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A B S T R A C T  

This paper presents a data-driven framework for quantifying attainable ship speed 

uncertainty considering weather forecast uncertainty. The methodology integrates two 

parallel workflows: weather forecast processing and ship performance simulation. 

Weather forecast data from NOAA and GFS sources are collected at multiple lead 

times (0-24h, 24-72h, 72-120h, 120-168h). The data undergo spatial discretisation over 

a North Atlantic rectangular grid, extracting the main meteorological variables, 

including significant wave height, peak period, wave direction, wind speed, and wind 

direction. Ship performance simulations were done using Wärtsilä NaviTrainer 

NTPRO 5000 and HydroComp NavCad to generate attainable ship speed lookup tables 

under varying conditions: intended speeds (14.5, 13.5, 12.0 kn), wave heights (0-14 m 

according to WMO Sea State Codes 0-8), and wave encounter angles (0°-180°). 

Multiple metrics were used for uncertainty quantification, including RMSE, MAE, 

Bias, UGR, CRPS, IoA, and FSS for meteorological variables, alongside CMAE for 

directional parameters. These metrics are subsequently applied to estimated attainable 

ship speeds, establishing response variable uncertainties. Correlation analysis was 

conducted between the uncertainty of meteorological variables and the uncertainty in 

attainable ship speed, providing important insights for estimated time of arrival (ETA) 

calculations and voyage planning under weather uncertainty.

1. Introduction 

Optimal ship routing under varying and severe weather conditions still remains a challenge within the 

shipping industry. The prediction of attainable ship speed in different sea states needs to be more accurate for 

voyage planning in the initial phase, as well as along the ship’s route. Fuel efficiency and schedule reliability 

are also affected by these predictions. Ships operating in adverse weather conditions often experience 

significant speed losses, mainly due to added resistance from waves and wind, degraded propeller 

performance, and voluntary speed reductions for safety reasons [1,2]. These speed losses result from the 

interactions between environmental loads and the ship, as demonstrated through bridge simulators such as 

Wärtsilä NTPRO 5000, which models the real-time ship’s dynamics in 6 degrees of freedom (6DOF) [3,4]. 

Current weather routing systems heavily rely on deterministic speed-power models that assume perfect 
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weather forecast accuracy, which is inherently wrong because weather predictions degrade significantly over 

time. For example, wind speed forecast errors were found to grow non-linearly over five days in the North 

Atlantic [5]. This uncertainty needs to be considered in voyage planning and route optimization approaches 

to avoid potentially suboptimal routing decisions. Wu et al. [6] have confirmed that forecast uncertainty grows 

with the prediction horizon, also providing computational methods for prediction intervals applicable to ship 

operations. The economic implications are substantial, as stated in [7], where it’s stated that speed optimization 

according to weather conditions could achieve 15-20 % CO₂ reductions for platform supply vessels. 

Recent research in attainable ship speed modelling covers different methodologies, though each 

approach exhibits distinct limitations. While empirical and semi-empirical methods are considered 

computationally efficient, their applicability is often constrained [8], using 1,477 data points, but this 

validation focused primarily on specific vessel types and sea conditions, not accounting for generalizability. 

Semi-empirical models for speed loss in head waves were developed as well [9], although excluding beam 

and following seas, which limits operational relevance. Methods for estimating added resistance were 

proposed in [10,11], but validated only against a single vessel type, undermining the broader applicability, 

while calm-water predictions were improved in [12]. However, validation was still not extended to realistic 

operational conditions. Some studies focused mainly on added resistance due to diffraction effect [13], 

considering design and low speed, while leaving high-speed performance unaddressed. 

Physics-based models, apart from being computationally complex, consider first-principles 

hydrodynamics but often have idealised assumptions. The potential-flow approaches, such as strip theory and 

panel methods [10], neglect viscous effects and nonlinear phenomena, which are fundamental in severe 

conditions. Even though voyage data was coupled with hindcast weather [14], the reliance on hindcast rather 

than forecast data limits practical application for voyage planning. 

Simulator-based research, while providing controlled environments, often has validation challenges, 

lacking a comprehensive comparison to full-scale trials [15,16]. EEDI effects were examined using simulators 

[17], but translating the findings to real-world operations still requires careful consideration of scale effects 

and environmental complexity. In addition, CFD approaches have improved, even though they are sometimes 

computationally prohibitive for operational use. A large-scale model tested in natural sea conditions was used 

to predict wave-induced ship motions and loads, with results validated through measurements and numerical 

analysis [18]. In [19] the CFD approach was extended to Unsteady Reynolds-Averaged Navier-Stokes 

(URANS) and Large Eddy Simulation (LES) for parametric rolling, though the computational cost makes 

such approaches highly impractical for ship route optimization. Insights on trim and swell-induced speed loss 

were provided in [20,21] but, yet again, only for specific ship types without generalised frameworks. Bow 

wing concepts were demonstrated as well [22], nonetheless transitioning from CFD validation to practical 

implementation remains unexplored. Even though simulator environmental modelling was enhanced through 

CFD [23] it addressed only training applications. 

Machine learning (ML) approaches are becoming more popular, but they experience challenges 

regarding interpretability and generalisation as well. Recent advances in artificial intelligence have shown 

promising results in maritime applications. A deep reinforcement learning approach for integrated vessel path 

planning with safe anchorage allocation was developed in [24], demonstrating the potential of AI-based 

decision-making in complex port operations. While our framework focuses on weather-induced speed loss, 

it's worth noting that path planning challenges extend to various maritime contexts. The authors in [25] 

addressed path planning for a manta ray-inspired underwater glider using NSGA-III for multi-objective 

optimization, considering energy consumption, travel time, and detection range. Similarly, the authors in [26] 

proposed an adaptive trajectory controller using Soft Actor-Critic combined with PID control for unmanned 

surface vehicles, achieving improved tracking performance under uncertain conditions. Supervised learning 

approaches were reviewed in [27], noting how most studies lack cross-validation for different ship types and 

routes. ML methods for resistance prediction were compared [28,29], but their models require extensive 

training data, which is often unavailable for newer ships or some specific routes. Multi-objective optimization 

approaches have gained attention for ship energy efficiency. In [30], the authors developed a comprehensive 

optimization framework using NSGA-II and TOPSIS that simultaneously considers propeller optimization 



M. Marjanović et al. Brodogradnja Volume 77 Number 1 (2026) 77108 

 

3 

 

and navigation speed, achieving a 2.11 % improvement in propulsion efficiency and 10.39 % reduction in 

NOx emissions under specific conditions. In [31] and [32], various ML architectures were developed, while 

domain adaptation was proposed in [33], acknowledging the critical limitation that models trained on one 

specific ship transfer poorly to others. ML was also integrated into decision support [34,35]; however, neither 

study addressed weather prediction confidence intervals, which are essential for risk assessment in navigation. 

Fouling-induced speed loss was investigated in [36], representing one performance degradation mechanism. 

Comprehensive Arctic benchmarking was provided in [37], where it was revealed that even sophisticated ML 

approaches struggle with pointwise predictions and achieve accuracy only if averaged over route segments. 

When it comes to forecast uncertainty quantification, the research in this area remains largely 

disconnected from ship speed prediction models. The importance of risk assessment in maritime operations 

cannot be overlooked. In [38], the authors evaluated operational risks for general cargo ship operators using 

an AHP-based risk matrix model, identifying critical factors such as delays at ports and perils of the sea as 

high-risk areas requiring specific management strategies. The connection between ensemble uncertainties and 

ship fuel consumption was made in [39], but their simplified resistance models may not capture the complex 

speed-power relationships. The uncertainty visualisation was improved in [40], although it did not address 

how mariners should integrate this information into routing and speed change decisions. Uncertainty sources 

are systematically reviewed in [41], but limited guidance is provided on practical implementation. In [42], 

forecast degradation was quantified with an Adaptive Neuro-Fuzzy Inference System (ANFIS) model, which 

applies to wind and waves, rather than vessel response. On the other hand, an ANFIS-based model for ship 

speed prediction was developed in [43]. In [44], first-order probabilistic frameworks were proposed, though 

linearization assumptions may be invalid for highly nonlinear ship responses.  

Although optimization techniques for weather routing were studied [45], computational feasibility for 

real-time decisions needs to be specifically addressed. Some studies have addressed uncertainty in ship 

trajectory prediction and collision avoidance. In [46], the authors proposed a collision avoidance decision-

making framework for coastal waters that explicitly considers the uncertainty of target ships using AIS data 

clustering and Gaussian mixture models for trajectory prediction. This approach is particularly relevant for 

congested coastal areas where multiple vessels interact. Advanced evolutionary algorithms for optimization 

were proposed in [47] and [48], requiring extensive function evaluations, which are impractical for time-

sensitive routing. In [49], digital twin frameworks are presented for Carbon Intensity Indicator (CII) 

compliance, while more recently, digital twin capabilities were enhanced through reinforcement learning (RL) 

[50] for adaptive ship performance prediction. When considering specific navigational conditions, Arctic 

routing was reviewed in [51], acknowledging the lack of data and several model validation challenges in ice-

covered waters. Weather forecasts were also integrated with ECDIS interfaces [52], however, without stating 

the impacts of forecast uncertainties.  

Despite extensive research, several research gaps can be identified. Foremost, while individual 

modelling approaches appear promising, comprehensive frameworks that integrate empirical, physics-based, 

CFD, and ML methods are still underdeveloped. Most studies validate models under specific conditions 

without systematic assessment for different ship types, loading conditions, or sea states. Second, although 

forecast uncertainty is recognised [5,39], very few studies quantify its distribution through attainable ship 

speed models. Existing research mostly considers speed modelling and uncertainty separately or, in the best 

case, uses simplified propagation methods. Comparative assessments also usually focus on only one approach 

rather than evaluating performance under various realistic weather forecast uncertainties. None of the existing 

frameworks simultaneously develops attainable ship speed models and quantifies the propagation of forecast 

uncertainty, while also comparing different approaches under operational conditions. 

This research aims to address these gaps through several integrated objectives. First, three attainable 

ship speed models are integrated, combining insights from the navigational simulator experiments (NTPRO 

5000), a hydrodynamic and propulsion system simulation tool (NavCad), and real weather forecast data. This 

data-driven framework integrates empirical formulations and physics-based seakeeping constraints. Unlike 

recent studies [5,6,35], the quantified forecast uncertainty impact is extended to complete uncertainty 

propagation chains.  
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For a practical demonstration of how weather forecast uncertainty affects attainable ship speed in voyage 

planning, the changes in the uncertainty of time of arrival (ETA) are shown. This enabled the consideration 

of time-varying forecast skill, spatial error correlation, and model-specific sensitivities. We evaluated not only 

accuracy, but also the uncertainty of ship speed under forecast uncertainty. We discuss computational 

efficiency implications for real-time ship routing and operational considerations, along with recommendations 

for future research. 

2. Methodology 

The overall research framework for quantifying attainable ship speed uncertainty under stochastic 

weather conditions is presented in Figure 1. 

The proposed framework employs a parallel processing approach that integrates two complementary 

main data streams: weather forecast uncertainty quantification (left branch, highlighted in blue) and ship 

performance simulation (right branch, highlighted in pink). The final part of the framework, highlighted in 

green, presents joint inter-relationship analysis between various uncertainty metrics with applications in 

voyage planning and ship routing. 

The first data stream pertains to the analysis of selected meteorological variables obtained from reliable 

sources, including weather forecasts and actual sea states (e.g., NOAA, GFS). Forecast data are pre-processed 

by selected lead times and by sea state according to the Douglas scale. To associate this data with specific 

spatial locations, we perform a spatial discretisation of the North Atlantic region into a rectangular grid whose 

nodes define the spatial points of interest. For each node, we extract both forecast and observed (actual) values 

of key variables, including significant wave height, wave period, wave direction, wind speed, and wind 

direction. These data are essential for quantifying the uncertainty of the aforementioned variables, i.e. for 

computing uncertainty metrics (e.g., RMSE, MAE, Bias, UGR, CRPS, IoA, FSS, CMAE) described in Section 

2.5. The uncertainty metrics are determined for all variables of interest across the specified lead-time bins and 

sea-state classes. 

