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A B S T R A C T  

Anchorage areas are essential for safe and efficient maritime operations. However, 

conventional forecasting models often underperform in dynamic port conditions, as 

they rely heavily on historical averages and static assumptions. To address these 

limitations, this study proposes a forecasting framework for anchorage occupancy. 

This framework uses stacked ensemble learning, integrating both statistical and 

machine learning models to enhance predictive accuracy and operational reliability. 

The proposed approach was applied to occupancy data from the E1 anchorage at Ulsan 

Port, with performance evaluated across various forecasting models and ensemble 

strategies. In addition, a hexagon-based occupancy estimation method was 

implemented to assess spatial efficiency and safety in comparison to the traditional 

anchor circle method. The results demonstrate that the stacking ensemble model 

effectively captures complex, nonlinear patterns in vessel traffic and delivers improved 

forecasting performance. These findings highlight the practical potential of stacking 

ensemble techniques and spatial modeling innovations in enabling proactive anchorage 

management, reducing congestion, and enhancing maritime safety in real-world port 

environments.

1. Introduction 

An anchorage area is a designated water space intended to ensure the safe mooring of vessels and to 

facilitate smooth berthing and cargo operations [1]. As a critical component of maritime infrastructure, it plays 

a vital role in supporting efficient port operations and the safe arrival and departure of vessels. To perform 

this function effectively, an anchorage must provide not only sufficient space and depth but also the flexibility 

to accommodate vessels of varying sizes and operational requirements. This necessitates efficient port 

management practices, particularly in the strategic allocation of port facilities and anchorage areas to support 

maritime traffic. 

The recent expansion of the global economy has led to a substantial increase in maritime trade. However, 

existing port infrastructure—especially anchorage areas—has struggled to keep pace with growing demand. 

This challenge is largely attributable to the historical underemphasis on anchorage areas in port planning and 

development, despite their essential role in vessel queuing and overall port safety [2]. Given the increasing 
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volume of maritime traffic and the imperative need for optimized port operations, the proactive and efficient 

management of anchorage areas has become critical. 

Despite their importance, conventional models for forecasting anchorage occupancy remain inadequate 

under dynamic port conditions. These conventional approaches typically rely on historical averages and static 

assumptions about berth utilization and vessel arrival patterns, which limit their adaptability to real-time 

operational fluctuations. For instance, many existing studies focus on long-term planning based on historical 

trends [3], which often fail to capture short-term fluctuations. Others employ simulation models that require 

extensive computation and calibration, reducing their practicality for real-time decision-making [4]. 

Furthermore, these methods frequently oversimplify spatial constraints and fail to account for critical 

environmental factors—such as wind speed—or dynamic vessel-specific characteristics, such as variations in 

turning radius. In some cases, predictive modeling capabilities are entirely absent, leaving these approaches 

ill-equipped to address the evolving dynamics of vessel traffic [1, 5]. 

The limitations of conventional forecasting models present several critical operational challenges for 

port authorities. The persistent shortage of adaptable anchorage capacity increases the risk of maritime 

accidents, including anchor-dragging incidents during adverse weather conditions, as documented at Ulsan 

Port [6]. These constraints also hinder efficient port management, making it difficult to strategically allocate 

scarce anchorage areas to accommodate growing and increasingly complex maritime traffic. Therefore, there 

is a pressing need for an advanced predictive model capable of accurately forecasting both real-time and future 

changes in anchorage occupancy, thereby reducing safety risks and optimizing spatial utilization. 

Recent studies in Canada [7] and New Zealand [8] have provided valuable insights into anchorage 

management strategies, particularly regarding space utilization and occupancy prediction. The New Zealand 

study was conducted in response to escalating concerns about anchoring risks in coastal waters and aimed to 

establish safe anchorage locations while addressing environmental and navigational hazards. Similarly, the 

Canadian study focused on the increasing vessel traffic at the Port of Prince Rupert and the associated 

challenges of accommodating larger ships that require more anchorage capacity. Both studies adopted data-

driven approaches to analyze anchorage capacity and vessel behavior, emphasizing the optimization of 

anchorage capacity to prevent congestion and enhance safety. Key considerations included vessel turning 

radius to minimize collision risks, seabed composition for secure anchoring, and environmental conditions 

such as wind to improve operational efficiency. Additionally, both studies highlighted the use of automatic 

identification system (AIS)-based monitoring as a crucial tool for real-time tracking and predictive occupancy 

modeling. 

The increasing adoption of data-driven and predictive modeling techniques in the maritime sector has 

expanded opportunities for operational forecasting and optimization. For example, Ozsari [9] utilized artificial 

neural networks to predict main engine power and emissions for container, cargo, and tanker vessels, 

demonstrating the potential of machine learning to enhance ship-level operational efficiency. Similarly, 

Atasayan et al. [10] introduced an offline grey-box modeling approach to predict ship maneuvering 

performance, addressing the complexities of nonlinear and dynamic behaviors in maritime operations. These 

studies highlight the practical value of predictive analytics in maritime contexts and suggest the potential 

applicability of similar modeling techniques to anchorage occupancy forecasting—an area that remains 

relatively underexplored. 

To address the current limitations, this study proposes an advanced predictive model to improve the 

accuracy of anchorage occupancy forecasting. Specifically, we employ stacked ensemble learning to enhance 

time-series forecasting performance. By integrating a range of predictive models—including both 

conventional time-series forecasting models and machine learning algorithms—our approach seeks to: 

⚫ Improve predictive accuracy by combining diverse forecasting techniques to capture complex 

temporal patterns and reduce prediction errors, 

⚫ Enhance adaptability to dynamic conditions by incorporating vessel-specific characteristics 

and external environmental factors, 
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⚫ Provide robust, data-driven insights for anchorage management, facilitating more efficient 

allocation of anchorage capacity and enabling proactive responses to occupancy fluctuations, 

thereby improving safety and optimizing overall port operations. 

The remainder of this study is structured as follows: Section 2 provides a comprehensive review of 

related literature, focusing on time-series forecasting applications in maritime and other sectors, as well as the 

conceptual foundations and applications of stacked ensemble learning. Section 3 details the proposed approach 

for estimating vessel occupancy within anchorage areas, including the stacked ensemble methodology, base 

models—autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), vector 

autoregressive (VAR), Prophet, extreme gradient boosting (XGBoost), and long short-term  

memory (LSTM)—meta-model configurations—simple ensemble, Random Forest stacking, XGBoost 

stacking, and gradient boosting stacking—and performance evaluation metrics. Section 4 outlines the 

experimental setup, data preprocessing procedures, and the case study context. Section 5 presents the 

experimental results and compares the forecasting performance of individual models with that of the stacking 

ensemble models. Section 6 discusses the key findings, practical implications, and limitations of the study. 

Finally, Section 7 concludes the paper. 

2. Literature review 

2.1 Overview 

A time series is a sequence of data points recorded at successive, typically uniform time intervals, and 

time-series forecasting involves analyzing these patterns to estimate future values. Time-series data often 

exhibit features such as trends, seasonality, cyclicity, and randomness. Effectively modeling these 

characteristics is essential for accurate time-series analysis. In this study, time-series forecasting techniques 

are applied to predict anchorage occupancy. This method, widely used across various industries, identifies 

patterns in regularly observed data to generate future estimates. In the context of shipping and port logistics, 

time-series forecasting has been employed for tasks such as predicting ocean freight rates, container 

throughput, vessel anomaly detection, and weather conditions. Despite the critical role of anchorage 

management in ensuring port safety and operational efficiency, the application of time-series forecasting to 

anchorage occupancy remains largely unexplored and underrepresented in the literature. 

To address this gap, this section reviews time-series forecasting applications in maritime logistics, 

supplemented by examples from other industries where such methods have been successfully implemented. It 

also outlines the forecasting techniques used in this study—ARIMA, SARIMA, VAR, Prophet, XGBoost, 

LSTM, and ensemble models—and explains the rationale for adopting a stacked ensemble learning. 

2.2 Related works 

In freight rate forecasting, Veenstra and Franses [11] used a VAR model to predict dry bulk freight rates, 

demonstrating its suitability for short-term forecasting. Similarly, Kavussanos and Alizadeh [12] applied 

ARIMA and VAR models to identify seasonality in bulk carrier markets. Chen et al. [13] examined ARIMA 

and VAR family models to forecast dry bulk spot rates, while Schramm and Munim [14] utilized ARIMA, 

ARIMAX (autoregressive integrated moving average with exogenous variables), and VAR models to predict 

container freight rates. Regarding container throughput forecasting, Peng and Chu [15] conducted a 

comparative analysis of six univariate models at major Taiwanese ports, highlighting the classical 

decomposition model and SARIMA for their effectiveness. Rashed et al. [16] demonstrated the superior 

accuracy of the ARIMAX model by incorporating macroeconomic indicators to forecast short-term 

throughput at the Port of Antwerp. Farhan and Ong [17] validated the SARIMA model’s ability to capture 

seasonal patterns in major international ports. In the area of maritime surveillance and security, Kim and  

Shin [18] developed an LSTM-based model to detect abnormal vessel behavior using time-series trajectory 

data. Their approach effectively enhanced coastal surveillance by identifying anomalies in vessel movements. 

