alternative Fuels. Polish Maritime Research, 30, 71-80. 

https://doi.org/10.2478/pomr-2023-0040 

[12] Guzelbulut, C., Badalotti, T., Suzuki, K., 2025. Impact of Control Strategies for Wind-Assisted Ships on Energy 

Consumption. Brodogradnja, 76, 1–14. https://doi.org/10.21278/brod76104 

[13] Kołodziej, R., Hoffmann, P., 2024. Determination of Propeller-Rudder-Hull Interaction Coefficients in Ship Manoeuvring 

Prediction. Polish Maritime Research, 31, 15–24. https://doi.org/10.2478/pomr-2024-0032 

[14] Wei, C., Jiang, G., Wu, G., Zhou, Y., Liu, Y., 2024. Effects on of Blended Biodiesel and Heavy Oil on Engine Combustion 

and Black Carbon Emissions of a Low-Speed Two-Stroke Engine.  Polish Maritime Research, 31, 94-101. 

https://doi.org/10.2478/pomr-2024-0010 

[15] IMO, 2021. Fourth IMO GHG Study 2020. International Maritime Organisation, 6(11), 524. 

[16] Wang, Y., Wright, L. A., 2021. A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, 

and Policy Challenges for Clean Energy Implementation. World, 2, 456–81. https://doi.org/10.3390/world2040029 

[17] Nguyen, V. N., Rudzki, K., Marek, D., Pham, N. D. K., Pham, M. T., Nguyen, P. Q. P., Nguyen, X. P., 2023. Understanding 

fuel saving and clean fuel strategies towards green maritime. Polish Maritime Research, 30, 146-64. 

https://doi.org/10.2478/pomr-2023-0030 

[18] Suárez, F. S., Cao, T., Pujol, A. G., Romagnoli, A. 2022. Waste heat recovery on ships. Sustainable Energy Systems on Ships, 

1, 123–95. https://doi.org/10.1016/B978-0-12-824471-5.00011-6 

[19] Naveiro, M., 2023. Energy, exergy, economic and environmental analysis of a regasification system integrating simple ORC 

and LNG open power cycle in floating storage regasification units. Brodogradnja, 74, 39-75. 

https://doi.org/10.21278/brod74203 

[20] Trimulyono, A., Hakim, M. L., Ardhan, C., Ahmad, S. T. P., Tuswan, T., Santosa, A. W. B., 2023. Analysis of the double 

steps position effect on planing hull performances. Brodogradnja, 74, 41–72. https://doi.org/10.21278/brod74403 

https://doi.org/10.21278/brod75202
https://doi.org/10.1016/j.energy.2021.122288
https://doi.org/10.1016/j.trd.2020.102389
https://doi.org/10.1016/j.oceaneng.2023.114295
https://doi.org/10.1080/1755876X.2023.2254133
https://doi.org/doi:10.2478/pomr-2023-0039
https://doi.org/10.1016/j.jclepro.2021.128871
https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx
https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx
https://doi.org/10.1016/j.marpol.2023.105953
https://doi.org/10.2478/pomr-2023-0040
https://doi.org/10.21278/brod76104
https://doi.org/10.2478/pomr-2024-0032
https://doi.org/10.2478/pomr-2024-0010
https://doi.org/10.3390/world2040029
https://doi.org/10.2478/pomr-2023-0030
https://doi.org/10.1016/B978-0-12-824471-5.00011-6
https://doi.org/10.21278/brod74203
https://doi.org/10.21278/brod74403


A.T. Hoang et al. Brodogradnja Volume 76 Number 4 (2025) 76405 

 

21 

 

[21] Karczewski, A., Kozak, J. A., 2023. Generative Approach to Hull Design for a Small Watercraft. Polish Maritime Research, 

30, 4–12. https://doi.org/doi:10.2478/pomr-2023-0001 

[22] Tay, Z. Y., Hadi, J., Chow, F., Loh, D. J., Konovessis, D., 2021. Big Data Analytics and Machine Learning of Harbour Craft 

Vessels to Achieve Fuel Efficiency: A Review. Journal of Marine Science and Engineering, 9(12), 1351. 

https://doi.org/10.3390/jmse9121351 

[23] Li, Y., Cui, J., Zhang, X., Yang X., 2023. A Ship Route Planning Method under the Sailing Time Constraint. Journal of 

Marine Science and Engineering, 11, 1242. https://doi.org/10.3390/jmse11061242 

[24] Gray, N., McDonagh, S., O’Shea, R., Smyth, B., Murphy, J. D., 2021. Decarbonising ships, planes and trucks: An analysis 

of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Advances in Applied Energy, 1, 100008. 

https://doi.org/10.1016/j.adapen.2021.100008 

[25] Council of the EU, 2023. REGULATION (EU) 2023/1805 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL 

of 13 September 2023 on the use of renewable and low-carbon fuels in maritime transport, and amending Directive 

2009/16/EC (Text with EEA relevance). Office Journal of the European Union. 