The second data stream pertains to the analysis of uncertainty metrics for an attainable ship speed under 

various sea states. In this context, we first determine the attainable speeds for a selected reference vessel across 

a range of sea conditions. We employed the simulation environments Wärtsilä NaviTrainer NTPRO 5000 and 

HydroComp NavCad. Simulations were conducted using the mathematical model of the reference ship for 

three intended ship speeds, 13 significant wave heights, and 13 encounter wave angles. The NaviTrainer 

NTPRO 5000 supports simulations with two wave spectra (JONSWAP and Pierson–Moskowitz), whereas 

NavCad uses a resistance-decomposition approach. The results from all simulation scenarios were organised 

as lookup tables. Based on these results, it becomes possible to determine the attainable ship speed for both 

observed (actual) and forecast meteorological inputs from the first data stream of the framework, as a function 

of intended ship speed, lead time, and sea state. Having obtained attainable-speed values in this manner, we 

then quantified their uncertainty for all three modelling approaches (JONSWAP, Pierson-Moskowitz, and 

NavCad). In this regard, we computed the same uncertainty metrics for attainable ship speed as those used for 

the meteorological non-directional variables. 

Having quantified the uncertainties associated with all meteorological variables of interest, together with 

the attainable ship speed uncertainties obtained from the three alternative approaches, one can subsequently 

carry out the inter-relationship analyses between predictor (meteorological) and response (ship speed) 

variables, ultimately providing quantitative insights for voyage planning applications. This integrated 

approach enables the systematic propagation of weather forecast uncertainties through ship performance 

models, as described in the following subchapters. 
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Fig. 1  Integrated framework for quantifying attainable ship speed uncertainty under stochastic weather conditions. 

2.1 Experimental Setup 

2.1.1 Vessel Characteristics 

A 28,050 DWT bulk carrier was chosen as a reference vessel [53] that also served as the basis for the 

development of a mathematical model for the NTPro 5000 simulator and for NavCad software as well. The 

vessel in question is a typical medium-sized bulk carrier with principal dimensions of 160.40 m length between 

perpendiculars (LPP), 27.20 m beam, and 13.60 m depth. With a design draft of 9.819 m, the vessel’s gross 

tonnage is 17,009 tons, and she has a deadweight capacity of 28,189 tons. The propulsion system consists of 

a two-stroke marine diesel engine rated at 6,150 kW (8,361 PS) at 136 rpm under nominal conditions, although 
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derated to 5,850 kW at 129 rpm for heavy fuel oil operation. Power transmission is achieved through a direct-

drive shaft system connected to a four-bladed fixed-pitch propeller with a diameter of 5.25 m, a mean pitch of 

3.686 m, and a 35-degree skew angle optimized for bulk carrier operations. The service speed is approximately 

14 knots, but after analysing the measured data, three speeds that were most prevalent were chosen for 

simulations. These specifications were carefully integrated into the mathematical model to ensure accurate 

representation of the vessel's response to environmental loads, which is particularly important for simulating 

realistic speed loss behaviour in different sea states.  

2.1.2 Simulation Environment 

Hydrodynamic and propulsion system simulation tools, such as HydroComp’s NavCad, employ physics-

based models to predict the speed-power characteristics [54,55]. The tool’s Analytical Distributed-Volume 

Method (ADVM) provides an analysis of hull form effects on drag, connecting empirical estimates and full 

CFD. Meanwhile, real-time simulators such as the Wärtsilä Navi-Trainer Professional 5000 (NTPro 5000) 

integrate how environmental factors naturally reduce ship speed through physics-based calculations [56,57]. 

NTPro 5000 is a full-mission bridge simulator that served as the primary platform for ship speed modelling 

and performance assessment. The core architecture of NTPro 5000 system solves the vessel's motion equations 

in real time, accounting for 6 degrees of freedom (surge, sway, yaw, heave, roll, pitch) in order to realistically 

simulate ship dynamics in waves. The system's DNV Class A certification validates its accuracy in ship 

manoeuvring performance, including acceleration/deceleration, turning, and stopping distances.  

The setup workflow for NavCad follows a four-step process starting from the initial inputs of the vessel’s 

parameters, including length, beam, draft, and displacement. Resistance prediction methods can be user-

defined [55]. The second phase involves defining the propulsion system parameters. The engine's power curve 

is linked with the propeller's thrust curve, finding the operating point for each speed where the propeller's 

required torque equals the engine's available torque and the thrust equals the hull resistance.  

Environmental modelling parameters were configured for North Atlantic conditions, including wave 

spectral characteristics. Within the NTPRO 5000 simulator, one can choose between the Pierson-Moskowitz 

and JONSWAP formulations to ensure consistency across both computational platforms. Considering that a 

two-parameter Pierson-Moskowitz (PM) spectrum was created for fully developed wind-generated seas [58], 

it was our first choice for modelling of environmental conditions. On the other hand, the JONSWAP (JS) 

spectrum [58] was also used to describe non-fully developed seas. 

2.2 Simulation Design 

2.2.1 Environmental Conditions 

A comprehensive range of environmental conditions was considered to fully capture the ship's 

performance in different sea states. Wind conditions were simulated according to the Beaufort scale (0-12), 

with speeds ranging from calm to hurricane force (0-58 knots), considering both relative wind speed and 

direction effects on ship resistance and stability. Ocean currents were not included in this analysis, as the study 

focused on the combined effects of wind and wave-induced speed loss, which represent the primary 

environmental factors affecting ship performance in North Atlantic routes. Wave heights were evaluated from 

calm conditions up to the sea state that corresponds to 12 m wave height values, number 8 on the Douglas 

scale. The full spectrum of wave encounter angles from 0° to 180° at 15° increments was covered, represented 

with the following notation: head seas (0°), quartering seas (45°, 135°), beam seas (90°), and following seas 

(180°), thereby capturing all possible ship-wave interaction scenarios. Three previously mentioned reference 

ship speeds were selected for the analysis as follows: 12.0, 13.5, and 14.5 knots. 

2.2.2 Ship Speed Loss 

The two computational methods used for computing ship speed loss by both NTPro 5000 and NavCad 

differ in their handling of ship dynamics. NTPro 5000 applies a time-domain simulation approach based on 

6-DOF motion equations solved in the body-fixed reference frame [56]. The system integrates the motion 

equations in real-time, accounting for surge, sway, heave, roll, pitch, and yaw movements. This approach 
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captures the complex interactions between hull hydrodynamics, propulsion forces, and environmental 

disturbances. The hydrodynamic forces on the hull are decomposed into positional and damping components, 

where the positional forces arise from the vessel's drift angle relative to water flow, while damping forces 

result from the vessel's angular velocities [56]. The simulator determines these forces through experimentally 

derived coefficients obtained from tank tests, which are stored in tabulated form across the full range of drift 

angles and yaw rates. When experimental data is unavailable, the system uses trigonometric series expansions 

and interpolation formulas calibrated against vessel dimensions and hull form characteristics. 

Environmental loads in NaviTrainer are computed through distinct models for wind and wave 

disturbances that account for both steady and dynamic effects. The wave-induced forces consist of first-order 

oscillatory components that drive the vessel's seakeeping motions and second-order mean drift forces that 

contribute to steady speed loss and course deviation. These forces are calculated using generalised reduction 

coefficients that depend on the vessel's draft through the Smith effect, the wavelength to ship length ratio 

governing force distribution along the hull, and the wave encounter angle. Wind forces are determined from 

the apparent wind velocity, which combines the true wind with the vessel's motion, acting on the projected 

lateral and transverse areas above the waterline. The aerodynamic coefficients vary with apparent wind angle 

and are derived from wind tunnel tests or empirical formulations based on vessel superstructure configuration. 

The simulator continuously adjusts propeller thrust and rudder angle through the autopilot system to maintain 

the commanded speed and heading against these environmental loads, with the resulting speed loss emerging 

naturally from the force balance [56]. 

NavCad implements a methodical resistance decomposition approach where the total resistance 

experienced by the vessel is separated into distinct physical components that can be individually calculated 

and summed [55]. The software's architecture enables the selection of appropriate calculation methods for 

each resistance component based on vessel type, operational profile, and available data. For bare-hull 

resistance, NavCad primarily employs the ITTC-1978 correlation line methodology [55], which separates 

viscous and wave-making resistance components while accounting for Reynolds number effects through form 

factors. The appendage resistance calculations consider the drag contributions from rudders, bilge keels, shaft 

brackets, and other hull protrusions, with correction factors applied based on their alignment with the flow 

field. This component-based methodology enables systematic evaluation of design modifications and their 

impact on overall resistance. 

The environmental resistance components in NavCad are managed through specialised modules that can 

implement various prediction methods suited to different vessel types and operating conditions. For wind 

resistance, the software offers multiple calculation approaches ranging from simplified parametric methods 

suitable for preliminary design to detailed calculations based on vessel-specific wind areas and drag 

coefficients [55]. Wave-added resistance predictions can utilise regression-based methods derived from 

systematic model test series, strip theory approaches for slender vessels, or empirical corrections based on sea 

state and vessel response characteristics. When methods that directly predict speed loss are selected, such as 

the Aertssen method for weather routing applications, NavCad performs an inverse calculation using the 

vessel's calm-water resistance curve to convert the speed loss prediction into an equivalent added resistance 

[55]. This conversion maintains consistency within the software's resistance-based framework while 

accommodating diverse prediction methodologies developed for specific vessel types and operational 

scenarios. 

2.3 Attainable Ship Speed 

The attainable ship speed data was collected through an extensive number of simulations conducted on 

the NTPro 5000 navigation simulator for: 

a. 13 sea states according to various significant wave heights, S {0,1,2,...,12}  (m)H  

b. 13 encounter wave angles, waves {0,15,30,...,180}  ( )    

c. 2 spectra, S {'Pierson-Moskowitz', 'JONSWAP'} 
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d. 2 loading conditions, {'Full load ', ' '}  BallastL  

e. 3 intended referent ship speeds, 
ref. {12,13.5,14.5}  (kn)V  

which gives a total of 2028 simulations. 

Parallel simulations were executed in HydroComp's NavCad through its scripting Application 

Programming Interface (API), which enabled automated batch processing of the identical 1014 simulation 

scenarios because of no possibilities for explicit wave spectra settings [55]. The NavCad scripting 

functionality permitted systematic variation of environmental parameters and vessel conditions while 

maintaining exact correspondence with the NTPro 5000 simulation matrix, thereby facilitating direct 

comparison between the time-domain and quasi-static computational approaches.  

All data processing and analysis were performed using MATLAB R2024b and Python 3.13.5, enabling 

the development of three distinct lookup table functions for attainable speed computation. This comprehensive 

wind speed range ensures the framework captures ship performance across all operationally relevant 

conditions, from port departures in calm weather to severe storm avoidance scenarios typical of North Atlantic 

winter routes. 

While the simulations were initially conducted for wave encounter angles from 0° to 180°, the results 

were extended to the full 0-360° range by applying symmetrical principles, as ship responses to port and 

starboard wave encounters are mirror images. For practical navigation and route optimization applications, 

ship headings were assigned at 15° intervals throughout the complete 0-360° compass range, enabling the 

calculation of relative encounter angles for any combination of ship course and wave direction. For operational 

implementation, the attainable ship speed values are obtained through bilinear interpolation between the 

discrete simulation points in the lookup tables. This ensures smooth transitions for intermediate values of wave 

height and encounter angle rather than using rounded or nearest-neighbour approximations.  

The encounter wave angle waves [0,2   , as depicted in Figure 2, can be expressed in terms of the ship 

heading [0,2    and meteorological wave direction waves [0,2    as: 

waves waves

waves

waves waves

, for 

2 , for .

   


    

− 
= 

+ − 
 (1) 

 

Fig. 2  The definition of the encounter wave angle relative to the ship's heading 

If one neglects the wind and ocean current loads, the attainable ship speed att.V  can be expressed as a 

function of intended referent ship speed ref.V  and current sea conditions represented by the significant wave 

height S ,H  wave period PT  and encounter wave angle waves ,  which yields: 
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att. ref. S P waves( , , , ).=V f V H T  (2) 

The sea conditions can be actual, for actual values of 
(act.)

S ,H  
(act.)

PT  and 
(act.)

waves , and forecasted, for 

forecast values of 
(for.)

S ,H  
(for.)

PT  and 
(for.)

waves.  The attainable ship speed att.,actualV  in actual conditions is: 

(act.) (act.) (act.)

att.,actual ref. S P waves( , , , )=V f V H T  (3) 

i.e. the predicted attainable ship speed 
att.,predictedV  in forecasted conditions is: 

(for.) (for.) (for.)

att.,predicted ref. S P waves( , , , ).=V f V H T  (4) 

As previously pointed out, the attainable ship speed was calculated by means of the navigational 

simulator Wärtsilä NTPRO 5000, both for the Pierson–Moskowitz spectrum (PM)

att.( )V  and the JONSWAP 

spectrum (JS)

att.( )V , and as well as with the HydroComp NavCad software (NC)

att.( ).V   

Several assumptions that define the operational limitations of the developed models need to be 

acknowledged. While the theoretical framework presented in Equations (2)-(4), as well as those from Section 

2.6, includes peak wave period (Tp) as an independent variable affecting attainable ship speed, the practical 

implementation in this study requires clarification. In the NTPRO 5000 simulations, when using the Pierson-

Moskowitz spectrum, the peak wave period is not an independently controllable parameter but rather a derived 

quantity determined by the spectrum formulation.  