While these studies underscore the broad applicability of time-series analysis in maritime logistics, the 

specific application of such methods to anchorage occupancy forecasting—particularly with attention to 

dynamic spatial constraints and safety—remains underexplored. Conventional assessments of anchorage 
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capacity have primarily relied on historical data and static assumptions, limiting their effectiveness in 

forecasting real-time changes. Fan and Cao [19] developed a seaspace capacity and operational strategy 

analysis system to estimate the capacities of anchorage areas, berthing spaces, and fairways; however, their 

model depends on predefined traffic assumptions, reducing its adaptability to real-time conditions.  

Huang et al. [4] introduced a simulation-based model that incorporates circular packing algorithms to assess 

anchorage capacity, but they acknowledged the significant computational demands and calibration 

requirements that limit the model’s practicality for real-time decision-making. Lee and Lee [3] concentrated 

on long-term planning based on historical trends, which may not reflect short-term fluctuations.  

Kwon et al. [5] proposed an anchorage capacity index but did not incorporate real-time spatial constraints or 

vessel-specific anchoring behaviors. Park et al. [1] analyzed anchorage density and occupancy rates, yet their 

work lacked predictive modeling to account for dynamic vessel traffic. Critically, none of these studies 

explicitly integrate safety considerations with dynamic occupancy forecasting. A limited number of recent 

efforts have begun to address safety in anchorage planning through optimization. For instance, Oz et al. [20] 

introduced a multi-objective optimization strategy that accounts for both utilization and safety by proposing 

novel metrics such as the Arrival Intersection Factor and Departure Intersection Factor to quantify collision 

risks. More recently, Shin and Yang [21] advanced this perspective by applying deep reinforcement learning 

for integrated vessel path planning and safe anchorage allocation, highlighting how artificial intelligence-

driven decision-making can complement forecasting models in improving overall port safety and efficiency. 

Their approach demonstrated the ability to identify significantly safer berth locations while maintaining 

utilization efficiency, emphasizing the importance of integrating safety considerations into anchorage 

planning. However, these optimization methods are primarily oriented toward planning and allocation under 

current conditions and do not forecast future occupancy dynamics at high temporal resolution. 

In addition to shipping and port logistics, time-series forecasting has been widely applied across 

numerous other industries. Gifty and Li [22] used LSTM, ARIMA, and XGBoost to predict Google stock 

price movements, finding that XGBoost yielded the highest accuracy following optimization. Zhang et al. [23] 

applied a range of models—including LSTM, XGBoost, gradient boosting decision trees, ARIMA, and 

Prophet—to forecast product sales volumes and reported that XGBoost performed best in controlling 

overfitting. Swami et al. [24] used LSTM, XGBoost, and ARIMA to predict retail product sales, demonstrating 

that hyperparameter tuning significantly improved LSTM's accuracy. Chen et al. [25] forecasted commodity 

prices using LSTM, XGBoost, support vector regression, ARIMA, and Prophet, with LSTM showing the best 

performance when applied to large datasets. Mukhlis et al. [26] optimized LSTM hyperparameters for 

agricultural production forecasting and reported superior performance compared to ARIMA. Hadri et al. [27] 

found that XGBoost delivered the best short-term accuracy and computational efficiency for forecasting 

electricity loads in smart buildings, outperforming LSTM, ARIMA, SARIMA, and Random Forest. In the 

maritime sector, Tang et al. [28] employed LSTM combined with signal decomposition techniques to improve 

short-term load forecasting for trimarans, further illustrating the growing application of machine learning in 

marine engineering. Su et al. [29] developed a real-time ship equipment fault monitoring system by integrating 

digital twin technology with Random Forest models, demonstrating the practical value of machine learning-

based forecasting. 

Complex, large-scale time-series data have been widely used to address time-sensitive challenges such 

as demand forecasting, production planning, dynamic pricing, and anomaly detection. Although these 

techniques have been successfully applied across diverse sectors—including agriculture, energy, healthcare, 

transportation, and economics—no direct application has yet been made to anchorage occupancy forecasting. 

To address this gap, we propose a forecasting model based on stacked ensemble learning. This model 

integrates multiple predictive techniques while incorporating vessel-specific characteristics and 

environmental factors. The model offers high-resolution temporal predictions. It also enhances spatial 

accuracy through a hexagon-based occupancy estimation method, improving the practical applicability of 

anchorage management and supporting more informed decision-making in dynamic port conditions. 
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2.3 Stacking ensemble  

2.3.1 Ensemble learning and categorization 

Ensemble learning is a machine learning paradigm that combines multiple models to improve predictive 

accuracy and generalization performance. By aggregating the outputs of diverse learning algorithms, ensemble 

methods can reduce variance as well as bias and enhance robustness against overfitting. Ensemble learning 

techniques are generally classified into three categories [30]. 

Bootstrap aggregation (bagging) involves training multiple models on randomly resampled subsets of 

the original dataset (with replacement) and aggregating their predictions—typically through averaging for 

regression tasks or majority voting for classification tasks. This approach effectively reduces variance and 

overfitting, with Random Forest being one of the most widely recognized implementations. 

Boosting constructs models sequentially, where each new model focuses on correcting the errors of its 

predecessor by assigning greater weight to misclassified instances. While boosting can significantly enhance 

predictive accuracy by concentrating on difficult-to-predict samples, it can lead to overfitting if not properly 

regularized. 

In contrast, stacking integrates multiple independently trained base models and combines their outputs 

using a meta-model, which learns to optimize the combination of individual predictions. Unlike bagging and 

boosting, stacking allows for the integration of heterogeneous models. Common stacking approaches include 

direct stacking, cross-validation-based stacking, and blending. 

2.3.2 Stacking ensemble applications in time series forecasting 

Zhan et al. [31] demonstrated the effectiveness of stacking by proposing a model to improve the accuracy 

of ocean wave height predictions. Their ensemble integrated four distinct base learners—XGBoost, Light 

Gradient Boosting Machine, Random Forest, and Adaptive Boosting—using a linear regression meta-learner. 

Utilizing real-world oceanographic and meteorological data, the stacked ensemble significantly reduced both 

mean absolute error (MAE) and mean squared error (MSE) compared to the individual models, demonstrating 

the effectiveness of stacked ensembles in marine environmental forecasting. 

Hoque and Sharma [32] proposed an ensemble deep learning model that combines AIS data, spectral 

clustering, and LSTM for real-time maritime anomaly detection. Ensemble learning has also demonstrated 

strong capabilities in maritime-specific operational forecasting. For example, Bodunov et al. [33] employed a 

voting ensemble of tree-based models—including Random Forest, Gradient Boosting Decision Trees, 

XGBoost, and Extremely Randomized Trees—for real-time vessel destination and estimated time of  

arrival (ETA) prediction. Their model achieved high accuracy rates of 97 % for destination prediction  

and 90 % for ETA, effectively addressing the complexities of real-world maritime spatiotemporal streaming 

data influenced by vessel trajectory, speed, and weather conditions. This demonstrates the robustness of 

ensemble methods in capturing the intricate, nonlinear dynamics characteristic of maritime traffic forecasting. 

Kim [34] used a stacking ensemble approach for wind power forecasting, demonstrating improved accuracy 

over single-model methods. In the automotive sector, Wi [35] applied stacking techniques to optimize the 

design of electric vehicle motors, enhancing performance while reducing computational costs. Seo [36] 

integrated anomaly detection into a stacking ensemble framework to improve credit default prediction in 

imbalanced financial datasets. In healthcare, Gupta et al. [37] employed a stacking ensemble model to predict 

post-COVID-19 cardiovascular complications, achieving superior accuracy compared to individual models. 

Given the limitations of conventional forecasting models in managing the complex, nonlinear, and 

volatile patterns of anchorage occupancy, this study proposes a stacked ensemble learning. Vessel operation 

data often exhibit irregular patterns shaped by external environmental conditions—such as weather—and 

unpredictable fluctuations in demand. To address these complexities, we integrated conventional time-series 

forecasting models (e.g., ARIMA and VAR) with machine learning algorithms (e.g., XGBoost and LSTM) 

within a stacking ensemble framework. This approach harnesses the complementary strengths of individual 

models, reduces the risk of overfitting, and more effectively captures the nonlinear and volatile dynamics 

inherent in anchorage utilization data. 