[26] UNCTAD, 2020. Review of Maritime Transport 2020. UNCTAD (United Nations Conference on Trade and Development)-

Review of Maritime Transport. 

[27] Singh, D. V., Pedersen, E., 2016. A review of waste heat recovery technologies for maritime applications. Energy Conversion 

and Management, 111, 315-328. https://doi.org/10.1016/j.enconman.2015.12.073 

[28] Council of the EU, 2025. Fit for 55. https://www.consilium.europa.eu/en/policies/fit-for-55. accessed 14th March 2025. 

[29] European Commission (EC), 2013. EU Emissions Trading System. https://climate.ec.europa.eu/eu-action/eu-emissions-

trading-system-eu-ets_en. accessed 14th March 2025. 

[30] Verde, S. F., Borghesi, S., 2022. The International Dimension of the EU Emissions Trading System: Bringing the Pieces 

Together. Environmental and Resource Economics, 83(1), 23-46. https://doi.org/10.1007/s10640-022-00705-x 

[31] Inal, O. B., 2024. Decarbonization of shipping: Hydrogen and fuel cells legislation in the maritime industry. Brodogradnja, 

75, 1-13. https://doi.org/10.21278/brod75205 

[32] Pham, N. D. K., Dinh, G. H., Pham, H. T., Kozak, J., Nguyen, H. P., 2023. Role of Green Logistics in the Construction of 

Sustainable Supply Chains. Polish Maritime Research, 30, 191-211. https://doi.org/10.2478/pomr-2023-0052 

[33] Kondratenko, A.A., Zhang, M., Tavakoli, S., Altarriba, E., Hirdaris, S., 2025. Existing technologies and scientific 

advancements to decarbonize shipping by retrofitting. Renewable and Sustainable Energy Reviews, 212, 115430. 

https://doi.org/10.1016/j.rser.2025.115430 

[34] Wang, H., Yan, R., Wang, S., Zhen, L., 2023. Innovative approaches to addressing the tradeoff between interpretability and 

accuracy in ship fuel consumption prediction. Transportation Research Part C: Emerging Technologies, 157, 104361. 

https://doi.org/10.1016/j.trc.2023.104361 

[35] Nguyen, P. Q. P., Nguyen, D. T., D., Ha, T. Y. N., Le, Q., Nguyen, N. T., Pham, N. D. K., 2025. Machine Learning-Driven 

Insights for Optimizing Ship Fuel Consumption : Predictive Modeling and Operational Efficiency. International Journal on 

Advanced Science, Engineering and Information Technology, 15, 27-35. https://doi.org/10.18517/ijaseit.15.1.12374 

[36] Nguyen, V. G., Rajamohan, S., Rudzki, K., Kozak, J., Sharma, P., Pham, N. D. K., Nguyen, P. Q. P., Xuan, P. N., 2023. Using 

Artificial Neural Networks for Predicting Ship Fuel Consumption. Polish Maritime Research, 30(2), 39-60. 

https://doi.org/10.2478/pomr-2023-0020 

[37] Zhou, Y., Pazouki, K., Murphy, A. J., Uriondo, Z., Granado, I., Quincoces, I., Fernandes-Salvador, J. A., 2023. Predicting 

ship fuel consumption using a combination of metocean and on-board data. Ocean Engineering, 285, 115509. 

https://doi.org/10.1016/j.oceaneng.2023.115509 

[38] Fan, A., Yang, J., Yang, L., Wu, D., Vladimir, N., 2022. A review of ship fuel consumption models. Ocean Engineering, 264, 

112405. https://doi.org/10.1016/j.oceaneng.2022.112405 

[39] Yan, R., Wang, S., Du, Y., 2020. Development of a two-stage ship fuel consumption prediction and reduction model for a dry 

bulk ship. Transportation Research Part E: Logistics and Transportation Review, 138, 101930. 