Similarly, in the JONSWAP spectrum implementation, the peak period remains coupled to the 

significant wave height through the wind-wave relationship. This coupling reflects the physical reality that in 

wind-generated seas, wave height and period are not independent but evolve together according to the fetch, 

duration, and wind speed [56]. Therefore, Tables 1-4 present attainable speeds as functions of the encounter 

angle, with Tp implicitly included through the spectral relationships rather than as an independent variable. 

This simplification is justified for the North Atlantic routes studied here, where swell and wind seas typically 

align, and the Pierson-Moskowitz assumption of fully developed seas is reasonable.  

For the NavCad simulations, the software's internal wave resistance algorithms similarly couple wave 

period and height based on standard wave statistics for the specified sea states, consistent with the approach 

used in classification society guidelines [55]. 

Throughout all simulations, the ship's heading was initially set to 000° while environmental load angles 

were varied across all encounter angles. An autopilot system was utilised for course-tracking under varying 

environmental conditions [56]. For each environmental condition, simulations were started at initial speeds, 

with the autopilot system adjusting the ship speed to maintain course.  

Another limitation within the lookup tables manifests as NaN (Not a Number) values, representing sea 

states where the autopilot system could no longer maintain the demanded course. When environmental loads 

exceeded the ship's directional control capability, characterised by excessive yaw rates and vertical motions 

including severe roll, pitch, and heave amplitudes, or when the autopilot was effectively "thrown off" course, 

the corresponding speed values were designated as NaN. This approach effectively sets the operational 

boundary beyond which navigation becomes dangerous or impossible. In the ship route optimization and 

decision support context, these NaN values serve as indicators for areas that require avoidance or course and 

speed alteration decisions. This essentially translates into navigational risk zones where the vessel cannot 

safely maintain its intended heading due to the severity of environmental conditions and associated ship 

motions.  

However, that does not mean that the vessel could not sail even under such sea states with a substantial 

voluntary reduction in speed, but this scenario is penalised by route optimisation itself. The overview of 

simulation results, for several selected cases, is given in Tables 1, 2, 3 and 4. 
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Table 1 Simulated attainable ship speeds obtained with NTPRO 5000 for the Pierson–Moskowitz spectrum, full load conditions, 

and intended ship speed of 14.5 kn   

 Encounter wave angles 
waves ( )   

Hs (m) 0 15 30 45 60 75 90 105 120 135 150 165 180 

0 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 

1 14.11 14.09 14.06 14.04 14.10 14.20 14.27 14.31 14.33 14.35 14.37 14.37 14.38 

2 13.52 13.53 13.47 13.37 13.32 13.51 13.70 13.85 13.89 13.98 14.06 14.09 14.11 

3 12.55 12.50 12.30 12.05 11.97 12.33 12.80 13.04 13.09 13.40 13.59 13.67 13.68 

4 10.93 10.96 10.82 10.90 11.11 11.22 11.52 11.69 11.95 12.56 13.09 13.31 13.41 

5 10.15 10.30 10.48 10.88 10.82 11.14 10.83 9.21 11.63 12.51 13.00 13.28 13.40 

6 9.47 9.60 9.81 9.97 10.27 10.97 10.35    12.81 13.17 13.37 

7 9.19 9.33 9.55 9.74 10.25 10.98     12.76 13.15 13.36 

8 8.64 8.90 9.17 9.35 8.80 8.44     12.11 12.94 13.20 

9 7.96 8.13 8.21 7.71        12.50 12.91 

10 7.52 7.51 7.69 7.41          

11 7.23 7.09 6.99           

12 6.90 6.60 6.36           

Table 2 Simulated attainable ship speeds obtained with NavCad, full load conditions, and intended ship speed of 14.5 kn   

 Encounter wave angles 
waves ( )   

Hs (m) 0 15 30 45 60 75 90 105 120 135 150 165 180 

0 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 

1 13.84 13.84 13.86 13.88 13.91 13.95 13.99 14.04 14.08 14.11 14.14 14.15 14.16 

2 12.87 12.87 12.89 12.93 12.97 13.03 13.09 13.15 13.22 13.27 13.32 13.35 13.36 

3 11.93 11.94 11.97 12.02 12.09 12.17 12.23 12.31 12.38 12.45 12.50 12.53 12.55 

4 11.26 11.27 11.28 11.31 11.35 11.41 11.48 11.56 11.65 11.73 11.79 11.81 11.82 

5 10.67 10.68 10.70 10.74 10.79 10.80 10.82 10.87 10.93 11.00 11.06 11.10 11.11 

6 10.07 10.08 10.09 10.11 10.15 10.20 10.26    10.40 10.43 10.45 

7 9.43 9.44 9.46 9.50 9.56 9.64     10.10 10.16 10.17 

8 9.03 9.04 9.06 9.09 9.13 9.19     9.60 9.65 9.67 

9 8.38 8.41 8.52 8.68        9.20 9.22 

10 7.42 7.46 7.58 7.77          

11 6.46 6.51 6.64           

12 5.50 5.55 5.70           

Table 3 Simulated attainable ship speeds obtained with NTPRO 5000 for the Pierson–Moskowitz spectrum, full load conditions, 

and intended ship speed of 12.0 kn   

 Encounter wave angles 
waves ( )   

Hs (m) 0 15 30 45 60 75 90 105 120 135 150 165 180 

0 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 

1 11.61 11.59 11.53 11.53 11.59 11.71 11.78 11.83 11.88 11.88 11.90 11.92 11.92 

2 10.97 10.98 10.91 10.79 10.73 10.84 11.11 11.28 11.32 11.47 11.59 11.64 11.65 

3 9.82 9.76 9.61 9.55 9.38 9.50 9.85 10.11 10.16 10.81 11.09 11.22 11.26 

4 8.48 8.54 8.60 8.61 8.81 8.66 8.91   9.63 10.48 10.97 11.17 

5 8.17 8.25 8.35 8.54 8.41 8.59 7.32   9.45 10.38 10.89 11.07 

6 7.68 7.75 7.77 7.86 8.00 8.34     10.17 10.84 11.04 

7 7.40 7.45 7.49 7.52 7.66 7.63     9.99 10.83 11.01 

8 6.79 6.97 7.15 7.32 6.56 6.12      10.60 10.87 

9 6.19 6.28 6.30 6.04         10.62 

10 5.82 5.81 5.98 5.83          

11 5.56 5.43 5.20           

12 5.30 5.05            
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Table 4 Simulated attainable ship speeds obtained with NavCad, full load conditions, and intended ship speed of 12.0 kn   

 Encounter wave angles 
waves ( )   

Hs (m) 0 15 30 45 60 75 90 105 120 135 150 165 180 

0 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 

1 11.61 11.61 11.62 11.64 11.66 11.68 11.70 11.72 11.75 11.76 11.78 11.79 11.79 

2 11.22 11.23 11.24 11.27 11.31 11.35 11.40 11.45 11.49 11.53 11.56 11.57 11.58 

3 10.83 10.84 10.87 10.91 10.96 11.03 11.10 11.17 11.24 11.29 11.33 11.36 11.37 

4 9.90 9.92 9.98 10.08 10.20 10.34 10.50  10.80 10.92 11.02 11.08 11.10 

5 9.06 9.09 9.17 9.31 9.48 9.68 9.90   10.49 10.63 10.71 10.74 

6 8.22 8.26 8.36 8.54 8.76 9.02    10.06 10.24 10.34 10.38 

7 7.80 7.82 7.89 8.01 8.15 8.32     9.11 9.18 9.20 

8 6.84 6.87 6.96 7.09        8.53 8.56 

9 5.88 5.91 6.02 6.18         7.92 

10 4.92 4.96 5.08 5.27          

11 3.96 4.01 4.14           

12 3.00             

2.4 Weather Forecast Data Processing 

Weather forecast uncertainties arise from multiple intersecting sources throughout the entire prediction 

chain. Initial condition uncertainties stem from sparse oceanic observations, with satellite altimeters 

measuring wave heights with ±(0.25-0.5) m errors and covering only narrow tracks separated by 200-500 km, 

while in-situ buoys are distributed hundreds of kilometres apart, creating substantial data voids over open 

oceans. Numerical weather prediction models like NOAA's Global Forecasting System (GFS), operating at 

0.25° resolution (~27 km), cannot resolve sub-grid phenomena and rely on imperfect parameterisations for 

processes like wave generation, dissipation, and air-sea interactions, with these physical approximations 

contributing 30-40 % of total forecast error [59]. Data assimilation compounds these uncertainties through 

observation operator errors, simplified background error covariance assumptions, and quality control 

procedures that reject 15-30 % of observations. As forecasts evolve, chaotic error growth doubles synoptic-

scale errors every 2-3 days, imposing a theoretical predictability limit of approximately two weeks. Post-

processing adds further uncertainty through spatial and temporal interpolation. Converting from 6-hourly 

model output to a continuous time series can introduce 10-20 % error for rapidly changing parameters. For 

wave parameters, the WaveWatch III (WW3) global wave analysis assimilates significant wave height (Hs) 

measurements from satellite altimeters, including Jason-3 and Sentinel-3A/B, complemented by in-situ 

observations from NOAA's NDBC buoy network, providing both global coverage and ground-truth validation 

at approximately 0.5° resolution with 6-hourly updates [60]. Wave direction (βwaves) information is derived 

from directional wave buoys and Sentinel-1 SAR wave mode data when available. Wind field verification 

relies on the GFS 0.25° analysis, which incorporates ASCAT scatterometer observations from MetOp-B and 

MetOp-C satellites for ocean surface wind vectors, AMSR2 microwave radiometer-derived wind speeds, and 

conventional ship and buoy reports [61,62].  

Satellite observations provide data as well, though each measurement system has inherent limitations. 

Radar altimeters measure significant wave height with approximately 10 % accuracy (±0.5 m for moderate 

seas) by analysing radar pulse broadening, but only sample along narrow ground tracks with multi-day revisit 

periods [62,63]. Scatterometers provide wide-swath wind coverage, enabling near-daily global coverage, 

though rain contamination and coastal proximity compromise data quality. Synthetic Aperture Radar (SAR) 

captures directional wave spectra but cannot resolve waves shorter than 150-200 m due to velocity bunching 

effects. These diverse observations ultimately undergo data assimilation procedures including quality control 

screening, bias correction, spatial thinning to ~100 km spacing, and optimal weighting with model 

backgrounds. This produces analysis fields that are not pure observations but rather model-observation blends. 

Essentially, this observational uncertainty of approximately 0.2-0.3 m in wave height analyses sets a 

fundamental limit on achievable forecast accuracy. When modern wave models achieve similar RMSE values 

at short lead times, they approach the theoretical limit of predictability given current observational constraints. 



M. Marjanović et al. Brodogradnja Volume 77 Number 1 (2026) 77108 

 

12 

 

The spatiotemporal matching methodology ensures appropriate forecast-observation comparisons 

through careful interpolation and alignment procedures. Spatial matching uses bilinear interpolation for scalar 

variables (Hs, Tp, Vwind) while utilising vector component interpolation for directional quantities to maintain 

circular consistency. Near coastal boundaries, the methodology switches to nearest-neighbour interpolation to 

prevent land contamination. Temporal alignment restricts forecast-observation pairs to those within a ±3-hour 

window, balancing data availability with temporal consistency. Multi-level quality control procedures are 

implemented from initial sensor-level checks through variational quality control (VarQC) within the 

assimilation systems, ensuring robust verification statistics while maximising data utilisation [59,62].  

The weather forecast dataset that was used in this study was obtained for a period extending from early 

January through the end of April 2025. This temporal coverage was purposely selected in order to capture the 

diverse meteorological conditions which are characteristic of the North Atlantic winter and early spring 

seasons, when weather varies significantly. The data were sourced from the NOAA GFS, which can be 

publicly accessed on their servers. The acquisition process involved systematic automated retrieval of forecast 

outputs across multiple initialisation cycles, with new forecasts issued every 6 hours (00, 06, 12, 18 UTC) and 

extending to 168-hour lead times, ensuring comprehensive temporal coverage and enabling uncertainty 

quantification across the full forecast horizon. 