D. Lee and J. Kim Brodogradnja Volume 77 Number 1 (2026) 77103 

 

6 

 

A significant research gap persists in accurately forecasting anchorage occupancy, particularly given the 

dynamic and complex interactions between vessel-specific characteristics and external environmental factors. 

While prior studies have addressed elements of anchorage capacity and operational efficiency, they often rely 

on static assumptions or lack robust predictive capabilities for capturing real-time, dynamic changes. Existing 

approaches frequently oversimplify spatial constraints and inadequately account for environmental influences 

and the heterogeneous behaviors of vessels. To address these critical limitations, this study proposes a novel 

framework that employs stacked ensemble learning to enhance time-series forecasting of anchorage 

occupancy. The methodology integrates a range of predictive models to effectively capture the complex, 

nonlinear, and volatile patterns inherent in anchorage utilization data. Additionally, the framework 

incorporates a hexagon-based occupancy estimation method that accounts for vessel-specific length overall 

(LOA) and variations in wind speed, offering a more realistic and safety-oriented assessment of occupied space 

compared to traditional anchor circle methods. This integrated approach aims not only to improve forecasting 

accuracy but also to provide a practical and scalable solution for optimizing anchorage capacity management 

and enhancing maritime safety in real-world port operations. 

3. Methodology 

3.1 Enhancing anchorage capacity calculation through hexagonal occupancy modeling 

In conventional anchorage planning, the anchor circle—typically determined by a vessel’s LOA and the 

water depth at the anchorage—is commonly used to estimate the area occupied by an individual vessel. When 

this traditional concept is applied using a circle packing algorithm [4], the spatial arrangement of vessels 

within the anchorage can be visualized, as illustrated in Figure 1. However, the interstitial spaces between 

vessels—often referred to as “dead space”—are generally unsuitable for anchoring and thus represent 

underutilized portions of the anchorage. This inefficiency limits overall spatial utilization. From a geometric 

perspective, the most efficient way to pack equal-sized circles is through hexagonal close-packing, which 

provides the highest possible theoretical density of approximately 90.7 % (
𝜋

2√3
). In contrast, square-lattice 

packing of circles achieves a lower density of approximately 78.5 % (
𝜋

4
). This inherent difference arises 

because hexagonal close-packing minimizes interstitial voids between circles, while square-based 

arrangements leave larger unusable gaps. 

Accordingly, this study adopts a hexagon-based occupancy estimation method. Rather than treating dead 

space as unusable, this method considers it a safety buffer between vessels, thereby providing a more 

conservative and realistic estimate of occupied area. This approach is designed to enhance anchorage capacity 

while reducing the risk of vessel-to-vessel collisions, ultimately improving both operational efficiency and 

safety through a more practical spatial layout for anchorage management. 

 

Fig. 1.  Comparison of the area occupied by a traditional anchor circle and a hexagon 
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Based on the specifications of vessel “A” (a chemical tanker with a gross tonnage (GT) of 4,060 and a 

LOA of 103.1 m), anchored at E1 Anchorage, occupancy areas were calculated using both the traditional 

anchor circle method and the proposed hexagonal-based method. The calculations followed the anchorage 

design standards outlined in the Korean Design Standard (KDS 64 40 10, 2024) [38] issued by the Ministry 

of Oceans and Fisheries (MOF) (Table 1). 

Table 1  Anchorage turning radius with depth and length of the ship (MOF) 

Purpose of Use Seabed or Wind Speed Condition Turning Radius(m) 

Offshore Waiting or Cargo Handling 
The seabed is Good for anchoring. L1 + 6D2 

The seabed is Bad for anchoring. L + 6D + 30 

1 L: Length overall (m) 
2 D: Depth (m) 

According to data from the Korea Hydrographic and Oceanographic Agency [39], the average wind 

speed at Ulsan Port between 2020 and 2024 was approximately 3.25 m/s. Additionally, the Ulsan Port 

Authority [40] reports that the average water depth at E1 Anchorage is approximately 40 m, with a seabed 

composed of mud. Based on this information, the turning radius (R) for vessel “A” was calculated using its 

LOA. 

R = L + 6D = 103.1 + 6 × 40 = 343.1 m (1) 

Based on this turning radius, the traditional anchor circle was estimated to cover ~369,820.78 m2, while 

the hexagonal-based occupancy area covered ~407,785.76 m2. Therefore, the hexagonal method  

requires ~37,965 m2 more space, which is an increase of ~10.3 %. Figure 2 presents a comparison between 

the traditional anchor circle and the hexagonal occupancy area. 

 

Fig. 2.  Hexagon-based occupancy area with adjusted inscribed circle 

3.2 Stacked ensemble learning: concept and mechanism 

Stacked ensemble learning, also known as stacked generalization, was first introduced by Breiman [41] 

and has since been extensively developed to enhance predictive accuracy by combining multiple machine 

learning models. Unlike bagging and boosting, which typically rely on homogeneous learners, stacking 

employs a diverse set of algorithms to more effectively model complex data patterns. The architecture of a 

stacking ensemble consists of two primary levels. 

1. Base models (level-0 learners): These models are trained independently on the training data and can 

include various machine learning algorithms. Each base model generates predictions that are 

subsequently used as input features for the next level. 
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2. Meta models (level-1 learner): Meta models take the predictions from the base Models as input and 

learn to combine them optimally. By training on these outputs, the meta-model refines the final 

prediction and improves generalization performance. 

3.3 Base models 

To construct a robust and generalizable stacking ensemble, we selected six time-series forecasting 

models—ARIMA, SARIMA, VAR, Prophet, XGBoost, and LSTM—based on their complementary strengths 

in capturing diverse temporal patterns and their demonstrated effectiveness in related domains.  

Classical statistical models such as ARIMA, SARIMA, and VAR offer strong interpretability and 

computational efficiency, making them suitable for large-scale experimentation. These models are well-suited 

for capturing linear dependencies and seasonal structures and have been widely used in contexts such as port 

throughput forecasting and freight rate analysis [13, 15]. Prophet was selected for its ability to handle multiple 

seasonalities, calendar effects, and event-driven fluctuations, which are characteristic of port operations [42]. 

It strikes a reasonable balance between modeling flexibility and computational efficiency, facilitated by its 

built-in optimization procedures. To capture nonlinear and complex interactions in the data, we included 

XGBoost, a tree-based gradient boosting algorithm. XGBoost is particularly well-suited for structured data 

and has shown strong performance in port forecasting tasks [27]. Although computationally intensive, we 

parallelized its training to reduce runtime. Finally, LSTM networks were included for their capacity to model 

long-range dependencies in time-series data. LSTM has been widely used in maritime applications, including 

vessel trajectory prediction [18]. To manage its high computational cost, we implemented mini batch learning 

and early stopping strategies to reduce training time and prevent overfitting. 

By integrating these six models, the proposed ensemble aims to capture both short-term fluctuations and 

long-term trends, as well as linear and nonlinear temporal patterns. This diverse model pool enhances the 

predictive robustness of the ensemble, allowing the meta-model to learn optimal combinations of individual 

predictions based on each model’s respective strengths. 

In terms of computational cost, the classical statistical models—ARIMA, SARIMA, and VAR—offer 

fast training times and are well-suited for deployment in resource-constrained resources. In contrast, machine 

learning models such as XGBoost and LSTM are more computationally intensive. To address this, we 

optimized their training procedures: XGBoost was trained using parallelized boosting techniques, while 

LSTM utilized mini batch learning and early stopping to improve training efficiency and prevent overfitting. 

As the meta-model operates only on the predictions of the base models, its additional computational overhead 

is minimal. 

3.3.1 AutoRegressive Integrated Moving Average (ARIMA) 

Developed by Box and Jenkins [43], ARIMA is a widely used model that combines autoregressive (AR), 

differencing (I), and moving average (MA) data to forecast stationary time-series data. It is simple and 

interpretable, making it effective for small datasets; however, it struggles to capture seasonality and nonlinear 

patterns. The ARIMA parameters were manually selected based on autocorrelation and partial autocorrelation 

analysis, reflecting conventional time-series forecasting modeling practices optimized for the non-seasonal 

pattern of the data. 