https://doi.org/10.1016/j.tre.2020.101930 

[40] Zhang, M., Tsoulakos, N., Kujala, P., Hirdaris, S., 2024. A deep learning method for the prediction of ship fuel consumption 

in real operational conditions. Engineering Applications of Artificial Intelligence, 130, 107425. 

https://doi.org/10.1016/j.engappai.2023.107425 

[41] Xie, X., Sun, B., Li, X., Olsson, T., Maleki, N., Ahlgren, F., 2023. Fuel Consumption Prediction Models Based on Machine 

Learning and Mathematical Methods. Journal of Marine Science and Engineering, 11(4), 738. 

https://doi.org/10.3390/jmse11040738 

[42] Wang, K., Wang, J., Huang, L., Yuan, Y., Wu, G., Xing, H., Wang, Z., Wang, Z., Jiang, X., 2022. A comprehensive review on 

the prediction of ship energy consumption and pollution gas emissions. Ocean Engineering, 266, 112826. 

https://doi.org/10.1016/j.oceaneng.2022.112826 

[43] Yang, H., Sun, Z., Han, P., Ma, M., 2024. Data-driven prediction of ship fuel oil consumption based on machine learning 

https://doi.org/doi:10.2478/pomr-2023-0001
https://doi.org/10.3390/jmse9121351
https://doi.org/10.3390/jmse11061242
https://doi.org/10.1016/j.adapen.2021.100008
https://doi.org/10.1016/j.enconman.2015.12.073
https://www.consilium.europa.eu/en/policies/fit-for-55
https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en
https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en
https://doi.org/10.1007/s10640-022-00705-x
https://doi.org/10.21278/brod75205
https://doi.org/10.2478/pomr-2023-0052
https://doi.org/10.1016/j.rser.2025.115430
https://doi.org/10.1016/j.trc.2023.104361
https://doi.org/10.18517/ijaseit.15.1.12374
https://doi.org/10.2478/pomr-2023-0020
https://doi.org/10.1016/j.oceaneng.2023.115509
https://doi.org/10.1016/j.oceaneng.2022.112405
https://doi.org/10.1016/j.tre.2020.101930
https://doi.org/10.1016/j.engappai.2023.107425
https://doi.org/10.3390/jmse11040738
https://doi.org/10.1016/j.oceaneng.2022.112826


A.T. Hoang et al. Brodogradnja Volume 76 Number 4 (2025) 76405 

 

22 

 

models considering meteorological factors. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of 

Engineering for the Maritime Environment, 238(3), 483-502. https://doi.org/10.1177/14750902231210047 

[44] Gkerekos, C., Lazakis, I., Theotokatos, G., 2019. Machine learning models for predicting ship main engine Fuel Oil 

Consumption: A comparative study. Ocean Engineering, 188, 106282. https://doi.org/10.1016/j.oceaneng.2019.106282 

[45] Zhang, M., Taimuri, G., Zhang, J., Zhang, D., Yan, X., Kujala, P., Spyros, H., 2025. Systems driven intelligent decision 

support methods for ship collision and grounding prevention: Present status, possible solutions, and challenges. Reliability 

Engineering & System Safety, 253, 110489. https://doi.org/10.1016/j.ress.2024.110489 

[46] Uyanik, T., Kalenderli, O., Arslanoglu, Y., 2019. Ship Fuel Consumption Prediction with Machine Learning. 4th International 

Mediterranean Science and Engineering Congress, 25-27 April, Alanya, Antalya, Turkey, 757-759. 

[47] Ramadhan, A., Susetyo, B., -Indahwati., 2021. Classification Modelling of Random Forest to Identify the Important Factors 

in Improving the Quality of Education. International Journal on Advanced Science, Engineering and Information 

Technology, 11, 501-507. https://doi.org/10.18517/ijaseit.11.2.8878 

[48] Chen, J., Wang, X., Lei, F., 2024. Data-driven multinomial random forest: a new random forest variant with strong 

consistency. Journal of Big Data, 11(1), 34. https://doi.org/10.1186/s40537-023-00874-6 

[49] Alruqi, M., Sharma, P., Algburi, S., Khan, M. A., Alsubih, M., Islam, S., 2024. Biomass energy transformation: Harnessing 

the power of explainable ai to unlock the potential of ultimate analysis data. Environmental Technology & Innovation, 35, 