The spatial domain was focused on the North Atlantic Ocean area, with forecast data extracted at 2,619 

discrete geographical points of the rectangular grid bounded by 20°N to 65°N latitude and 70°W to 10°W 

longitude. Grid points located over land masses were automatically excluded from the analysis, ensuring that 

only oceanic data points relevant to ship routing were retained. These points were strategically positioned at 

50 nautical mile intervals, as shown in Figure 3, to capture mesoscale weather patterns, while maintaining 

practical data processing requirements, which created a spatial resolution that balances computational 

efficiency with coverage that's adequate for ship routing applications. 

 

Fig. 3  The rectangular grid of points 50 NM apart in the North Atlantic 

The analysis of weather variables was divided into four distinct forecast lead time windows, each serving 

specific operational planning requirements. Short-range forecasts (0-24 hours) were considered for capturing 

immediate operational decisions with new forecast outputs at 0, 6, 12, 18, and 24-hour intervals. Medium-

range forecasts (24-72 hours) were analysed for tactical voyage planning with data points at 30, 36, 42, 48, 

54, 60, 66, and 72 hours. Extended-range forecasts (72-120 hours) can enable strategic route optimization with 

predictions at 78, 84, 90, 96, 102, 108, 114, and 120 hours. Finally, long-range forecasts (120-168 hours) 

served to provide advance planning capabilities with outputs at 126, 132, 138, 144, 150, 156, 162, and 168 

hours. This temporal segmentation enables an accurate assessment of forecast skill degradation across 

different planning horizons, which is crucial for understanding the propagation of uncertainty in ship speed 

predictions. 

The dataset included both forecasted and actual observed values for six primary meteorological variables 

important for ship performance estimation: significant wave height (Hs) measured in meters, representing the 

average height of the highest one-third of waves; peak wave period (Tp) in seconds, indicating the dominant 
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wave period in the spectrum; wind speed (Vwind) recorded in meters per second at the 10-meter reference 

height; wave direction (βwaves) specified in degrees, indicating the direction from which waves propagate 

related to the North axis; wind direction (βwind) measured in degrees, denoting the direction from which wind 

originates related to the North axis; and encounter angle (αwaves) calculated in degrees, representing the relative 

angle between vessel heading and wave direction.  

The computational framework for data processing utilised Python libraries optimized for handling large 

meteorological datasets. The processing pipeline included: (i) data decoding using libraries such as cfgrib and 

eccodes for GRIB2 format interpretation; (ii) spatial-temporal organisation for efficient manipulation and 

storage of multi-dimensional arrays; (iii) statistical analysis, distribution fitting and uncertainty quantification 

(iv) calculation of specialised metrics including CRPS; and (v) structured data organisation and batch 

processing workflows. The data architecture was constructed to handle the computational demands of 

analysing multiple forecast cycles while maintaining data integrity and enabling easier workflows. Special 

attention was given to the unique dataset structure, where each meteorological state was replicated for 25 

different ship headings (0-360° at 15° intervals) to comprehensively assess encounter angle effects on ship 

performance.  

2.5 Uncertainty Metrics 

For the uncertainty analysis of non-directional meteorological variables across multiple forecast 

horizons (0-24h, 24-72h, 72-120h, and 120-168h) and associated attainable ship speeds, the following metrics 

have been used, where n denotes the number of observations, and Fi and Oi are i-th forecasted and observed 

values, respectively.  

The Root Mean Square Error (RMSE), as one of the most fundamental accuracy measures in forecast 

verification [64], can be defined as: 

2

1

1
RMSE ( )

n

i i

i

F O
n =

= − . (5) 

A perfect forecast yields RMSE = 0 [64]. The squaring operation, however, makes RMSE particularly 

sensitive to outlier errors, which aids in identifying systematic biases in ship speed predictions that could 

impact route planning.  

The Mean Absolute Error (MAE) provides a linear measure of average forecast error magnitude [64], 

and it can be noted as: 

1

1
MAE

n

i i

i

F O
n =

= − . (6) 

 Unlike RMSE, MAE weights all errors equally, making it less sensitive to outliers [64]. The relationship 

between RMSE and MAE provides insights into error distribution characteristics. When RMSE values exceed 

MAE, it indicates the presence of large outlier errors, as RMSE "penalises large errors more", whereas MAE 

weights all errors linearly [64]. In practice, both metrics are often advised for comprehensive model 

comparisons [64]. 

Bias quantifies systematic forecast tendencies, revealing whether a model consistently over- or under-

predicts, and it can be noted as [65]: 

1

1
Bias ( )

n

i i

i

F O
n =

= − . (7) 

Positive bias indicates systematic over-prediction, while negative values suggest under-prediction [54]. 

Unlike RMSE and MAE, bias can approach zero values even with large errors if positive and negative 

deviations cancel out. For that reason, bias should always be interpreted alongside magnitude-based metrics 

to distinguish between compensating errors and genuine accuracy [65].  
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 The Index of Agreement, also known as Willmott's Index [66], provides a standardised measure (range 

0 to 1) of how well a model's predictions match observations, which is relative to the variability in the 

observations [66]. It is defined as: 

2

1

2

1

( )
IoA 1

(| | | |)

n

i ii

n

i ii

F O

F O O O

=

=

−
= −

− + −




 (8) 

where O  denotes the mean value of all observations. 

A value of 1 indicates perfect agreement, while 0 suggests the model performs no better than using the 

observed mean as a constant predictor [66]. This normalisation makes IoA particularly useful for comparing 

model performance across variables with different scales and variabilities. 

Fractions Skill Score (FSS) is a spatial verification metric designed for high-resolution forecasts of 

categorical events (e.g., rain exceeding some threshold) [67]. It usually ranges from 0, i.e. no skill, to 1, which 

represents a perfect forecast. Instead of comparing forecast and observed values point-by-point, FSS compares 

the fractional coverage of an event within neighbourhoods around each point [67]. The forecast and 

observation fields are first converted into binary maps (whether an event or no-event above a threshold is 

present), then a moving window (neighbourhood) is used to calculate the fraction of grid points with the event 

in both fields. FSS is hence defined as [67]: 

2

1

2 2
,

1

[ ( ) ( )]MSE
FSS 1 1

MSE [ ( ) ( )]

=

=

−
= − = −

+





N

f n

N

f ref
n

O n F n

O n F n
 (9) 

where MSEf represents the MSE between the forecast fraction F(n) of forecast grid points exceeding threshold 

with neighbourhood n = 1,…,N, and observed fractions O(n) of observed grid points exceeding threshold with 

neighbourhood n = 1,…,N, while MSEf,ref is the reference MSE representing a forecast with no skill, i.e. the 

worst case scenario, and N denotes the total number of neighbourhoods. One application of FSS is for 

determining the spatial scale at which a forecast has useful skill; for example, a precipitation forecast might 

achieve FSS > 0.5 only when evaluated over a 50-km neighbourhood, suggesting reliability at that scale even 

if exact placement is off [67]. In the case of comparing multiple models, the model with a higher FSS for a 

given scale provides better spatial accuracy [67]. 

Continuous Ranked Probability Score (CRPS) extends forecast evaluation to probabilistic predictions, 

assessing the accuracy of a forecast distribution by comparing it to the observed outcome [68]: 

1
CRPS (2 ( ) 1) 2 ( )z z z 



 
=  − + − 

   (10) 

where f =  is the assumed standard deviation,   is the uncertainty factor (10 % by default), f is the 

forecast value, i.e. the distribution mean  , ( ) /z O  = −  is the standardised difference, O is the actual 

observed value, ( )z  is the standard normal cumulative distribution function (CDF), and: 

2 /21
( )

2

zz e


−=  (11) 

is the standard normal probability density function (PDF). 

CRPS generalises the Mean Squared Error to probability distributions [68]. A CRPS value of 0 is 

considered ideal and is achieved if the forecast assigns all probability to the correct outcome [68,69]. Notably, 

for deterministic forecasts, CRPS reduces exactly to MAE, making it a proper scoring rule that accounts for 

both accuracy and appropriate uncertainty quantification. CRPS is commonly used by atmospheric and climate 
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centres, such as ECMWF, to evaluate ensemble weather forecasts for variables like temperature, precipitation, 

and wave height. 

Uncertainty Growth Rate (UGR) quantifies how the forecast uncertainty evolves with increasing lead 

time, which can provide insights into predictability limits [70]. The value characterises the exponential growth 

of forecast error or ensemble spread [5]. One can differ linear UGR: 

lin.

d(RMSE( ))
UGR ( )

d

h
h

h
= , (12) 

where ( ) 2

1

1
RMSE( ) [ ]

hN h

i ii
h

h F O
N =

= −  is the RMSE at lead time h, hN  is the number of forecast 

observation pairs at lead time h, 
( )h

iF  is the i-th forecast value at lead time h, iO  is the i-th observed value and 

the exponential UGR: 

exp.

d ln(RMSE( ))
UGR ( )

d

h
h

h
=  (13) 

where 0RMSE( ) hh e=  is the exponential model for the RMSE at the lead time h, 0  is the initial uncertainty 

of RMSE at h = 0, and   is the exponential growth rate parameter. Essentially, UGR quantifies how forecast 

uncertainty increases with lead time through linear (absolute units/hour) or exponential (relative %/hour) 

growth rates [70]. 

For the uncertainty of directional variables like meteorological wave direction waves  and encounter 

wave angles waves ,  the Circular Mean Absolute Error (CMAE) was used. CMAE is defined as: 

1

180 1
CMAE atan2(sin ,cos )

n

i i

in =

=     (14) 

where ,i i iF O = −  expressed in radians. The metric is used because of the 360° discontinuity; a forecast of 

1° and an observation of 359° differ by only 2°, not 358° [65]. The transformation ensures that all angular 

differences fall within the range [-180°, 180°], which makes capturing the minimal angular distance between 

forecast and observation possible. 

2.6 Voyage Planning and ETA estimation 

Let the route be defined by a sequence of 1n +  waypoints: 
0 1{ , ,..., }nW W W W=  where each waypoint is 

defined as: 

{ , , }i i i iW d =  (15) 

where [ 90 ,90 ]i  −    is latitude, [ 180 ,180 ]i  −    is longitude, and id  is the distance to the next waypoint 

in nautical miles, 1,..., .i n=    

The cumulative distance to the waypoint i  is defined as: 

1

0
,

i

i jj
D d

−

=
=  (16) 

with 0 0,D =  while the total route distance is: 

1

total 0
.

n

n jj
D D d

−

=
= =  (17) 
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For a given distance 
total[0, ]d D  along the route, the thk −  segment is identified such that 

1+ k kD d D . The position ( ) ( ( ), ( ))P d d d =  at distance d  can be calculated using linear interpolation: 

1

[0,1]k

k k

d D
f

D D+

−
= 

−
 (18) 

where 
1( ) ( )   += + −k k kd f  and 

1( ) ( )   += + −k k kd f . 

For the purpose of weather forecasts, the North Atlantic region has been divided into a rectangular 

discrete grid {( , , ) : , },g g

i i jG t i I j J =    where all neighbouring points are 50 nm apart, as shown in  

Figure 3. For each grid point, we have weather parameters: 

S, p, wave, wave, wind, wind,( , , , , , ).  =ij ij ij ij ij ij ijW H T V  (19) 

Thus, the weather at any point ( , , )ijW W t =  is based on the nearest point: 

,( *, *) argmini j iji j d=  (20) 

where 2 2( ) ( )   = − + −g g

ij i id . 

Temporal selection was based on indices for which criteria 
maxjt t t−   , 

max 3 ht = , is valid. The 

forecast data was handled with a lead time  , i.e. as 
issuet t = − , where issuet  is the forecast issue date and 

time and   is the forecast hour. 

Uncertainty metrics are classified according to: 

a. Wave height class:  S [0,2.5], [2.5,4], [4,6],[6,9]  (m)H    

b. Wave encounter angle class:  wave Head, Bow-Quartering, Beam, Stern-Quartering, Following     

c. Lead time class:  [0,24], [24,72], [72,120], [120,168]  (h).   

Error metric lookup function: 

 S wind wave( , , , , ) {RMSE, MAE, Bias, UGR, CRPS, IoA, FSS}   =pH T V  (21) 

retrieve required uncertainty metrics for a given sea state condition expressed in terms of S,H  ,pT  wind ,V  
wave  

and .  

For this practical implementation example, the attainable ship speed is calculated based on (2), i.e. as: 

(PM)

att. PM ref. S wave( , , , ).= pV f V H T  (22) 

Uncertainty of (PM)

att.V  is estimated based on associated uncertainty metrics S wave( , , ) H , while the actual 

ship speed follows a normal distribution around the predicted value, i.e.: 

( )(PM) (PM)
att. att.

(PM) 2

att.,actual , 
V V

V   (23) 

where (PM)
att.