𝑌𝑡 = 𝑐 +  ∑ 𝜙𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+  ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

+  𝜀𝑡 (2) 

where: 

𝑝: the non-seasonal autoregressive (AR) order 

𝑑: the non-seasonal differencing (I) order 

𝑞: the non-seasonal moving average (MA) order 

𝑐: a vector of constant term (intercept) 
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𝑌𝑡: the value of the time series at time t (i.e., the forecasted value) 

𝜀𝑡: the error term at time t 

3.3.2 Seasonal ARIMA (SARIMA) [44] 

SARIMA, an extension of the ARIMA introduced by Box and Jenkins [33], incorporates seasonal 

components to model periodic patterns in time-series data. It is effective for handling seasonality; however, 

the need for tuning additional seasonal parameters increases the model complexity. The SARIMA model was 

configured using an automated parameter selection procedure based on the Akaike Information  

Criterion (AIC), enabling the discovery of optimal seasonal orders and improving robustness against manual 

misspecification. 

Mathematically, a SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚 model is expressed as: 

𝛷𝑃(𝐵𝑚)𝜙𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑚)𝐷𝑌𝑡 =  𝛩𝑄(𝐵𝑚)𝜃𝑞(𝐵)𝜀𝑡, (3) 

where: 

𝑃: the seasonal autoregressive (AR) order 

𝐷: the seasonal differencing (I) order 

𝑄: the seasonal moving average (MA) order 

𝑚: the number of observations per seasonal cycle 

𝑌𝑡: the value of the time series at time t (i.e., the forecasted value) 

𝐵: the backshift operator, where 𝐵𝑘𝑌𝑡 = 𝑌𝑡−𝑘 

𝜀𝑡: the error term at time t 

3.3.3 Vector Autoregression (VAR) 

Proposed by Sims [45], VAR models the relationships among multiple time-series variables by treating 

them as interdependent. It is powerful for multivariate forecasting but becomes computationally inefficient 

when applied to univariate or high-dimensional data. The lag order of the VAR model was selected using 

AIC-based model selection. This approach ensures the inclusion of the most informative temporal 

dependencies while avoiding overfitting. 

Mathematically, VAR(p) is defined as: 

𝑌𝑡 = 𝑐 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + ⋯ +  𝐴ℓ𝑌𝑡−ℓ +  𝜀𝑡, (4) 

where: 

𝑌𝑡: a multivariate time series vector at time t, representing the values of n different time series variables 

at that moment. 

𝑐: a vector of constant term (intercept) 

𝐴𝑖: coefficient matrices (of size 𝑛 × 𝑛) that capture the linear relationships between the lagged values 

of all variables in the system and their current values 

ℓ: the maximum lag order included in the model 

𝜀𝑡: a vector of error terms (white noise) at time t, representing the unpredictable part of the current values 

3.3.4 Prophet 

Developed by Taylor and Letham [42], Prophet is an additive model that decomposes a time series into 

trends, seasonality, and holiday effects. It is easy to use and robust to missing data and outliers but can 

underperform on simple, non-seasonal datasets. The Prophet model was implemented using its default 

configuration, which automatically detects changepoints and decomposes the series into trend and seasonality 

components, making it especially suitable for operational forecasting without intensive tuning. 

The model is represented as: 
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𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) +  𝜀𝑡, (5) 

where: 

𝑦(𝑡): the forecasted value of the time series at time t 

𝑔(𝑡): the trend component, representing non-periodic changes in the time series 

𝑠(𝑡): the seasonal component, representing periodic changes (e.g., weekly or yearly cycles) 

ℎ(𝑡): the holiday effect, representing impacts from irregular events like holidays 

𝜀𝑡: the error term at time t, representing the unpredictable part of the current value 

3.3.5 Extreme Gradient Boosting (XGBoost) 

Developed by Chen [46], XGBoost is a gradient boosting-based ensemble method optimized for speed 

and accuracy. It achieves high performance on structured data; however, it requires careful hyperparameter 

tuning and may be overfit on smaller datasets. Key hyperparameters were manually adjusted based on 

empirical testing and validation performance to balance model complexity and predictive accuracy. 

𝐿(𝜃) =  ∑ 𝑙(𝑦𝑖, 𝑦̂𝑖) +  ∑ 𝛺

𝐾

𝑘=1

(𝑓𝑘) 

𝑛

𝑖=1

, (6) 

where: 

𝐿(𝜃) : the overall objective function that XGBoost minimizes, combining the loss function and 

regularization term 

𝑙(𝑦𝑖, 𝑦̂𝑖): the represent the loss function (e.g., squared error for regression and log loss for classification) 

𝛺(𝑓𝑘): the regularization term that penalizes model complexity 

3.3.6 Long Short-Term Memory (LSTM) 

Proposed by Hochreiter and Schmidhuber [47], LSTM is a type of recurrent neural network specifically 

designed to capture long-term dependencies in sequential data. It excels at modeling complex temporal 

patterns but is computationally intensive and typically requires large datasets for effective training. The LSTM 

architecture was tuned empirically through iterative experiments, with layer sizes, dropout rates, and sequence 

lengths adjusted to balance training stability and generalization. Early stopping was applied to prevent 

overfitting. 

The core equations for an LSTM cell are: 

𝑓𝑡 =  𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓, (7) 

𝑖𝑡 =  𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 , (8) 

𝐶̂𝑡 =  tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 , (9) 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̂𝑡, (10) 

𝑜𝑡 =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜 , (11) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh (𝐶𝑡), (12) 

where: 

𝑓𝑡: the forget gate activation vector at time t. It determines what information from the previous cell state 

𝐶𝑡−1 should be discarded 

𝑖𝑡: the input gate activation vector at time t. It determines what new information from the current input 

𝑥𝑡 should be stored in the cell state 
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𝑜𝑡: the output gate activation vector at time t. It determines what part of the current cell state 𝐶𝑡 should 

be output to the hidden state ℎ𝑡  

𝐶𝑡 : the cell state vector at time t. This is the long-term memory of the LSTM cell, carrying information 

through the sequence 

ℎ𝑡 : the hidden state vector at time t. This is the output of the LSTM cell, used for predictions and as 

input to the next time step 

𝑊𝑓 , 𝑊𝑖, 𝑊𝑜: weight matrices for the forget, input, candidate cell state, and output gates, respectively. 

These are learned during training 

𝑏𝑓 , 𝑏𝑖, 𝑏𝐶 , 𝑏𝑜: bias vectors for the forget, input, candidate cell state, and output gates, respectively. These 

are also learned during training 

3.3.7 Summary of model complexity 

To synthesize the computational characteristics of the six base models, their asymptotic complexity is 

summarized in Table 2. This table provides a theoretical perspective using Big-O notation, highlighting the 

trade-offs between each model's predictive accuracy and computational cost. This summary serves to provide 

a holistic view of the operational trade-offs inherent in each model. 

Table 2  Computational complexity of the base models 

Model Training Complexity 
Inference 

Complexity 
Key Considerations 

ARIMA 𝑂(𝑛 × 𝑝2) 𝑂(𝑃) 
Efficient for small datasets; limited in handling seasonality 

and nonlinearity 

SARIMA 𝑂(𝑛 × (𝑝 + 𝑞 + 𝑃 + 𝑄)2) 𝑂(𝑝 + 𝑞 + 𝑃 + 𝑄) 
Additional seasonal parameters increase cost but capture 

periodic patterns 

VAR 𝑂(𝑛 × 𝑘3) 𝑂(𝑘2) 
Effective for multivariate data but scales poorly with number 

of variables 

Prophet 𝑂(𝑛 × 𝑘) 𝑂(𝑘) Handles multiple seasonalities and events efficiently 

XGBoost 𝑂(𝑛 × 𝑑 × 𝑇) 𝑂(𝑑 × 𝑇) 
Strong nonlinear modeling capacity; higher training cost due 

to tree ensembles 

LSTM 𝑂(𝑛 × ℎ2) 𝑂(ℎ2) 
Captures long-term dependencies; computationally intensive 

and data-hungry 

* Notes: 𝑛 = number of observations, 𝑝, 𝑞 = AR and MA orders, 𝑃, 𝑄 = seasonal orders, 𝑘 = number of variables or seasonalities, 𝑑 

= tree depth, 𝑇 = number of trees, ℎ = number of hidden units. 

This theoretical comparison demonstrates that classical statistical models (ARIMA, SARIMA, VAR) 

are generally lightweight in terms of computation, making them practical for rapid experimentation. In contrast, 

machine learning (XGBoost) and deep learning models (LSTM) require substantially more resources, 

reflecting a trade-off between computational cost and their ability to capture nonlinear, complex patterns. 