103652. https://doi.org/10.1016/j.eti.2024.103652 

[50] Talekar, B., 2020. A Detailed Review on Decision Tree and Random Forest. Bioscience Biotechnology Research 

Communications, 13(14), 245-248. http://doi.org/10.21786/bbrc/13.14/57 

[51] Villegas-Mier, C., Rodriguez-Resendiz, J., Álvarez-Alvarado, J., Jiménez-Hernández, H., Odry, Á., 2022. Optimized 

Random Forest for Solar Radiation Prediction Using Sunshine Hours. Micromachines, 13(9), 1406. 

https://doi.org/10.3390/mi13091406 

[52] Tyralis, H., Papacharalampous, G., Langousis, A., 2019. A Brief Review of Random Forests for Water Scientists and 

Practitioners and Their Recent History in Water Resources. Water, 11(5), 910. https://doi.org/10.3390/w11050910 

[53] Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal 

of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 

[54] Deif, A. M., Hammam, E. R., Solyman, A. A., 2021. Gradient Boosting Machine Based on PSO for prediction of Leukemia 

after a Breast Cancer Diagnosis. International Journal on Advanced Science, Engineering and Information Technology, 

11(2), 508-515. https://doi.org/10.18517/ijaseit.11.2.12955. 

[55] Xu, N., Wang, Z., Dai, Y., Li, Q., Zhu, W., Wang, R., Finkelman, R. B., 2023. Prediction of higher heating value of coal based 

on gradient boosting regression tree model. International Journal of Coal Geology, 274, 104293. 

https://doi.org/10.1016/j.coal.2023.104293 

[56] Yang, F., Wang, D., Xu, F., Huang, Z., Tsui, K.-L., 2020. Lifespan prediction of lithium-ion batteries based on various 

extracted features and gradient boosting regression tree model. Journal of Power Sources, 476, 228654. 

https://doi.org/10.1016/j.jpowsour.2020.228654 

[57] Wen, H.-T., Lu, J.-H., Phuc, M.-X., 2021. Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice 

Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression. Energies, 14(10), 2932. 

https://doi.org/10.3390/en14102932 

[58] Kumar K, P., Alruqi, M., Hanafi, H. A., Sharma, P., Wanatasanappan, V. V., 2024. Effect of particle size on second law of 

thermodynamics analysis of Al2O3 nanofluid: Application of XGBoost and gradient boosting regression for prognostic 

analysis. International Journal of Thermal Sciences, 197, 108825. https://doi.org/10.1016/j.ijthermalsci.2023.108825 

[59] Rozam, N. F., Riasetiawan, M., 2023. XGBoost Classifier for DDOS Attack Detection in Software Defined Network Using 

sFlow Protocol. International Journal on Advanced Science Engineering and Information Technology, 13, 718-725. 

https://doi.org/10.18517/ijaseit.13.2.17810 

[60] Handayani, M. P., Kim, H., Lee, S., Lee, J., 2023. Navigating Energy Efficiency: A Multifaceted Interpretability of Fuel Oil 

Consumption Prediction in Cargo Container Vessel Considering the Operational and Environmental Factors. Journal of 

Marine Science and Engineering, 11(11), 2165. https://doi.org/10.3390/jmse11112165 

[61] Du, Y., Chen, Y., Li, X., Schönborn, A., Sun, Z., 2022. Data fusion and machine learning for ship fuel efficiency modeling: 

Part III – Sensor data and meteorological data. Communications in Transportation Research, 2, 100072. 

https://doi.org/10.1016/j.commtr.2022.100072 

[62] Li, X., Du, Y., Chen, Y., Nguyen, S., Zhang, W., Schönborn, A., Sun, Z., 2022. Data fusion and machine learning for ship 

fuel efficiency modeling: Part I – Voyage report data and meteorological data. Communications in Transportation Research, 

2, 100074. https://doi.org/10.1016/j.commtr.2022.100074 

[63] Hu, Z., Zhou, T., Osman, M. T., Li, X., Jin, Y., Zhen, R., 2021. A Novel Hybrid Fuel Consumption Prediction Model for 

Ocean-Going Container Ships Based on Sensor Data. Journal of Marine Science and Engineering, 9(4), 449. 