(PM)

att.,predicted S waveBias( , , )  = +
V

V H  and (PM)
att.

S waveRMSE( , , ).  =
V

H   

The term (23) can be rewritten in a more explicit way as: 

(PM) (PM)

att.,actual att.,predicted S waveBias( , , )  = + +V V H
 (24) 
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where 
2

S wave(0,RMSE ( , , )).   H  

Ship speed confidence intervals (CI) are defined as: 

(PM) (PM) (PM)

att. att.,predicted att.,predicted[ Bias RMSE, Bias RMSE] + −  + + V V k V k  (25) 

where k  is a coverage factor, e.g., 1.96=k  for 95 % confidence. 

Given the remaining distance 
rem.d  (nm) and uncertain attainable ship speed (PM)

att.V  (kn), estimated time 

of arrival ETA (h) can be written as: 

rem.
current (PM)

att.

ETA ,= +
d

t
V

 (26) 

where currentt  is the current time.  

If one, based on (26), defines a function: 

(PM) rem.
att. current (PM)

att.

( ) ,= +
d

g V t
V

 (27) 

then: 

(PM) rem.
att. (PM) 2

att.

( ) ,
( )

 = −
d

g V
V

  (PM) rem.
att. (PM) 3

att.

2
( )

( )
 =

d
g V

V
. (28) 

A Taylor expansion of the function (27) about the point (PM)
att.

(PM)

att. =
V

V  gives: 

(PM) (PM) (PM) (PM) (PM)
att. att. att. att. att.

(PM) (PM) (PM) 2

att. att. att.

1
( ) ( ) ( )( ) ( )( ) ...

2
     = + − + − +

V V V V V
g V g g V g V . (29) 

By dropping the higher-order terms, the approximation of (29) in terms of the first-order Taylor 

expansion yields: 

(PM) (PM) (PM)
att. att. att.

(PM) (PM)

att. att.( ) ( ) ( )( )   + −
V V V

g V g g V . (30) 

If one takes [ ]  of both sides of (30), it can be written: 

(PM) (PM) (PM)
att. att. att.

(PM)
att. (PM)

att.

(PM) (PM)

att. att.

constant [ ] 0

[ ( )] ( ) ( ) [ ]



  

− =

 + −






V

V V V

V

g V g g V  (31) 

which finally yields: 

( PM )
att.

( PM )
att.

(PM) rem.
att. current[ ( )] [ETA] ( ) ,


=  = +

V

V

d
g V g t  i.e. (32) 

( PM )
att.

rem.
ETA current:


= +

V

d
t . (33) 

From the variance point of view, if one takes Var[ ]  of both sides of (30), it yields: 

(PM) (PM) (PM)
att. att. att.

(PM) (PM)

att. att.Var[ ( )] Var[ ( )] Var[ ( )( )]   + −
V V V

g V g g V . (34) 

Following (23), (26), (27), (28), (34) and simple variance rules such as Var ( ) 0,=k  
2Var( ) Var( ) = k X k X  and Var( ) Var ( ),− =X k X  where k is a constant and X is a random variable, one 

can write as follows: 
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(PM)
att.

2 (PM)

att.Var(ETA) ( ( )) Var( )
V

g V  (35) 

(PM)
att.

(PM) (PM)
att. att.

2 2

2 2 2rem. rem.
ETA S wave2 2

: Var (ETA) RMSE ( , , )   
 

   
   =  =
   
   

V

V V

d d
H . (36) 

Finally, the ETA distribution can be written based on (33) and (36) as: 

2

ETA ETAETA ( , )   . (37) 

For a voyage with multiple segments, each with different conditions S wave( , , ) H , one can also define 

the segment time uncertainty. Namely, for any segment i  with distance id  and conditions S, wave,( , ),i iH  time 

it  can be expressed as: 

(PM)

att.,

= i
i

i

d
t

V
 (38) 

and therefore 2
it
 can be written as: 

( PM )
att.,

2

2 2

S, wave,2
RMSE ( , , ).  



 
 = 
 
 

i

i

i
t i i i

V

d
H   (39) 

Finally, the total ETA uncertainty, under the independence assumption, yields as: 

2 2

ETA,total . = iti
 (40) 

As the voyage progresses and forecast lead time changes, one can write: 

baseRMSE( ) RMSE ( ) = g  (41) 

where ( )g  is an increasing function capturing forecast degradation and baseRMSE  is the baseline RMSE at 

the initial or shortest forecast lead time.    

Finally, ETA point estimate with uncertainty, which is one specific point in time, can be expressed as: 

ETA ETAETA , =  k  (42) 

where ETA  is the expected (mean) arrival time, k  is the coverage factor and ETA  is the standard deviation 

of ETA in hours. For instance, if 1.96,=k  which corresponds to 95 % predictive intervals, there's a 95 % 

probability the actual arrival will fall within bounds lower upperETA [ETA , ETA ],  where 
lowerETA  presents 

the earliest likely arrival if conditions are favourable, and upperETA  presents the latest likely arrival if 

conditions are unfavourable. In this context, the coverage probability statement can be written as: 

actual lower upper(ETA [ETA , ETA ]) 0.95. =  (43) 

From all the above, one can finally conclude that the ship will arrive at the destination port by the target 

date/time targett  with probability   that can be expressed as: 

target ETA

target

ETA

{ETA }




− 
 = 

 


t
t  (44) 

where ( )   is the cumulative distribution function (CDF) of the standard normal distribution. 
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3. Results and Discussion 

3.1 The Uncertainty Analysis 

The uncertainty analysis uses spatial pooling instead of temporal tracking of individual grid points in 

the North Atlantic area. Each grid point is classified into sea state bins {1,2,3,4}b , which corresponds to 

the observed significant wave height ranges from the set 
S {[0, 2.5), [2.5, 4), [4, 6), [6, 9)}H  (m), 

respectively. A forecast-analysis pair 
(for.) (act.)

S S( , )H H  consists of a forecasted variable value 
(for.)

SH  and its 

corresponding observed value 
(act.)

SH  at the same location and time.  

The methodology works as follows. Sea states are divided into bins indexed by ,b  where each bin b  has 

boundaries 
(act.) (act.)

S,min, S,min( )=b bH H  and (act.) (act.)

S,max, S,max( ).=b bH H  At each time step, a grid point is assigned to a 

bin b  if its observed value (act.)

S,bH  satisfies 
(act.) (act.) (act.)

S,min, S, S,max, . b b bH H H  The forecasted value 
(for.)

SH  at that same 

point is then paired with this observed value 
(act.)

SH  to compute uncertainty metrics for a bin .b  Over the 

observed period, which in our case was four months, each bin accumulates a number of forecast-observation 

variable pairs. This approach assumes statistical stationarity of forecast errors within each sea state bin. The 

errors are treated as independent of geographic location, temporal evolution patterns, and synoptic weather 

conditions. 

This grouping method does not preserve temporal correlations when grid points transition between 

different sea state bins. Each grid point location contributes independently to different bins as the weather 

conditions change. However, this spatial pooling approach is well-suited for ship routing applications. The 

ship encounters sea states spatially along her routes, not at fixed points. Thus, route optimization requires error 

statistics for each sea state, independent of specific locations. The large sample sizes collected for each bin in 

this study ensure robust statistics while maintaining computational efficiency.   

3.1.1 Non-Directional Meteorological Variable Uncertainty 

The analysis of the uncertainty of non-directional meteorological variables reveals distinct patterns of 

forecast degradation across the three primary variables: significant wave height (Hs), wave period (Tp), and 

wind speed (Vwind). While the complete analysis encompasses different sea states (Hs = 0-12 m), Figure 4 

presents representative uncertainty metrics for sea state 5 (Hs = 2.5-4 m) as an illustrative example of the 

observed patterns. 

For significant wave height across all analysed sea states, RMSE values demonstrate consistent growth 

patterns from short-range to extended forecasts. In sea state 5 (Figure 4a), RMSE increases from 0.05-0.12 m 

at 24 h lead time to 0.64-1.04 m at 168 h lead time, exhibiting nearly linear growth. These ranges correspond 

to differences caused by various RMSE values for each encounter angle class. This pattern aligns with findings 

in [71], who reported similar linear degradation in North Atlantic wave hindcasts, though our exponential 

growth rate of 1.5-1.8 % per hour is notably lower than the 2.3 % reported in [6] for their ANFIS-based 

predictions.  

The MAE consistently tracks 15-20 % below RMSE across all sea states, indicating persistent outlier 

errors that affect operational planning. In calmer conditions (sea states 2-3), the relative uncertainty increases 

despite lower absolute errors, while severe conditions (sea states 7-9) show accelerated error growth beyond 

72-hour lead times, consistent with the predictability limits identified in [39].  

Wave period predictions exhibit more stable uncertainty characteristics across the full range of 

conditions. The analysis reveals RMSE growth from 0.11-0.17 s (24 h) to 1.16-1.4 s (168 h) over the forecast 

horizon for moderate seas (Figure 4b), with proportionally smaller increases in both calm and severe 

conditions. The CRPS values indicate well-calibrated probabilistic forecasts throughout.  
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Fig. 4  Uncertainty metrics of meteorological non-directional predictor variables for the sea state 5 (HS = 2.5-4 m): significant 

wave height HS (a), wave period Tp (b) and wind speed Vwind (c).   



M. Marjanović et al. Brodogradnja Volume 77 Number 1 (2026) 77108 

 

21 

 

Wind speed forecasts consistently demonstrate the highest relative uncertainty among all meteorological 

variables analysed. The pattern observed in sea state 5 (Figure 4c), with RMSE increasing from 0.45-0.85 m/s 

(24 h) to 3.04-4.37 m/s (168 h), is amplified in higher sea states where RMSE can exceed 8.0 m/s at maximum 

lead times. Corresponding exponential UGR of 1.3-1.45 % per hour is relatively close to 1.5-1.8 % of the 

observed one for wave height, suggesting similar predictability characteristics.  

The correlation between sea state severity and forecast uncertainty reveals non-linear relationships 

across all three variables. While absolute errors generally increase with sea state, the relative uncertainty 

(RMSE normalised by mean values) shows a U-shaped pattern, with the highest relative errors in very calm 

(sea states 0-1) and extreme conditions (sea states 10-12). This pattern has important implications for ship 

speed predictions, as it suggests that forecast reliability varies not only with lead time but also with the 

prevailing environmental severity. 

3.1.2 Directional Meteorological Variable Uncertainty 

The uncertainty characteristics of directional meteorological variables required specialised metrics to 

account for their circular nature, with the Circular Mean Absolute Error (CMAE) properly handling the 360° 

discontinuity inherent in directional data. The comprehensive analysis across different sea states reveals 

complex patterns in directional forecast degradation, with Figure 5 again presenting representative results for 

sea state 5 (Hs = 2.5-4 m).  

Meteorological wind direction uncertainty exhibits pronounced variability across different sea 

conditions. While Figure 5a shows CMAE values increasing from 3.54-4.81° at 24 h to 38.3-46.1° at 168 h 

for moderate seas, the analysis reveals that directional uncertainty is strongly modulated by sea state severity. 

In calm conditions (sea states 0-2), CMAE can exceed 50° even at short lead times due to weak pressure 

gradients and variable wind patterns. Conversely, during severe weather (sea states 8-10), the stronger 

atmospheric forcing produces more coherent wind fields, resulting in CMAE values 20-30 % lower than in 

moderate conditions. The steepest uncertainty growth consistently occurs in the 24-72 h window across all 

sea states, where CMAE increases by 5-20°, substantially exceeding the 10° increase reported in [44] for 

Mediterranean conditions. This accelerated degradation in the medium range has critical implications for 

voyage planning, as it coincides with key tactical decision horizons. 

Wave direction forecasts demonstrate markedly superior stability compared to wind direction across the 

entire spectrum of sea conditions analysed. The CMAE growth from 1.34-3.44° at 24 h to 16.6-31.4° at 168 

h observed in moderate seas (Figure 5b) represents the median behaviour, with calm conditions showing only 

marginally higher uncertainty (CMAE reaching 40° at 168h) despite the challenges of predicting swell 

propagation in light winds. Notably, in sea states 6-9, wave direction CMAE remains below 30° even at 

extended lead times, reflecting the dominance of well-defined swell systems. The analysis further reveals that 

the wave direction forecast skill shows minimal sensitivity to the choice of wave spectrum (JONSWAP vs. 

Pierson-Moskowitz), contrasting with the spectrum-dependent speed loss variations reported in [1]. 