Prophet occupies a middle ground, offering flexible modeling with relatively moderate complexity. This 

diversity among base models justifies their integration into a stacked ensemble, which leverages 

complementary strengths while mitigating individual limitations. 

3.4 Meta models 

3.4.1 Simple Ensemble [48] 

The Simple ensemble approach combines predictions from multiple base models by averaging their 

outputs. While this method reduces variance and improves prediction stability, it assigns equal weight to all 

models, potentially underutilizing the strengths of higher-performing models. 
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3.4.2 Random Forest Stacking [49, 50] 

In this approach, predictions from base models are used as input features for a Random Forest meta-

learner. By capitalizing on the robustness and low variance of Random Forest algorithms, this stacking method 

effectively integrates diverse predictions, enhancing overall forecasting accuracy. 

3.4.3 XGBoost Stacking [42, 49] 

XGBoost stacking employs an XGBoost model as the meta-learner to sequentially learn from the outputs 

of the base models. Known for its high performance and flexibility, this method captures complex 

relationships among predictions but requires careful hyperparameter tuning to avoid overfitting. 

3.4.4 Gradient Boosting Stacking [49, 51] 

This method uses a gradient boosting algorithm as the meta-learner, iteratively reducing the residual 

errors from previous base model predictions. It is particularly effective in refining predictive accuracy by 

capturing subtle nonlinear patterns among base model outputs, making it well-suited for complex time-series 

forecasting tasks. 

3.5 Performance metrics for evaluation 

To objectively evaluate model performance, predictive accuracy was evaluated using statistical metrics, 

including the MAE, RMSE, and MAPE (Table 3). 

Table 3  Evaluation parameters for forecasting performance 

Criterion Definition 

MAE 
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

RMSE √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

MAPE 
1

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|

𝑛

𝑖=1

 

Figure 3 shows an overview of the methodological framework adopted in this study, which encompasses data 

preprocessing, model training, and ensemble integration. 

4. Experimental setup 

4.1 Survey port 

Ulsan Port is one of South Korea’s largest and most prominent ports, specializing in the handling of 

liquid cargo. As part of its strategic expansion, the port is actively developing its facilities and infrastructure 

under the Northeast Asia Oil Hub project, aiming to establish itself as a key crude oil terminal in the region. 

The anchorage area spans approximately 42.51 km² and can accommodate up to 40 vessels simultaneously. 

However, a persistent shortage of anchorage capacity has been reported, contributing to an increased risk of 

maritime accidents—including anchor-dragging incidents during adverse weather conditions—particularly in 

Anchorage Group E [52]. 

The port currently operates ten designated anchorages (E1–E3 and M1–M7) within its port limits. These 

anchorages are situated in open waters and are characterized by the simultaneous anchoring of multiple large 

vessels in confined areas. Owing to the heightened risk of safety-related incidents, this study focuses 

specifically on Anchorage Group E at Ulsan Port. The analysis covers the period from 2020 to 2024, utilizing 
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vessel operation data from the E anchorage area. The dataset was obtained from the Port Management 

Information System (PORT-MIS) [53], operated by the MOF of the Republic of Korea. 

 

Fig. 3.  Overall framework of the stacking ensemble-based anchorage occupancy forecasting model 

4.2 Data preparation and preprocessing 

4.2.1 Data preprocessing 

Using the initial 241,220 arrival and departure records for Ulsan Port obtained from the PORT-MIS, a 

rigorous data preprocessing and cleaning pipeline was implemented to ensure high-quality inputs for reliable 

forecasting. Preliminary inspection revealed several common issues in large-scale operational datasets, 

including missing values, inconsistencies, and outliers. To address these, a multi-stage data cleaning procedure 

was applied. 

First, records with missing values (393 data points) were systematically excluded. Additionally, 434 

data points corresponding to vessels that had been berthed for unusually long periods before January 1, 2020, 

00:00, were excluded, as this likely represented long-term storage rather than active anchorage events. After 

these exclusions, 240,393 valid records were retained for analysis. Duplicate entries were meticulously 

identified and removed to ensure data integrity. The analysis was strictly limited to the period from January 

1, 2020, 00:00, to December 31, 2024, 24:00. 

To prepare the dataset for statistical analysis and modeling, data consistency was prioritized. Ship type 

names were translated into English for standardization, while commas were removed and decimal places 

rounded to ensure numerical uniformity. Vessel type names were further standardized to reduce categorical 

fragmentation. To simplify data distribution and enhance the model's ability to capture non-linear 

relationships, several continuous variables were discretized into categorical variables. 

The analysis period was categorized monthly, and anchorage occupancy time was calculated using each 

vessel’s "ARRIVAL" and "DEPARTURE" timestamps. Occupancy durations were then classified into five 
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categories: <12 h, 12-24 h, 24-48 h, 48-72 h, and >72 h. Records with negative occupancy durations or 

durations exceeding 72 h were removed to eliminate erroneous entries. 

Finally, vessel gross tonnage was categorized into the following intervals: <100, 100–500, 500–1,000, 

1,000–5,000, 5,000–10,000, 10,000–30,000, 30,000–150,000, and >150,000 tons. 

To ensure robust outlier management beyond basic filtering—particularly for LOA estimation—the 

interquartile range (IQR) method was applied. This approach systematically identified and removed data 

points falling below Q1−1.5×IQR or above Q3+1.5×IQR, thereby enhancing the reliability of the LOA-to-

gross tonnage (GT) ratio and improving the accuracy of subsequent LOA estimations. This rigorous data 

cleaning process was critical in reducing data quality issues and establishing a reliable foundation for accurate 

time-series forecasting. 

4.2.2 Basic Statistical analysis of the arrival and departure data of Ulsan Port 

1. Vessel type analysis of Ulsan port 

An analysis of vessel arrivals and departures at Ulsan Port between 2020 and 2024 revealed that oil 

product tankers (43.63 %, 38,413 cases) and chemical tankers (25.32 %, 22,287 cases) were the most 

frequently occurring vessel types, reflecting the port’s specialization in liquid cargo handling. 

At the E1 anchorage, oil product tankers accounted for the largest share (45.84 %, 22,906 cases), 

followed by chemical tankers (32.79 %, 16,385 cases), with consistent activity from LPG carriers and general 

cargo ships. A similar pattern was observed at the E2 anchorage, which was primarily used by oil product 

tankers (42.79 %, 9,497 cases) and chemical tankers (20.00 %, 4,440 cases). Notably, crude oil tankers  

utilized E2 more frequently (951 cases) than E1 (164 cases), indicating a preference for the former. 

In contrast, E3 anchorage was primarily used by oil product tankers (37.88 %, 6,010 cases) and bulk 

carriers (23.48 %, 3,725 cases). The presence of various vessel types at E3 suggests that it functions as a 

multipurpose anchor. 

2. Arrival and departure statistics by vessel tonnage categories at Ulsan Port 

An analysis of vessel tonnage categories at Ulsan Port from 2020 to 2024 revealed that vessels in  

the 1,000–30,000 ton range accounted for the majority of arrival and departure activity (80.29 %), with vessels 

in the 1,000–5,000 ton category being the most frequent (36.96 %). 

E1 Anchorage primarily accommodates small to medium-sized vessels under 10,000 tons (99.65 %), 

particularly those transporting liquid cargo. E2 Anchorage is predominantly used by medium to large-sized 

vessels, with the 10,000–30,000 ton category comprising 89.25 % of activity. In contrast, E3 Anchorage 

records the highest activity from large vessels over 30,000 tons (85.65 %), including crude oil tankers and 

bulk carriers, while also serving a range of mid-sized vessels. 

3. Analysis of anchorage occupancy time 

Anchorages E1, E2, and E3 collectively exhibited a high proportion of long-term anchorage occupancy 

exceeding 72 h (65.27 %). E2 and E3 showed a clear pattern of usage by vessels engaged in extended 

anchorage durations. Conversely, E1 Anchorage demonstrated a bimodal occupancy pattern, with vessels most 

commonly anchored for either 24–48 h (22.20 %) or more than 72 h (53.68 %). 

4.2.3 Predicting LOA from GT for improved turning radius estimation 

Accurate estimation of a vessel’s turning radius within an anchorage area requires reliable LOA 

information. However, many records in the PORT-MIS dataset lack this critical attribute. To address this 

issue, a LOA-to-GT ratio-based estimation method was applied. A total of 69,810 vessel records containing 

both LOA and GT information were collected from the arrival and departure dataset, excluding vessels longer 

than 400 m, which are not permitted to anchor at Ulsan Port. Outliers were initially removed by filtering 

records with an LOA-to-GT ratio less than 10 or greater than 1,500. After this initial refinement, 55,811 valid 

records remained. To further enhance data reliability, the IQR method was applied. The first quartile (Q1) and 

third quartile (Q3) were calculated, and data points falling below Q1–1.5×IQR or above Q3+1.5×IQR were 
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classified as outliers and excluded. This multi-stage data refinement process improved the robustness of the 

LOA-to-GT ratio, ensuring more accurate LOA estimations for turning radius calculations. 