https://doi.org/10.3390/jmse9040449 

https://doi.org/10.1177/14750902231210047
https://doi.org/10.1016/j.oceaneng.2019.106282
https://doi.org/10.1016/j.ress.2024.110489
https://doi.org/10.18517/ijaseit.11.2.8878
https://doi.org/10.1186/s40537-023-00874-6
https://doi.org/10.1016/j.eti.2024.103652
http://doi.org/10.21786/bbrc/13.14/57
https://doi.org/10.3390/mi13091406
https://doi.org/10.3390/w11050910
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.18517/ijaseit.11.2.12955
https://doi.org/10.1016/j.coal.2023.104293
https://doi.org/10.1016/j.jpowsour.2020.228654
https://doi.org/10.3390/en14102932
https://doi.org/10.1016/j.ijthermalsci.2023.108825
https://doi.org/10.18517/ijaseit.13.2.17810
https://doi.org/10.3390/jmse11112165
https://doi.org/10.1016/j.commtr.2022.100072
https://doi.org/10.1016/j.commtr.2022.100074
https://doi.org/10.3390/jmse9040449


A.T. Hoang et al. Brodogradnja Volume 76 Number 4 (2025) 76405 

 

23 

 

[64] Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785 

[65] Shanmugasundar, G., Vanitha, M., Čep, R., Kumar, V., Kalita, K., Ramachandran, M., 2021. A Comparative Study of Linear, 

Random Forest and AdaBoost Regressions for Modeling Non-Traditional Machining. Processes, 9(11), 2015. 

https://doi.org/10.3390/pr9112015 

[66] Pandit, P., Dey, P., Krishnamurthy, K. N., 2021. Comparative Assessment of Multiple Linear Regression and Fuzzy Linear 

Regression Models.  SN Computer Science, 2(2), 76. https://doi.org/10.1007/s42979-021-00473-3 

[67] Maulud, D., Abdulazeez, A. M., 2020. A Review on Linear Regression Comprehensive in Machine Learning. Journal of 

Applied Science and Technology Trends, 1(2), 140-147. https://doi.org/10.38094/jastt1457 

[68] al-Swaidani, A. M., Khwies, W. T., Al-Baly, M., Lala, T., 2022. Development of multiple linear regression, artificial neural 

networks and fuzzy logic models to predict the efficiency factor and durability indicator of nano natural pozzolana as cement 

additive. Journal of Building Engineering, 52, 104475. https://doi.org/10.1016/j.jobe.2022.104475 

[69] Mienye, I. D., Sun, Y., Wang, Z., 2019. Prediction performance of improved decision tree-based algorithms: a review. 

Procedia Manufacturing, 35, 698-703. https://doi.org/10.1016/j.promfg.2019.06.011 

[70] Nanfack, G., Temple, P., Frénay, B., 2022. Constraint Enforcement on Decision Trees: A Survey. ACM Computing Surveys, 

54(10s), 1-36. https://doi.org/10.1145/3506734 

[71] Canete-Sifuentes, L., Monroy, R., Medina-Perez, M. A., 2021. A Review and Experimental Comparison of Multivariate 

Decision Trees. IEEE Access, 9, 110451-110479. https://doi.org/10.1109/ACCESS.2021.3102239 

[72] Sagi, O., Rokach, L., 2021. Approximating XGBoost with an interpretable decision tree. Information Sciencesm, 572, 522-

542. https://doi.org/10.1016/j.ins.2021.05.055 

[73] Sabzekar, M., Hasheminejad, S. M. H., 2021. Robust regression using support vector regressions. Chaos, Solitons & Fractals, 

144, 110738. https://doi.org/10.1016/j.chaos.2021.110738 

[74] Dong, H., Jin, X., Lou, Y., Wang, C., 2014. Lithium-ion battery state of health monitoring and remaining useful life prediction 

based on support vector regression-particle filter. Journal of Power Sources, 271, 114-123. 

https://doi.org/10.1016/j.jpowsour.2014.07.176 

[75] Sharifzadeh, M., Sikinioti-Lock, A., Shah, N., 2019. Machine-learning methods for integrated renewable power generation: 

A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression.  Renewable 

and Sustainable Energy Reviews, 108, 513-538. https://doi.org/10.1016/j.rser.2019.03.040 

[76] Ban, B., Yang, J., Chen, P., Xiong, J., Wang, Q., 2017. Ship Track Regression Based on Support Vector Machine. IEEE 

Access, 5, 18836 - 18846. https://doi.org/10.1109/ACCESS.2017.2749260 

[77] Malakouti, S. M., Menhaj, M. B., Suratgar, A. A., 2023. The usage of 10-fold cross-validation and grid search to enhance 