The encounter wave angle uncertainty, synthesising both meteorological forecast errors and navigational 

considerations, presents the most complex patterns across different operational conditions. The CMAE ranges 

from 1.34-3.44° at 24 h to 16.6-31.4° at 168 h, as shown for sea state 5 in Figure 5c. It should be noted that 

the encounter wave angle categories (head seas, bow-quartering, beam, stern-quartering, and following) 

shown in both Figures 4 and 5 were derived by calculating encounter angles for 25 different ship headings (0-

360° at 15° intervals) at each grid point, then grouping the results according to the relative angle between the 

meteorological wave direction and each hypothetical ship heading. This systematic approach allowed us to 

assess uncertainty patterns across all possible encounter scenarios without specifying a particular route. In 

following seas (encounter angles 150-180°), uncertainty is amplified by up to 40 % compared to head seas, as 

small directional changes can shift the encounter angle between favourable following seas and dangerous 

quartering conditions. This asymmetry, not previously documented in the literature, has profound implications 

for routing algorithms that typically assume symmetric uncertainty distributions. The non-linear growth 

pattern intensifies in sea states above 7, where CMAE can increase by 25° within a single 24-hour forecast 

update cycle, suggesting predictability barriers not captured by current ensemble forecasting systems. 
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Fig. 5  Uncertainty metrics of meteorological directional predictor variables for the sea state 5 (Hs = 2.5-4 m): meteorological 

wind direction βwind (a), meteorological wave direction βwave (b) and encounter wave angle αwave (c). 

Cross-correlation analysis between directional variables reveals that encounter angle uncertainty cannot 

be treated as a simple linear combination of its components. The coupling between wind and wave direction 

uncertainties varies significantly with sea state: correlation coefficients range from 0.3 in calm conditions to 

0.85 in storm conditions, indicating that unified atmospheric systems drive both wind and wave fields during 

severe weather. This coupling effect, combined with the 15° average heading uncertainty inherent in autopilot 

course-keeping, produces compound uncertainties that consistently exceed root-sum-square estimates by      

15-25 %. These findings challenge the independence assumptions underlying current probabilistic routing 

systems and suggest that Monte Carlo approaches may be necessary for accurate uncertainty propagation. The 

temporal evolution of directional uncertainty also exhibits distinct diurnal patterns not apparent in the 

magnitude variables, with CMAE typically 10-15 % higher during nighttime forecast initialisations, possibly 

reflecting reduced observational data availability.  

3.1.3 Attainable Ship Speed Uncertainty 

The transformation of meteorological forecast uncertainties into ship speed prediction errors determines 

the effectiveness of operational weather routing. This analysis examines how three modelling frameworks, 

NTPRO 5000 (with Pierson-Moskowitz and JONSWAP spectra) and NavCad, propagate weather forecast 

uncertainties to attainable speed estimates across different operational conditions and sea states. The following 

Figure 6 shows the uncertainty propagation from meteorological variables to attainable ship speed predictions 

for an intended speed of 14.5 knots under sea state 5 conditions (Hs = 2.5-4 m). The NTPRO 5000 JONSWAP 

spectrum results (Figure 6a) show RMSE values increasing from 0.06-0.11 knots at 24 h to 0.45-0.82 knots at 

168 h lead time. The uncertainty growth exhibits a quasi-linear pattern, with a notable acceleration after 72 

hours. MAE values remain consistently lower than RMSE by approximately 20 %, indicating the presence of 

outlier predictions that significantly impact error statistics. The bias fluctuates between -0.03 and +0.5 knots, 

suggesting minimal systematic error in the JONSWAP-based predictions. The IoA maintains values above 0.4 

throughout most of the forecast period, demonstrating robust model performance even with increasing 

uncertainty. 

The Pierson-Moskowitz spectrum implementation in NTPRO 5000 (Figure 6b), however, produces 

slightly higher uncertainty levels, with RMSE reaching 0.93 knots at maximum lead time. This 12 % increase 

compared to JONSWAP results reflects the different spectral characteristics, particularly in fetch-limited 

conditions typical of the North Atlantic. The FSS values show more rapid degradation, falling below 0.3 after 

96 hours, suggesting that the Pierson-Moskowitz spectrum may be more sensitive to spatial variations in wave 

field predictions. CRPS values indicate good probabilistic calibration in short to medium-range forecasts but 

deteriorate notably beyond 72 hours. NavCad predictions (Figure 6c) exhibit the lowest uncertainty levels 

among the three models, with RMSE reaching 0.76 knots at 168-hour lead time. The distinct stepped pattern 

in uncertainty growth corresponds to the quasi-static resistance calculation approach, which responds more 

dramatically to discrete changes in environmental conditions. The positive bias averaging 0.25 knots suggests 

that NavCad's hydrodynamic model tends to overestimate speed loss in dynamic conditions. Despite higher 

absolute errors, the UGR remains relatively constant at approximately 2 % per hour, indicating predictable 

uncertainty growth that could be valuable for risk-based planning.  
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Fig. 6  Attainable ship speed uncertainty metrics for NTPRO 5000 JONSWAP spectrum (a), NTPRO 5000 Pierson–Moskowitz 

(b) and NavCad (c). Intended ship speed 14.5 kn and sea state 5 (Hs = 2.5-4 m). 
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Fig. 7  Attainable ship speed uncertainty metrics for NTPRO 5000 JONSWAP spectrum (a), NTPRO 5000 Pierson–Moskowitz 

(b) and NavCad (c). Intended ship speed 12 kn and sea state 5 (Hs = 2.5-4 m). 
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Attainable ship speed uncertainty for a lower intended speed of 12.0 knots under the same sea state 5 

conditions is presented in Figure 7, revealing important speed-dependent characteristics in uncertainty 

propagation. The NTPRO 5000 JONSWAP results (Figure 7a) demonstrate markedly different uncertainty 

behaviour compared to the 14.5-knot case. RMSE values grew from 0.05-0.12 knots at 24 h to 0.51-0.64 knots 

at 168 h, representing a 10 % average decrease in absolute uncertainty compared to higher speed operations. 

The positive bias averaging +0.21 knots at 168 h indicates systematic over-prediction of attainable speeds at 

lower intended speeds, suggesting that the vessel struggles more to maintain course in challenging conditions 

when operating below optimal speed. 

The Pierson-Moskowitz implementation (Figure 7b) shows even more pronounced uncertainty growth 

at lower speeds, with RMSE reaching an average of 0.59 knots at maximum lead time. The IoA drops below 

0.85 after 96 hours, indicating significant forecast skill degradation. The FSS pattern reveals interesting 

threshold behaviour, with sharp drops at 72-hour intervals, suggesting that the model's sensitivity to 

environmental conditions increases at lower operational speeds.  

NavCad predictions (Figure 7c) exhibit the most dramatic response to speed reduction for the following 

seas, with RMSE values reaching 0.8 knots at 168-hour lead time, i.e. a 20 % increase over the 14.5-knot 

scenario. The variable bias pattern, oscillating between +0.05 and +0.48 knots, suggests that the quasi-static 

resistance model struggles to capture the non-linear speed-power relationships at lower speeds. The stepped 

uncertainty growth pattern becomes more pronounced, with distinct jumps corresponding to sea state 

transitions. UGR analysis reveals an average exponential growth rate of 2 % per hour at 168 h, similar to UGR 

at a nominal speed of 14.5 knots.  

3.2 Correlation Analysis Between Meteorological and Ship Speed Uncertainties 

Correlation between attainable ship speeds metrics and selected meteorological variables uncertainty 

metrics was conducted by means of the Pearson correlation coefficient: 

1

2 2

1 1

( )( )

( ) ( )

=

= =

− −
=

− −



 

n

i ii

n n

i ii i

X X Y Y
r

X X Y Y
 (45) 

where 
iX  is the predictor variable value (e.g., SRMSE( )H ), 

iY  is the response variable value (e.g., 

(PM)

att.RMSE( )V ), X  and Y  are the mean values of the predictor and response variables, respectively, and n  

is the number of data points. 

Considering the excessive amount of result data, only the correlation between corresponding uncertainty 

metrics was pointed out (e.g. 
(PM)

S att.(RMSE( ),RMSE( ))r H V ). Therefore, only the diagonal elements of 

correlation matrices were analysed for the purpose of this work, according to: 

( , ) ( ) ( )

diag. { , }m l m mr r X Y=  (46) 

for each metric m  and lead time ,l  where {RMSE, MAE, Bias, UGR, CRPS, IoA, FSS}m  and 

{0-24 h, 24-72 h, 72-120 h, 120-168 h}.l  

The correlation analysis between meteorological and ship speed uncertainty metrics was conducted 

systematically across all simulation conditions to quantify how weather forecast errors propagate through 

different ship performance models. The Pearson correlation coefficient (45) was computed for corresponding 

uncertainty metrics between predictor (meteorological) and response (ship speed) variables, focusing on 

diagonal elements of the correlation matrices as expressed in (46). This comprehensive analysis covered three 

modelling approaches (NTPRO 5000 JONSWAP, NTPRO 5000 Pierson-Moskowitz, and NavCad), two 

intended speeds (12.0 and 14.5 knots), all sea states (0-7), and five encounter angle groups. 

The overall correlation analysis reveals several fundamental patterns in uncertainty propagation that 

persist across different modelling frameworks and operational conditions. First, the correlation strength 
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between meteorological and ship speed uncertainties demonstrates clear hierarchical relationships: wave 

height uncertainties show the strongest and most consistent correlations with speed prediction errors (typically 

0.65-0.97 for RMSE/MAE), followed by wave period (0.45-0.85), while wind-related variables exhibit the 

most variable correlations (0.26-0.99). This hierarchy reflects the dominant role of wave-induced resistance 

in ship speed loss mechanisms. Second, the correlation patterns exhibit strong dependencies on encounter 

angle geometry. Head seas (0-30°) consistently produce the highest positive correlations for magnitude-based 

metrics (RMSE, MAE), indicating direct error propagation. Beam seas (75-105°) show the weakest and most 

variable correlations, reflecting the complex lateral dynamics not fully captured in the models. Following seas 

(150-180°) demonstrate unique bimodal behaviour, with correlations either strongly positive or strongly 

negative depending on the specific metric and lead time, suggesting threshold effects in surf-riding and 

broaching conditions. While this analysis includes sea states 0-7, the influence of extreme sea conditions (sea 

states 8-9) on uncertainty propagation was not extensively investigated. This study forms part of a broader 

ship weather routing framework, where operational conditions, rather than survival conditions, are of primary 

interest. Vessels typically avoid or reroute around such extreme conditions rather than attempting to maintain 

their course. 

Third, the temporal evolution of correlations reveals increasing coupling strength with forecast lead 

time. Short-range forecasts (0-24 h) show moderate correlations (0.65-0.85), while extended-range forecasts 

(120-168 h) exhibit either very strong (>0.95) or very weak (<0.3) correlations, indicating that uncertainty 

relationships become more deterministic or completely decouple as forecast skill degrades. The NTPRO 5000 

Pierson–Moskowitz implementation demonstrates the most balanced correlation patterns across all conditions.  

As illustrated in Table 5 for the 14.5-knot case with wave height uncertainties, RMSE and MAE 

correlations maintain consistently strong positive relationships (0.223-0.973), with head seas showing the 

highest values (0.870-0.970). The correlation strength increases systematically with lead time, reaching 

maximum values at 120-168 hours. Bias correlations reveal physically consistent inverse relationships (-0.713 

to -1.000) for head and following seas, where wave height over-prediction leads to speed under-prediction, 

particularly pronounced in head and following seas. Wind speed correlations for the same Pierson–Moskowitz 

configuration exhibit more complex patterns. While RMSE and MAE maintain positive correlations (0.259-

0.996), they are approximately 8-10 % weaker than corresponding wave height correlations. Notably, bias 

correlations show predominantly positive values, contrary to wave height patterns, indicating that wind over-

prediction coincides with speed over-prediction, a counterintuitive result suggesting limitations in 

aerodynamic modelling. 

The JONSWAP spectrum implementation, although not shown in tables here, produced more polarised 

correlation patterns. Perfect or near-perfect correlations (±1.000) appeared frequently, particularly at extended 

lead times, suggesting oversimplified uncertainty relationships. This deterministic behaviour likely stems from 

the JONSWAP spectrum's assumption of fully developed seas, which may not adequately represent the 

variable fetch conditions typical of North Atlantic operations. It should be emphasised that these comparative 

findings between the Pierson-Moskowitz and JONSWAP spectrum implementations are specific to the North 

Atlantic region, as different ocean basins with distinct fetch characteristics, swell patterns, and storm systems 

may yield significantly different relative performance between the two spectral formulations. CRPS value 

correlations are predominantly negative here in the head and following seas (-0.949 to -0.134), suggesting that 

improved probabilistic wind forecasts actually reduce speed prediction reliability in these conditions. This 

counterintuitive result may reflect the non-linear aerodynamic effects that are not fully captured in the 

simulation model.  