Using the refined dataset, several regression models were evaluated to predict LOA from GT, including 

linear regression, second-order polynomial regression, Random Forest, and multilayer perceptron (MLP)-

based neural networks. The Random Forest regression model achieved the best predictive performance, with 

the lowest RMSE of 10.34 (Table 4). 

Table 4  Comparison of regression model performance for estimating LOA from GT 

Model 
Linear 

regression 

Second-order 

polynomial regression 

Random Forest 

regression 

Neural 

Network (MLP) 

RMSE 28.71 20.28 10.34 14.97 

Using the Random Forest regression model, LOA values were estimated for vessels in the arrival and 

departure records from the E1, E2, and E3 anchorages at Ulsan Port where LOA information was missing. The 

model utilized GT values from the PORT-MIS dataset as independent variables to predict the corresponding 

LOA through a trained regression equation. This process enabled the reliable supplementation of missing LOA 

information, which was subsequently used to calculate vessel turning radii. Figure 4 presents a comparison 

between the original and predicted LOA values based on GT, demonstrating the effectiveness of the Random 

Forest regression model. 

 

Fig. 4.  Comparison of original and predicted LOA based on GT using random forest regression 

4.2.4 Adjustment of turning radius based on external factors 

According to the MOF in South Korea, the KDS recommends considering seabed conditions and wind 

speed when calculating a vessel’s turning radius. However, the current standards provide only generalized 

clearance distances based on broad categorizations of seabed quality and wind conditions, lacking detailed, 

quantifiable criteria. In contrast, the Permanent International Association of Navigation Congresses 

(PIANC) [54] offers more granular and systematic guidelines, specifying clearance distances across defined 

wind speed ranges (see Table 5). In practical anchoring operations, wind speed plays a critical role in 

determining anchor chain length. As wind speed increases, longer anchor chains are required, resulting in 

larger turning radii. Therefore, PIANC’s wind-based clearance distance standards are widely regarded as both 

reasonable and operationally relevant for anchorage planning. In this study, seasonal variations in maritime 

environmental conditions and vessel movement patterns at Ulsan Port were incorporated to improve the 
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accuracy of occupancy predictions at E1 Anchorage. Vessel turning radii were adjusted using PIANC’s wind-

speed-based clearance guidelines. 

Table 5  Comparative analysis of design criteria 

Environmental conditions Turning Radius 

Seabed Wind (m/s) MOF PIANC Proposed 

Good 

≤ 10 

L + 6D 

L + 5D + 0 m + Safety Clearance* L + 6D + 0 m 

= 20 L + 5D + 60 m + Safety Clearance L + 6D + 60 m 

= 30 L + 5D + 120 m + Safety Clearance L + 6D + 120 m 

≥ 30 L + 5D + 180 m + Safety Clearance L + 6D + 180 m 

Bad 

≤ 10 

L + 6D + 30 m 

L + 5D + 30 m + Safety Clearance L + 6D + 60 m 

= 20 L + 5D + 90 m + Safety Clearance L + 6D + 120 m 

= 30 L + 5D + 150 m + Safety Clearance L + 6D + 180 m 

≥ 30 L + 5D + 210 m + Safety Clearance L + 6D + 240 m 

* A safety clearance which may be 10 % of the LOA, with a minimum of 20 m 

To systematically reflect the influence of maritime environmental factors, anchorage design standards 

were revised by combining MOF guidelines with PIANC’s wind-based clearance distances. Based on these 

adjusted standards, the occupancy area of vessel “A” was recalculated under varying wind conditions. The 

corresponding results are shown in Figure 5. Occupancy areas were estimated using daily maximum wind 

speed data provided by the Korea Hydrographic and Oceanographic Agency. These wind-adjusted occupancy 

estimates were then used as input for anchorage occupancy forecasting, allowing the model to reflect more 

realistic and dynamic maritime conditions. 

 

Fig. 5.  Effects of wind speed on anchorage occupancy estimation 

5. Experiments and results 

All computational experiments were conducted in a Google Colab Pro environment to ensure a 

consistent and high-performance computing environment. The hardware specifications used for training and 

inference were as follows: Intel(R) Core(TM) i9-10900KF CPU @ 3.70GHz, 128GB of RAM, and an 

NVIDIA GeForce RTX 3090 GPU. 

After collecting data from vessels that utilized the E1 Anchorage at Ulsan Port, the LOA of each vessel 

was estimated using a regression model based on its GT, and the corresponding hexagon-based occupancy 

area was calculated. The daily occupancy area was then derived by aggregating the individual occupancy areas 

of all vessels anchored at E1 on a given day, serving as the primary variable for analysis. 
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5.1  Analysis of daily occupancy area and vessel count trends 

Figure 6 presents the time-series trends of the total daily occupancy area (in m²) alongside the daily 

vessel count at E1 Anchorage. The lower panel displays the number of vessels anchored each day, which 

generally ranged from 20 to 35, with occasional peaks exceeding 40 vessels. The trends confirm a clear 

positive relationship: an increase in the daily number of vessels correspond with proportional increase in the 

total occupancy area. 

 

Fig. 6.  Trends in daily occupied area and number of vessels at E1 Anchorage, Ulsan Port 

A correlation analysis between the daily occupancy area and the number of anchored vessels yielded a 

correlation coefficient of approximately 0.84, indicating a strong positive association. This suggests that as 

the number of vessels increases, the total occupied anchorage area expands significantly. These findings 

indicate that the dataset is well-suited to serve as a foundational input for developing a berth occupancy 

demand forecasting model. 

5.2 Forecasting experiment and results using single models 

The dataset was structured using daily variables and consisted of two variables: the date and the 

cumulative anchorage occupancy area (m²) for all vessels anchored on that day. The dataset was divided into 

the following ratios to make the collected data suitable for time-series forecasting: 

Training Data: January 1, 2020 – June 30, 2023 (~80 % of the data) 

Validation Data: July 1, 2023 – March 31, 2024 (~10 % of the data) 

Testing Data: April 1, 2024 – December 31, 2024 (~10 % of the data) 

During the modeling process, min–max scaling was applied to normalize the variables within the range 

of 0–1. 

This study employed representative models from time-series forecasting, machine learning, and deep 

learning paradigms to evaluate and compare predictive performance. The six models included in the 

experiment were ARIMA, SARIMA, VAR, Prophet, XGBoost, and LSTM. Their forecasting outputs were 

visually assessed by comparing predicted and actual values through time-series plots, as shown in Figure 7. 

To ensure robust model evaluation and applicability to unseen data, a fixed-period hold-out validation 

strategy was adopted while maintaining the chronological sequence of the data. For the ARIMA, SARIMA, 

and VAR models, a rolling forecast approach was utilized during the validation period. In this method, each 

model was initially trained on historical data up to a given time point, produced a one-step-ahead prediction, 

and was subsequently updated by incorporating the newly observed value from the validation set. This 
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sequential updating process closely simulates a real-time forecasting scenario. In contrast, Prophet, XGBoost, 

and LSTM models were trained once on the entire training dataset and used to generate forecasts for the entire 

validation period based on the learned temporal patterns. This consistent validation framework enabled direct 

comparison of all base models' performances before their integration into the stacked ensemble. The final 

stacking ensemble models were then evaluated on the same validation dataset, using the predictions generated 

by the base models as input features. 