ML methods performance in solar farm power generation prediction. Cleaner Engineering and Technology, 15, 100664. 

https://doi.org/10.1016/j.clet.2023.100664 

[78] Hazare, S. R., Vala, S. V., Patil, C. S., Joshi, A. J., Joshi, J. B., Vitankar, V. S., Patwardhan, A. W., 2023. Correlating Interfacial 

Area and Volumetric Mass Transfer Coefficient in Bubble Column with the Help of Machine Learning Methods. Industrial 

& Engineering Chemistry Research, 62(5), 2104-2123. https://doi.org/10.1021/acs.iecr.2c02820 

[79] Chen, C., Wang, N., Chen, M., 2021. Prediction Model of End-point Phosphorus Content in Consteel Electric Furnace Based 

on PCA-Extra Tree Model. ISIJ International, 61(6), 1908-1914. https://doi.org/10.2355/isijinternational.ISIJINT-2020-615 

[80] Ahmad, M. W., Reynolds, J., Rezgui, Y., 2018. Predictive modelling for solar thermal energy systems: A comparison of 

support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production, 203, 810-821. 

https://doi.org/10.1016/j.jclepro.2018.08.207 

[81] Alsariera, Y. A., Adeyemo, V. E., Balogun, A. O., Alazzawi, A. K., 2020. AI Meta-Learners and Extra-Trees Algorithm for 

the Detection of Phishing Websites. IEEE Access, 8, 142532-142542. https://doi.org/10.1109/ACCESS.2020.3013699 

[82] Elton, D. C., Boukouvalas, Z., Butrico, M. S., Fuge, M. D., Chung, P. W., 2018. Applying machine learning techniques to 

predict the properties of energetic materials. Scientific Reports, 8(1), 9059. https://doi.org/10.1038/s41598-018-27344-x 

[83] Mengesha, B. N., Shaeri, M. R., Sarabi, S., 2022. Application of Machine Learning to Predict Thermal Performances of Heat 

Sinks. Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering, 31 July-2 August, 

Prague, Czech Republic. https://doi.org/10.11159/htff22.138 

[84] Wu, X. H., Lu, Y. Y., Zhao, P. W., 2022. Multi-task learning on nuclear masses and separation energies with the kernel ridge 

regression. Physics Letters B, 834, 137394. https://doi.org/10.1016/j.physletb.2022.137394 

[85] Zhang, R., Li, Y., Gui, Y., 2023. Prediction of rock blasting induced air overpressure using a self-adaptive weighted kernel 

ridge regression. Applied Soft Computing, 148, 110851. https://doi.org/10.1016/j.asoc.2023.110851 

[86] Stuke, A., Rinke, P., Todorović, M., 2021. Efficient hyperparameter tuning for kernel ridge regression with Bayesian 

optimization. Machine Learning: Science and Technology, 2(3), 035022. https://doi.org/10.1088/2632-2153/abee59 

[87] Ahmed, A. A. M., Sharma, E., Jui, S. J. J., Deo, R. C., Nguyen, H. T., Ali, M., 2022. Kernel Ridge Regression Hybrid Method 

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3390/pr9112015
https://doi.org/10.1007/s42979-021-00473-3
https://doi.org/10.38094/jastt1457
https://doi.org/10.1016/j.jobe.2022.104475
https://doi.org/10.1016/j.promfg.2019.06.011
https://doi.org/10.1145/3506734
https://doi.org/10.1109/ACCESS.2021.3102239
https://doi.org/10.1016/j.ins.2021.05.055
https://doi.org/10.1016/j.chaos.2021.110738
https://doi.org/10.1016/j.jpowsour.2014.07.176
https://doi.org/10.1016/j.rser.2019.03.040
https://doi.org/10.1109/ACCESS.2017.2749260
https://doi.org/10.1016/j.clet.2023.100664
https://doi.org/10.1021/acs.iecr.2c02820
https://doi.org/10.2355/isijinternational.ISIJINT-2020-615
https://doi.org/10.1016/j.jclepro.2018.08.207
https://doi.org/10.1109/ACCESS.2020.3013699
https://doi.org/10.1038/s41598-018-27344-x
https://doi.org/10.11159/htff22.138
https://doi.org/10.1016/j.physletb.2022.137394
https://doi.org/10.1016/j.asoc.2023.110851
https://doi.org/10.1088/2632-2153/abee59