UGR correlations reveal highly variable relationships ranging from -0.858 to 0.890, with notable 

transitions between negative and positive values across different conditions and lead times. The strongest 

positive correlations appear in stern-quartering seas, suggesting that forecast degradation rates are most 

predictive of speed uncertainty growth when waves approach from the quarter. Conversely, bow-quartering 

seas show the most extreme negative correlation at short lead times, transitioning to moderate positive values 

at medium range.  
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Table 5 Correlation between uncertainty metrics of attainable ship speed 
(PM)

att.V and uncertainty metrics of significant wave height 

HS in case of intended ship speed 14.5 kn and sea states 0-7. 

  Pearson correlation coefficient ( , )r x y  

Encounter 

angles 

Lead  

time (h) 

(PM)

att.

S

RMSE( ),
RMSE( )

V
H

 
(PM)

att.

S

MAE( ),
MAE( )

V
H

 
(PM)

att.

S

Bias( ),
Bias( )

V
H

 
(PM)

att.

S

UGR( ),
UGR( )

V
H

 
(PM)

att.

S

CRPS( ),
CRPS( )

V
H

 
(PM)

att.

S

IoA( ),
IoA( )

V
H

 
(PM)

att.

S

FSS( ),
FSS( )

V
H

 

Head seas 

0-24 0.870 0.885 -0.993 -0.663 -0.990 0.888 -0.748 

24-72 0.931 0.937 -0.991 -0.441 -0.992 -0.574 0.882 

72-120 0.970 0.961 -0.971 0.436 0.917 0.523 0.894 

120-168 0.920 0.910 -0.957 0.814 0.841 -0.958 -0.974 

Bow-

Quartering 

0-24 0.872 0.864 -0.996 -0.858 -0.977 -0.025 -0.911 

24-72 0.959 0.955 -0.978 0.380 -0.932 0.973 -0.468 

72-120 0.956 0.937 -0.925 0.657 0.520 -0.502 -0.016 

120-168 0.970 0.965 -0.969 0.183 0.979 0.138 -0.615 

Beam 

0-24 0.652 0.648 -0.035 0.157 -0.978 -0.809 -0.291 

24-72 0.743 0.742 -0.982 0.544 -0.932 -0.939 0.934 

72-120 0.682 0.589 -0.532 0.718 -0.505 -0.985 0.988 

120-168 0.842 0.795 -0.970 0.559 0.784 -0.997 0.998 

Stern-

Quartering 

0-24 0.223 0.244 -0.752 0.890 -0.982 -0.711 -0.530 

24-72 0.973 0.951 -0.965 0.687 0.859 -0.506 0.742 

72-120 0.973 0.941 -0.978 0.142 1.000 -0.680 0.861 

120-168 0.971 0.954 -0.930 0.742 0.994 -0.927 0.858 

Following 

0-24 0.928 0.963 -0.713 0.236 -0.985 -0.848 0.946 

24-72 0.944 0.937 -0.980 -0.552 -0.997 -0.949 0.866 

72-120 0.950 0.955 -0.998 -0.068 -0.619 -0.990 0.961 

120-168 0.562 0.538 -1.000 0.176 -0.132 -0.635 -0.906 

Head seas demonstrate a systematic evolution from negative correlations at shorter lead times to positive 

values at extended forecasts, indicating a reversal in the relationship between forecast degradation and speed 

uncertainty as the forecast horizon extends. Following seas exhibit weak and inconsistent correlations, 

suggesting that forecast degradation rates have limited predictive value for speed uncertainty in these 

favourable conditions. 

Looking at Table 6, which presents the correlation patterns for the NavCad implementation at 14.5 knots, 

several distinctive characteristics emerge that differentiate it from the Pierson–Moskowitz model. The NavCad 

framework exhibits remarkably high correlation coefficients for RMSE and MAE in most conditions, 

frequently approaching perfect correlation (0.987-1.000), particularly in head seas and bow-quartering angles. 

This near-deterministic behaviour reflects NavCad's quasi-static resistance calculation methodology, where 

environmental inputs translate more directly into speed predictions without the dynamic motion effects 

captured by the time-domain NTPRO simulations. The most interesting feature in Table 6 is the dramatic 

variation in correlation strength across different encounter angles. Following seas demonstrate particularly 

anomalous behaviour, with RMSE correlations as low as 0.081 at 0-24 h lead time, jumping to near-perfect 

correlation (1.000) at 72-120 h. This extreme variability suggests that NavCad's resistance-based approach 

fails to fully capture the complex dynamics of circumstances that occur in following seas, where both 

resistance and lateral forces contribute to speed loss in non-linear ways. The beam seas correlations, while 

stronger than in the Pierson–Moskowitz model, still show the weakest overall values (0.424-0.787 for RMSE), 

confirming that the quasi-static approach has fundamental limitations in representing lateral hydrodynamic 

interactions that become dominant when waves approach from abeam. Lower operational ship speeds 

fundamentally alter correlation structures, as demonstrated in the 12.0-knot analyses (Tables 7 and 8 show 

selected examples). The Pierson–Moskowitz implementation at 12.0 knots reveals several distinct changes: 

overall correlation magnitudes decrease by 15-20 % compared to 14.5 knots, negative correlations become 

more prevalent across all metrics, and encounter angle sensitivity increases dramatically. Beam seas, which 

showed moderate correlations at higher speeds, exhibit weak or even negative correlations (-0.717 for wave 

height RMSE) at lower speeds. Comparing correlation patterns across the three modelling frameworks reveals 
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fundamental differences in uncertainty propagation mechanisms. JONSWAP consistently produces moderate, 

physically interpretable correlations that vary smoothly with conditions. 

Table 6 Correlation between uncertainty metrics of attainable ship speed 
( NC)

att.V and uncertainty metrics of significant wave height 

HS in case of intended ship speed 14.5 kn and sea states 0-7. 

  Pearson correlation coefficient ( , )r x y  

Encounter 

angles 

Lead  

time (h) 

( NC)

att.

S

RMSE( ),
RMSE( )

V
H

 
( NC)

att.

S

MAE( ),
MAE( )

V
H

 
( NC)

att.

S

Bias( ),
Bias( )

V
H

 
( NC)

att.

S

UGR( ),
UGR( )

V
H

 
( NC)

att.

S

CRPS( ),
CRPS( )

V
H

 
( NC)

att.

S

IoA( ),
IoA( )

V
H

 
(NC)

att.

S

FSS( ),
FSS( )

V
H

 

Head seas 

0-24 0.997 0.997 -0.999 -0.059 -0.993 0.933 -0.784 

24-72 0.994 0.993 -1.000 0.480 -0.985 -0.687 0.882 

72-120 0.996 0.996 -0.999 0.797 0.916 0.578 0.941 

120-168 0.991 0.987 -0.995 0.990 0.971 -0.876 0.997 

Bow-

Quartering 

0-24 0.997 0.997 -0.969 0.511 -0.995 0.044 -0.956 

24-72 0.999 0.999 -0.850 0.953 -0.977 0.969 -0.662 

72-120 0.988 0.988 -0.994 0.959 0.494 -0.579 -0.143 

120-168 0.987 0.990 -0.994 0.983 0.977 0.173 -0.747 

Beam 

0-24 0.757 0.787 0.828 -0.016 -0.996 -0.709 -0.343 

24-72 0.656 0.711 -0.961 0.470 -0.966 -0.857 0.910 

72-120 0.424 0.422 -0.634 0.762 -0.441 -0.947 0.974 

120-168 0.450 0.466 -0.855 0.913 -0.045 -0.968 0.980 

Stern-

Quartering 

0-24 0.793 0.935 -0.980 0.904 -0.992 -0.663 -0.492 

24-72 0.695 0.930 -0.820 0.598 -0.901 -0.436 0.740 

72-120 0.998 0.999 -0.954 0.558 0.903 -0.639 0.848 

120-168 0.998 0.999 -0.940 0.957 0.966 -0.911 0.863 

Following 

0-24 0.081 0.153 0.132 0.709 -0.988 -0.844 0.744 

24-72 0.928 0.916 -0.890 0.303 -0.985 -0.943 0.906 

72-120 1.000 1.000 -0.997 0.853 0.981 -0.988 0.998 

120-168 1.000 1.000 -0.994 0.720 0.980 -0.676 -0.902 

Table 7 Correlation between uncertainty metrics of attainable ship speed 
(PM)

att.V and uncertainty metrics of significant wave height 

HS in case of intended ship speed 12.0 kn and sea states 0-7. 

  Pearson correlation coefficient ( , )r x y  

Encounter 

angles 

Lead  

time (h) 

(PM)

att.

S

RMSE( ),
RMSE( )

V
H

 
( PM)

att.

S

MAE( ),
MAE( )

V
H

 
(PM)

att.

S

Bias( ),
Bias( )

V
H

 
(PM)

att.

S

UGR( ),
UGR( )

V
H

 
(PM)

att.

S

CRPS( ),
CRPS( )

V
H

 
(PM)

att.

S

IoA( ),
IoA( )

V
H

 
(PM)

att.

S

FSS( ),
FSS( )

V
H

 

Head seas 

0-24 0.794 0.780 -0.998 -0.979 -0.982 0.730 -0.921 

24-72 0.872 0.883 -0.992 -0.577 -0.998 -0.683 -0.773 

72-120 0.947 0.937 -0.992 0.031 0.773 0.474 -0.583 

120-168 0.781 0.753 -0.972 0.452 0.315 -0.917 0.793 

Bow-

Quartering 

0-24 0.672 0.615 -0.998 -0.605 -0.968 -0.038 -0.910 

24-72 0.902 0.872 -0.961 0.150 -0.848 0.964 -0.794 

72-120 0.873 0.802 -0.906 0.029 -0.809 -0.493 -0.147 

120-168 0.929 0.933 -0.958 -0.670 0.841 0.063 -0.748 

Beam 

0-24 -0.717 -0.695 0.732 0.248 -0.962 -0.945 0.008 

24-72 -0.627 -0.683 -0.927 0.301 -0.994 -0.980 0.995 

72-120 -0.490 -0.534 -0.107 0.666 -0.736 -0.948 0.923 

120-168 -0.354 -0.431 -0.754 0.438 -0.595 -0.956 0.965 

Stern-

Quartering 

0-24 -0.412 -0.350 -0.746 0.608 -0.993 -0.895 -0.278 

24-72 0.878 0.775 0.933 0.975 0.957 -0.748 0.842 

72-120 0.980 0.925 -0.996 0.422 0.999 -0.884 0.942 

120-168 0.989 0.971 -0.919 0.902 0.999 -0.894 0.764 

Following 

0-24 0.220 0.328 -0.374 0.201 -0.994 -0.873 0.897 

24-72 0.699 0.576 0.926 0.019 -0.961 -0.956 0.913 

72-120 0.844 0.818 -0.999 0.237 -0.332 -0.992 0.987 

120-168 0.566 0.624 -0.998 0.308 0.140 -0.685 -0.908 



M. Marjanović et al. Brodogradnja Volume 77 Number 1 (2026) 77108 

 

29 

 

Table 8 Correlation between uncertainty metrics of attainable ship speed 
( NC)

att.V and uncertainty metrics of significant wave height 

HS in case of intended ship speed 12.0 kn and sea states 0-7. 

  Pearson correlation coefficient ( , )r x y  

Encounter 

angles 

Lead  

time (h) 

( NC)

att.

S

RMSE( ),
RMSE( )

V
H

 
( NC)

att.

S

MAE( ),
MAE( )

V
H

 
( NC)

att.

S

Bias( ),
Bias( )

V
H

 
( NC)

att.

S

UGR( ),
UGR( )

V
H

 
( NC)

att.

S

CRPS( ),
CRPS( )

V
H

 
( NC)

att.

S

IoA( ),
IoA( )

V
H

 
(NC)

att.