 

Fig. 7.  Forecasting results of six predictive models compared to actual values. Graph comparing a) ARIMA, b) SARIMA, c) 

VAR, d) Prophet, e) XGBoost, and f) LSTM predictions with actual values with 95 % bootstrap confidence interval 

The machine learning-based XGBoost model demonstrated the highest forecasting accuracy among the 

individual models (Table 6), achieving the lowest values for MAE (0.0132), RMSE (0.0171), and MAPE  

(3.37 %). The Prophet model also performed well, with a MAPE of 6.79 %. In contrast, conventional time-

series forecasting models such as ARIMA, SARIMA, and VAR produced higher MAPE values (~16–17 %), 

highlighting their limitations in capturing the complex and nonlinear characteristics of anchorage occupancy 

area data. The deep learning-based LSTM model showed slightly improved performance over conventional 

models but underperformed relative to the machine learning-based models. 
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Table 6  Performance parameters for forecasting models 

Model MAE RMSE MAPE (%) 

MAPE CI 95 % (%) 

Lower Bound Upper Bound 

ARIMA 0.0511 0.0634 16.80 0.78 88.11 

SARIMA 0.0512 0.0634 16.82 0.80 89.65 

VAR 0.0513 0.0643 17.33 0.77 93.92 

Prophet 0.0229 0.0285 6.79 6.13 15.50 

XGBoost 0.0132 0.0171 3.37 18.72 31.76 

LSTM 0.0502 0.0624 13.77 19.39 29.44 

The analysis of individual model forecasting performance and runtime revealed a clear trade-off 

between accuracy and computation time. Classical statistical models (ARIMA, SARIMA, VAR) showed a 

linear increase in runtime as data size grew, making them vulnerable to computational load and resulting in 

relatively lower accuracy. In contrast, Prophet's accuracy improved significantly with more data, and its 

runtime of 0.2-0.7 seconds was very short, making it highly suitable for real-time applications. XGBoost 

emerged as a practical alternative, showing the most consistently low errors across all ranges and 

demonstrating excellent computational efficiency. The deep learning model, LSTM, showed improved 

performance when sufficient data was secured, but it required the longest computation time, exceeding 1844 

seconds, indicating the greatest computational burden when scaling data (Table 7). 

Table 7  Runtime comparison of base models based on training data volume 

 ARIMA SARIMA VAR Prophet XGBoost LSTM 

Data 

Ratio 

(%) 

MAPE 

(%) 

Run 

(s) 

MAPE 

(%) 

Run 

(s) 

MAPE 

(%) 

Run 

(s) 

MAPE 

(%) 

Run 

(s) 

MAPE 

(%) 

Run 

(s) 

MAPE 

(%) 

Run 

(s) 

25 16.64 283.8 16.87 197.1 18.52 2.4 44.31 0.2 5.44 0.2 24.46 73.0 

50 16.88 395.1 16.98 326.3 18.38 4.9 43.17 0.3 4.61 0.3 24.81 114.6 

75 16.75 518.5 16.86 418.1 17.64 1.9 29.57 0.6 3.88 0.3 24.51 155.8 

100 16.8 628.6 16.82 530.6 17.33 4.4 6.79 0.7 3.37 0.4 13.77 1844.1 

5.3 Forecasting results using stacking ensemble models 

To further enhance predictive accuracy, a stacking ensemble model was developed, integrating the 

strengths of multiple forecasting models. Four ensemble strategies were tested: simple ensemble, Random 

Forest stacking, XGBoost stacking, and gradient boosting stacking. The forecasting results for each meta 

model were visualized and compared (Figure 8). 
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Fig. 8.  Forecasting results of stacking ensemble models compared to actual values. Graph comparing (a) simple ensemble, (b) 

random forest stacking, (c) XGBoost stacking, and (d) gradient boost stacking predictions with actual values with 95 % bootstrap 

confidence interval 

Forecasting performance results are summarized in Table 8. The gradient boosting stacking model 

demonstrated the best performance, with an MAE of 0.0021, RMSE of 0.0026, and MAPE of 0.59 %. Both 

the XGBoost and Random Forest stacking models also recorded low error rates, demonstrating strong 

predictive capabilities. Overall, the stacking ensemble models consistently outperformed individual models, 

confirming their superior forecasting performance. The simple ensemble method, while effective, showed 

relatively higher error rates compared to the other stacking models. 

Table 8  Performance parameters of stacking ensemble models 

Model MAE RMSE MAPE (%) 
MAPE CI 95 % (%) 

Lower Bound Upper Bound 

Simple ensemble 0.0369 0.0473 12.37 30.51 41.73 

Random Forest stacking 0.0056 0.0075 1.63 1.30 1.66 

XGBoost stacking 0.0037 0.0051 1.13 0.93 1.27 

Gradient boosting stacking 0.0021 0.0026 0.59 0.49 0.59 

The analysis of ensemble forecasting strategies further highlighted the trade-off between accuracy and 

computation time (Table 9). Random Forest stacking exhibited stable accuracy with moderate runtime growth. 

Gradient Boosting stacking consistently achieved the highest accuracy with runtime remaining in the range  

of 0.22–0.59 s, indicating a favorable trade-off. Notably, XGBoost stacking demonstrated excellent 

computational scalability, as runtime decreased with larger data sizes while maintaining competitive accuracy. 

Overall, all stacking models scaled sub-linearly with data size, showing robustness in computational 

efficiency. Compared to the simple ensemble, stacking models required greater computation but provided 

markedly superior predictive accuracy, with Gradient Boosting delivering the most accurate forecasts and 

XGBoost offering the most balanced trade-off between accuracy and runtime. 
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Table 9  Runtime comparison of meta models based on training data volume 

 Simple ensemble Random Forest stacking XGBoost stacking Gradient boosting stacking 

Data Ratio (%) MAPE (%) Run (s) MAPE (%) Run (s) MAPE (%) Run (s) MAPE (%) Run (s) 

25 11.85 0.004 1.45 0.426 0.63 0.887 0.22 0.434 

50 10.46 0.003 1.34 0.428 0.66 0.074 0.25 0.225 

75 10.95 0.003 1.60 0.235 0.87 0.130 0.44 0.267 

100 12.37 0.003 1.63 0.269 1.13 0.123 0.59 0.319 

5.4 Feature importance analysis 

To evaluate the contribution of each base model within the stacking ensemble, a feature importance 

analysis was conducted. As shown in Figure 9, the Prophet model had the most significant influence on the 

final predictions, followed by relatively high contributions from XGBoost and VAR. In contrast, LSTM, 

ARIMA, and SARIMA contributed minimally to the ensemble’s performance. 

 

Fig. 9.  Feature importance analysis of base models in meta-learning 

These results confirm that the predictive powers of the machine learning models, and Prophet were more 

heavily weighted within the ensemble model. 

5.5 Statistical Significance Testing 

To statistically validate the performance improvement of the ensemble model, two complementary tests 

were conducted: the paired t-test and the Diebold-Mariano (DM) test. These tests compared the prediction 

errors of the best-performing single model—XGBoost—with those of the best-performing ensemble model—

Gradient Boosting Stacking. As shown in Table 10, the paired t-test, which evaluates whether the mean 

prediction errors of two dependent models differ significantly, yielded a test statistic of –10.1854 with a p-

value < 0.0001. This result indicates that the Gradient Boosting Stacking model produced significantly lower 

mean absolute errors than the XGBoost model. 

In addition, the Diebold-Mariano test, which is specifically designed to compare the forecasting 

accuracy of time-series models, produced a test statistic of –6.0602 with a p-value < 0.0001. This result further 

confirms that the performance gains observed in the Gradient Boosting Stacking model are statistically 

significant and unlikely to be due to random variation. Together, these statistical tests provide robust evidence 

that the Gradient Boosting Stacking ensemble model offers a significant improvement in forecasting 

performance over the best single-model baseline. 
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Table 10  Statistical significance test results comparing Gradient Boosting Stacking and XGBoost models 

Test Type Statistic p-value Interpretation 

Paired t-test -10.1854 < 0.0001 The difference in mean prediction errors is statistically significant (p < 0.05) 

Diebol-Mariano Test -6.0602 < 0.0001 The difference in forecast accuracy is statistically significant (p < 0.05) 

6. Discussion 

This study addresses the research question of whether a stacked ensemble approach can overcome the 

limitations of conventional time-series forecasting models. The aim is to improve the accuracy of anchorage 

occupancy forecasting. Specifically, the study evaluated the effectiveness of stacking ensemble models in 

integrating predictions from both conventional statistical and machine learning models. While also accounting 

for environmental conditions and vessel-specific characteristics within real-world port operations. 

These results indicate several noteworthy findings. First, although deep learning models such as LSTM 

are known for their capacity to model complex temporal dependencies, the LSTM model in this study 

underperformed, achieving a MAPE of 13.77 %. This result is unexpected and warrants further analysis. While 

LSTM is effective at capturing long-range sequential patterns, its underperformance may be attributed to 

several factors: (a) the dataset, although substantial, may not be large enough to fully utilize LSTM's high 

model complexity; (b) anchorage occupancy dynamics may be more influenced by discrete, event-driven 

dynamics and spatial interactions, rather than the purely sequential dependencies LSTM models are optimized 

to learn; and (c) real-world port operation data may contain high levels of noise or abrupt changes that hinder 

LSTM’s ability to generalize effectively. These challenges suggest that while LSTM is powerful in certain 

contexts, it may be less suited to the unique, multifaceted nature of anchorage occupancy forecasting. 