A.T. Hoang et al. Brodogradnja Volume 76 Number 4 (2025) 76405 

 

24 

 

for Wheat Yield Prediction with Satellite-Derived Predictors. Remote Sensing, 14(5), 1136. 

https://doi.org/10.3390/rs14051136 

[88] Ma, Y., Zhao, Y., Yu, J., Zhou, J., Kuang, H., 2023. An Interpretable Gray Box Model for Ship Fuel Consumption Prediction 

Based on the SHAP Framework. Journal of Marine Science and Engineering, 11(5), 1059. 

https://doi.org/10.3390/jmse11051059 

[89] Lee, J., Eom, J., Park, J., Jo, J., Kim, S., 2024. The Development of a Machine Learning-Based Carbon Emission Prediction 

Method for a Multi-Fuel-Propelled Smart Ship by Using Onboard Measurement Data. Sustainability, 16(6), 2381. 

https://doi.org/10.3390/su16062381 

[90] Kuo, C., 2019. Explain your model with the SHAP values. Towards Data Science. https//towardsdatascience.com/explain-

your-model-with-the-shap-values-bc36aac4de3d. accessed 14th March 2025. 

[91] Pham, N. D. K., Dinh, G. H., Nguyen, C. L., Dang, H. Q., Pham, H. T., Nguyen, Q. T., Tran, M. C., 2025. Forecasting and 

Feature Analysis of Ship Fuel Consumption by Explainable Machine Learning Approaches. Polish Maritime Research, 32, 

81-94. https://doi.org/10.2478/pomr-2025-0008 

[92] Nguyen, V. N., Chung, N., Balaji, G. N., Rudzki, K., Hoang, A. T., 2025. Internet of things-driven approach integrated with 

explainable machine learning models for ship fuel consumption prediction. Alexandria Engineering Journal, 118, 664-680. 

https://doi.org/10.1016/j.aej.2025.01.067 

[93] Barhrhouj, A., Ananou, B., Ouladsine, M., 2025. Exploring Explainable Machine Learning for Enhanced Ship Performance 

Monitoring. Machine Learning, Optimization, and Data Science, 15509, 1–13. https://doi.org/10.1007/978-3-031-82484-

5_1 

[94] Chicco, D., Warrens, M.J., Jurman, G., 2021. The coefficient of determination R-squared is more informative than SMAPE, 

MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj Computer Science, 7, e623. 

https://doi.org/10.7717/peerj-cs.623 

[95] Zhang, M., Wang, H., Conti, F., Manderbacka, T., Remes, H., Hirdaris, S., 2025. A hybrid deep learning method for the real-

time prediction of collision damage consequences in operational conditions. Engineering Applications of Artificial 

Intelligence. 145, 110158. https://doi.org/10.1016/j.engappai.2025.110158 

[96] Vrugt, J.A., de Oliveira, D.Y., 2022. Confidence intervals of the Kling-Gupta efficiency. Journal of Hydrology, 612, 127968. 

https://doi.org/10.1016/j.jhydrol.2022.127968 

[97] Zhang, M., Tsoulakos, N., Kujala, P., Hirdaris, S., 2024. A deep learning method for the prediction of ship fuel consumption 

in real operational conditions. Engineering Applications of Artificial Intelligence, 130, 107425. 

https://doi.org/10.1016/j.engappai.2023.107425 

https://doi.org/10.3390/rs14051136
https://doi.org/10.3390/jmse11051059
https://doi.org/10.3390/su16062381
https://fsbhr-my.sharepoint.com/personal/cgrlj_fsb_hr/Documents/Journal%20Brodogradnja/Articles/2025%20Vol%2076/No%204/76404-1/https/towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d
https://fsbhr-my.sharepoint.com/personal/cgrlj_fsb_hr/Documents/Journal%20Brodogradnja/Articles/2025%20Vol%2076/No%204/76404-1/https/towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d
https://doi.org/10.2478/pomr-2025-0008
https://doi.org/10.1016/j.aej.2025.01.067
https://doi.org/10.1007/978-3-031-82484-5_1
https://doi.org/10.1007/978-3-031-82484-5_1
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.1016/j.engappai.2025.110158
https://doi.org/10.1016/j.jhydrol.2022.127968
https://doi.org/10.1016/j.engappai.2023.107425