Moreover, the simple ensemble approach—where model predictions were averaged equally—did not 

achieve the desired level of forecasting accuracy (MAPE=12.37 %). This result highlights a key limitation of 

naive ensemble strategies: equal weighting of all models fails to account for performance variability among 

individual models, thereby diluting the benefits of ensemble learning. 

However, the proposed stacked ensemble approach significantly improved the prediction accuracy 

compared to individual models. Among the standalone models, XGBoost (MAPE=3.37 %) and Prophet 

(MAPE=6.79 %) demonstrated superior performance, effectively capturing the nonlinear and complex 

temporal patterns characteristic of anchorage occupancy data. Conversely, conventional time-series 

forecasting models such as ARIMA, SARIMA, and VAR exhibited higher error rates, reinforcing their 

limitations in modeling the intricate and dynamic nature of anchorage usage. 

To confirm the statistical significance of the performance improvement, both a paired t-test and the 

Diebold-Mariano test were conducted, comparing the XGBoost model with the Gradient Boosting Stacking 

ensemble. The paired t-test revealed a statistically significant difference in mean absolute errors 

(t = –10.1854, p < 0.0001), while the Diebold-Mariano test confirmed a significant improvement in forecasting 

accuracy (DM = –6.0602, p < 0.0001). These results provide strong statistical evidence that the ensemble 

model’s superior performance is robust and not attributable to random variation. 

Among the stacking ensemble models, the Gradient Boosting Stacking ensemble achieved the highest 

accuracy (MAPE = 0.59 %), while the Random Forest and XGBoost stacking models also demonstrated strong 

predictive performance. These findings demonstrate that integrating diverse models within an ensemble 

framework significantly enhances overall forecasting accuracy. 

A feature importance analysis further highlighted the key contributions of the Prophet, XGBoost, and 

VAR models within the ensemble. Prophet’s prominent role underscores the relevance of underlying trends 

and seasonality in anchorage occupancy data—components that Prophet is particularly well-equipped to 

model. XGBoost’s substantial contribution reflects its strength in capturing complex, nonlinear relationships 

and adapting to dynamic fluctuations, such as abrupt shifts in demand or operational events. VAR's significant 

role indicates the importance of multivariate dependencies, particularly the strong correlation between daily 

occupied space and vessel count, which VAR effectively modeled. 
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 Conversely, the relatively lower contributions of ARIMA, SARIMA, and LSTM suggest that, while 

each has merits in specific contexts, their individual strengths were less influential in capturing the 

multifaceted dynamics of anchorage occupancy compared to other models in the ensemble. The 

complementary strengths of the base models enabled the stacked ensemble to exploit their unique capabilities. 

This integration resulted in superior predictive accuracy. 

Additionally, a simulation using real-world data from the E1 anchorage at Ulsan Port revealed that the 

hexagonal-based occupancy estimation method required approximately 10.3 % more space than the traditional 

anchor circle method. This increase represents a more conservative yet operationally safer approach to 

anchorage management. 

This study demonstrates significant improvements in forecasting accuracy and proposes a more practical 

method for spatial anchorage management. However, several challenges remain in translating these findings 

into real-world implementation. Integrating disparate real-time data streams from various port systems and 

ensuring their interoperability remains a significant technical hurdle. Furthermore, deploying and maintaining 

sophisticated stacking ensemble models—which require considerable computational resources for training 

and real-time inference—demands robust IT infrastructure. Such resources may not be readily available within 

many port authorities. Additionally, adapting existing port regulations and operational protocols to 

accommodate new methodologies, such as the hexagon-based occupancy estimation method, may require 

coordinated policy reform and active stakeholder collaboration. 

This study has several limitations. First, the anchorage occupancy data were limited to the E1 anchorage 

of Ulsan Port—a major liquid cargo hub characterized by persistent shortage of anchorage capacity and 

elevated safety risks in Group E. While this focus enabled an in-depth case study and effective validation of 

the proposed methodologies under real-world conditions, it inherently restricts the generalizability of the 

findings. Although the model demonstrated strong performance for Ulsan Port, caution should be exercised 

when extrapolating the results to other ports with different operational profiles. Moreover, the LOA estimation 

method was validated only under the specific operational context of Ulsan Port and would require additional 

validation and calibration before being applied elsewhere. The simulations also did not fully capture detailed 

vessel interactions or the nuanced dynamics of real-world anchoring practices. These gaps may limit the 

operational applicability of the findings. While the hexagon-based occupancy estimation method improved 

spatial representation and safety margins, further research is needed to incorporate actual anchoring behaviors 

and variability in vessel turning radii under dynamic environmental conditions. 

Furthermore, to better assess the generalizability of the proposed framework beyond a single port, future 

studies could incorporate simulation-based validation using synthetic datasets representing diverse port 

characteristics. Such simulations would allow systematic testing under varying traffic densities, anchorage 

configurations, and regulatory environments, complementing real-world case studies and helping to identify 

context-specific limitations. 

Another important limitation involves the computational cost and scalability of the proposed framework. 

Although computational efficiency was addressed through strategies such as parallelized training for XGBoost 

and mini batch learning with early stopping for LSTM, a comprehensive analysis of runtime performance was 

not conducted. In particular, quantitative scalability testing across different data volumes or system 

complexities was not conducted. Such testing is essential for deploying the framework in larger and more 

complex port environments. 

This study also focused mainly on generating accurate point forecasts for anchorage occupancy. 

However, it did not address prediction intervals or provide a comprehensive assessment of forecast 

uncertainty. While point forecasts are essential for direct operational planning, understanding the uncertainty 

associated with these predictions is equally important for informed decision-making, risk assessment, and 

contingency planning in dynamic port environments. This omission represents another limitation of the 

present study. 
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7. Conclusion 

This study aimed to enhance anchorage occupancy forecasting under dynamic port conditions. To 

achieve this, a stacked ensemble learning approach was proposed, integrating statistical and machine learning 

models. The ensemble method outperformed individual forecasting models. Among them, the Gradient 

Boosting Stacking model achieved the best performance (MAPE = 0.59 %). Statistical validation using the 

paired t-test and Diebold-Mariano test confirmed that the ensemble model was superior to the best-performing 

single model, XGBoost. 

Feature importance analysis revealed that Prophet, XGBoost, and VAR contributed most significantly 

to the ensemble’s performance. These models effectively captured seasonality, nonlinear patterns, and 

multivariate dependencies within the anchorage occupancy data. Additionally, a simulation-based comparison 

showed that the hexagon-based occupancy estimation method required approximately 10.3 % more area than 

the traditional anchor circle method. This approach provides a more conservative yet operationally safer 

alternative for spatial planning in port operations. 

Despite these advancements, this study has several limitations. Key limitations include: 

• Reliance on data from a single port, potentially limiting generalizability to other port environments. 

• Focus on point forecasts without incorporating prediction intervals or formal uncertainty quantification. 

• Lack of quantified computational scalability, with no analysis of performance across varying system 

sizes or data volumes. 

• Simplified spatial simulations that do not fully capture dynamic vessel interactions or specific 

maneuvering behaviors. 

• Uncertainty in LOA estimations without explicit error propagation analysis. 

• Application of PIANC standards without validation under localized Korean operational and regulatory 

conditions. 

To enhance the robustness and applicability of the proposed framework, future research should first 

explore its adaptation to a wider range of ports to assess generalizability across diverse maritime environments. 

Incorporating uncertainty quantification and statistical validation will be critical for producing reliable 

prediction intervals and improving decision-making confidence. Enhancing the spatial modeling 

component—through the inclusion of realistic anchoring behaviors, variable turning radii, and vessel-specific 

interaction dynamics—will further refine the accuracy of the hexagon-based occupancy estimation approach. 

In addition, simulation-based experiments using synthetic datasets that mimic heterogeneous port conditions 

can provide a controlled environment for testing model robustness, stress-testing under extreme scenarios, and 

identifying potential limitations prior to real-world deployment. In terms of implementation, research should 

investigate scalable computational strategies such as cloud-based infrastructures or hardware acceleration to 

support real-time application in operational settings. Given the limited performance of the LSTM model in 

this study, alternative deep learning architectures—such as Transformer-based models—can offer improved 

forecasting capabilities under highly dynamic settings. Finally, collaboration with port authorities for pilot 

implementation will be essential to evaluate the practical utility of the proposed system in improving berth 

allocation, reducing congestion, and supporting data-driven anchorage management. 

By addressing these avenues, the proposed framework holds strong potential to evolve into a robust, 

scalable, and deployable decision-support tool for anchorage management in complex and uncertain port 

conditions. 
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