S

FSS( ),
FSS( )

V
H

 

Head seas 

0-24 0.973 0.972 -0.997 -0.135 -0.998 0.797 -0.831 

24-72 0.997 0.996 -0.999 0.964 -0.945 -0.757 -0.851 

72-120 1.000 1.000 -0.999 0.916 0.978 0.581 0.041 

120-168 0.999 0.998 -0.992 0.989 0.994 -0.999 0.989 

Bow-

Quartering 

0-24 0.988 0.986 -0.971 0.294 -0.998 -0.023 -0.938 

24-72 0.992 0.995 -0.991 0.954 0.840 0.957 -0.826 

72-120 0.998 0.998 -0.982 0.995 0.983 -0.561 -0.176 

120-168 1.000 1.000 -0.998 0.994 0.995 0.048 -0.761 

Beam 

0-24 0.933 0.946 0.731 0.535 -0.995 -0.945 0.013 

24-72 0.947 0.959 -0.977 0.859 -0.829 -0.982 0.993 

72-120 0.928 0.908 -0.971 0.705 0.032 -0.947 0.925 

120-168 0.957 0.940 -0.998 0.818 0.816 -0.956 0.966 

Stern-

Quartering 

0-24 0.973 0.967 -0.990 0.542 -1.000 -0.894 -0.250 

24-72 1.000 1.000 0.978 0.715 0.838 -0.749 0.850 

72-120 0.980 0.983 -0.971 0.448 0.944 -0.884 0.940 

120-168 0.980 0.977 -0.874 0.795 0.951 -0.891 0.761 

Following 

0-24 0.990 0.991 -0.950 0.120 -0.922 -0.871 0.787 

24-72 0.976 0.977 -0.997 -0.079 -0.879 -0.963 0.919 

72-120 0.969 0.979 -0.993 0.363 0.944 -0.998 0.999 

120-168 0.991 0.991 -0.974 0.991 0.958 -0.658 -0.913 

JONSWAP generates more extreme, often deterministic relationships that may oversimplify complex 

ship-wave interactions. NavCad correlations typically fall between these extremes but show distinctive 

stepped patterns reflecting its quasi-static calculation approach. The analysis also reveals that probabilistic 

metrics (CRPS, FSS) often show inverse correlations compared to deterministic metrics (RMSE, MAE), 

particularly in complex sea states. This suggests that improved probabilistic weather forecast skill does not 

necessarily translate to better ship speed predictions, highlighting the need for specialised uncertainty 

quantification methods in marine applications. 

These correlation patterns have direct implications for voyage planning and weather routing systems. 

Strong positive correlations in head seas justify simple linear uncertainty propagation methods, while weak or 

variable correlations in beam seas require more sophisticated Monte Carlo approaches. The speed-dependent 

correlation structures indicate that uncertainty models must be configured differently for slow-steaming versus 

normal operations. The increasing correlation strength with lead time suggests that long-range routing 

decisions are paradoxically more sensitive to weather forecast quality than short-range tactical adjustments, 

contrary to common operational assumptions. 

3.3 The Uncertainty of ETA 

To demonstrate the practical application of the uncertainty quantification framework developed in this 

study, a transatlantic voyage from Rotterdam to New York was selected as a representative case study (shown 

in Figure 8). This route was chosen for several compelling reasons: it represents one of the most commercially 

significant shipping corridors globally, traverses the North Atlantic where comprehensive weather forecast 

data from NOAA GFS is readily available, experiences diverse meteorological conditions ranging from 

sheltered waters in the English Channel to severe open-ocean storms, and provides sufficient voyage duration 

(approximately 10-12 days) to observe the full evolution of forecast uncertainty from short-range (0-24 h) 

through extended-range (120-168 h) predictions. The NTPRO 5000 Pierson–Moskowitz spectrum 

implementation was selected for this analysis based on its demonstrated balance between accuracy and 

physical consistency, as evidenced by the correlation analysis in Section 3.2. Unlike the JONSWAP spectrum, 
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which showed extreme polarisation in uncertainty propagation, or NavCad, which exhibited stepped 

uncertainty patterns, the Pierson-Moskowitz model provided smooth, physically interpretable uncertainty 

growth that aligns with observed meteorological forecast degradation patterns. Pseudo-code of this integrated 

framework for attainable ship speed uncertainty quantification is given in Appendix 1. The pipeline and key 

computational steps comprise: (i) initialisation, (ii) weather forecast processing, (iii) ship performance lookup 

tables, (iv) uncertainty quantification, (v) correlation analysis, and (vi) voyage planning with uncertainty.  

The start of the voyage simulation was set for 28 January 2025, at 00:00 UTC, deliberately chosen during 

the North Atlantic winter season when weather variability and forecast uncertainty are at their maximum, 

providing a robust test of the uncertainty quantification framework. The actual voyage length of 3880 nm and 

duration of 337.0 hours, i.e. 14 days and 1 hour, arriving on 11 February 2025, at 01:00 UTC. This represents 

a 20.6 % increase over the nominal 267.6-hour duration at intended speed 14.5 kn, confirming systematic 

weather-induced speed loss. It should be noted that the voyage simulation was set to start 10 nm from 

Rotterdam port and finish 10 nm before New York port in order to avoid low-speed manoeuvring near ports. 

In Figure 8, four sequential snapshots of the voyage progress at 3-day intervals (Days 0, 3, 6, and 9), each 

displaying the complex relationship between actual conditions and forecast projections. The visualisations 

employ an information architecture where the purple track indicates completed voyage segments, the current 

ship position is marked with a prominent purple circle, and information boxes connected by arrows display 

both actual and forecasted states with their associated uncertainties. Each information box follows a structured 

format presenting temporal information (date/time and hours elapsed), meteorological conditions with 

uncertainties (Hs ± ΔHs, Vwind ± ΔVwind, αwave ± Δαwave), resulting attainable speed with uncertainty (Vatt. ± 

ΔVatt.) and estimated time of arrival with temporal uncertainty (ETA ± ΔETA in hours). The uncertainty values 

(±) represent Mean Absolute Error (MAE) as derived from the uncertainty metrics framework described in 

Section 2.5. 

Table 9 synthesises the actual and forecasted conditions at 3-day intervals throughout the voyage, 

following a systematic pattern of ( 3 3,  3 ,  3 3k k k− + ) days where   1,2,...,5=k . This mathematical structure 

creates a rolling forecast window where, for each value of k , Day 3 3k −  represents the current observation 

point, Day 3k  represents the next forecast point 3 days ahead, and Day 3 3k +  represents the next forecast 

point 6 days ahead. For instance, when k = 2, the pattern yields Days 3, 6, and 9, where Day 3 contains actual 

observed conditions (Hs = 3.67 m, Vwind = 3.70 m/s, Vatt. = 11.3 kn), Day 6 shows what was forecasted 3 days 

ahead from Day 3, and Day 9 shows what was forecasted 6 days ahead from Day 3, as also shown in Figure 

8(b). Uncertainty propagation from Table 9 for significant wave height (HS), attainable ship speed (Vatt.) and 

ETA in case of k = 1, 2, 3 and 4, is also visualised in Figure 9, which elegantly shows how uncertainty 

decreases as the ship sails towards the destination port. This structure elegantly captures how each location 

along the route receives multiple forecasts from different lead times, first appearing as 3 3−k  (actual 

observations), then as 3k  (a 3-day forecast), and finally as 3 3k +  (a 6-day forecast). The data from Table 9 

and for k = 1, 2, 3 and 4, corresponds to Figures 8(a)-8(d), respectively. The uncertainty values (±) associated 

with each forecast demonstrate how prediction confidence changes with lead time. For instance, the ETA 

uncertainty varies dramatically from ±211 hours, for the initial long-range forecast at Day 3k  for k = 1, to 

±14 hours for short-range forecast at Day 3k  for k = 4.   

This pattern of uncertainty evolution shown in Table 9 suggests that uncertainty growth is not simply a 

function of forecast lead time but is modulated by spatial variability in forecast skill and environmental 

predictability. The average actual attainable ship speed of 11.38 knots, calculated from actual values, with an 

MAE of 1.45 knots, demonstrates substantial variability around the mean performance. The 21.5 % speed 

reduction from the intended 14.5 knots aligns with typical winter North Atlantic conditions, where average 

significant wave height of 3.94 m (maximum 5.90 m) and wind speeds averaging 10.78 m/s (maximum 18.6 

m/s) create persistent adverse conditions. The cumulative uncertainty growth from ±211 to ±215.28 hours 

over the voyage duration represents the integrated effect of speed variations, substantially lower than the initial 

projections but still significant for operational planning.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8  The visualised route from Rotterdam to New York, with actual weather data and weather forecasts along the route 
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Table 9 Forecasted and actual weather variables values, for every 3 days of the voyage, along with the ETA uncertainty  

Time frame Actual state Forecasted state 

Day 
Date Time 

(d.m.y. h:m h) 
HS 

(m) 

Vwind 

(m/s) 

Vatt. 

(kn) 

ETA 

(d.m.y. h:m h) 

HS + ΔHS 

(m) 

Vwind+Δ Vwind 

(m/s) 

Vatt.+Δ Vatt. 

(kn) 

ETA + ΔETA 

(d.m.y. h:m h) 
          

0 28.1.2025. 00:00 h 5.90 18.6 9.87 

8.2.2025. 03:35 h 

(ideal)  

13.2.2025. 11:07 h 

(weather-adjusted) 

- - - - 

3 31.1.2025. 00:00 h - - - - 7.77±0.60 20.70±2.30 7.50±3.60 
18.02.2025. 5:38 h 

±211 h 

6 3.2.2025. 00:00 h - - - - 8.69±1.20 18.90±3.80 9.70±6.50 
14.02.2025. 3:55 h 

±180h 
          

3 31.1.2025. 00:00 h 3.67 3.70 11.3 11.2.2025. 13:10 h - - - - 

6 3.2.2025. 00:00 h - - - - 3.66±1.20 5.30±3.80 11.20±3.60 
11.02.2025. 20:15 h 

±30 h 

9 6.2.2025. 00:00 h - - - - 6.64±1.20 12.70±3.80 12.80±8.00 
11.02.2025. 00:57 h 

±75 h 
          

6 3.2.2025. 00:00 h 4.47 9.2 11.8 11.2.2025. 01:23 h - - - - 

9 6.2.2025. 00:00 h - - - - 4.71±1.20 6.5±3.80 10.30±1.60 
13.02.2025. 01:42 h 

±27 h 

12 9.2.2025. 00:00 h - - - - 4.45±1.20 6.6±3.80 11.80±4.70 
12.02.2025. 10:30 h 

±33 h 
          

9 6.2.2025. 00:00 h 3.62 11.5 11.7 11.2.2025. 04:30 h - - - - 

12 9.2.2025. 00:00 h - - - - 3.25±1.20 4.9±3.80 11.50±2.60 
11.02.2025. 15:53 h 

±14 h 

15 12.2.2025. 00:00 h - - - - 3.08±1.20 3.9±3.80 11.70±5.30 
11.02.2025. 12:27 h 

±00 h 
          

12 9.2.2025. 00:00 h 2.04 10.90 12.23 11.02.2025. 02:08 h - - - - 

15 12.2.2025. 00:00 h - - - - 2.15±0.11 18.93±8.03 11.39±3.89 
11.02.2025. 05:49 h 

±18h 

Attainable speed uncertainty varied non-linearly from ±1.60 to ±8.00 knots, reflecting the complex 

transformation of environmental uncertainties through ship performance models. The ±8.00 kn uncertainty 

observed at a certain point (12.80±8.00 knots at Day 3 3+k  for k = 2) represents the statistical MAE for that 

specific forecast configuration (lead time: 72-120 h, Day 3 to Day 9; sea state at that location with associated 

encounter wave angle conditions), without imposing physical constraints on the vessel's propulsion system. 

This purely statistical approach yields a theoretical speed range of 4.80 to 20.80 knots, which extends beyond 

the vessel's actual operating envelope of 0 to 14.5 knots (maximum intended speed).  

This unbounded statistical quantification was deliberately employed in this study to capture the full 

magnitude of forecast uncertainty propagation. For practical operational applications, however, the 

uncertainty model should incorporate physical constraints through: 

a. Engine power limitations: Capping maximum speed at 14.5 knots based on installed power 

b. Minimum steerage speed: Setting a lower bound of 3-4 knots for maintaining directional control 

c. Truncated distributions: Implementing bounded probability distributions that respect these 

physical limits while preserving the underlying uncertainty structure. 

The large uncertainty values observed (particularly the ±8.00 knots) therefore serve as indicators of high 

forecast volatility rather than literal speed ranges. They highlight periods where environmental conditions are 

highly uncertain, signalling to operators that speed predictions during these periods have low confidence. For 

decision support systems, these high uncertainty periods would trigger risk-based planning protocols, even 

though the actual speed must remain within physical bounds. This distinction between statistical uncertainty 

quantification (used for analysis) and operationally bounded uncertainty (required for implementation) is 

essential for using these research findings in practical voyage planning tools. 
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Fig. 9  Visualisation of uncertainty propagation for Hs, Vatt. and ETA in case k = 1, 2, 3 and 4 

The probability distributions presented in Figure 10 show important insights about the uncertainty 

quantification framework when examined against the actual voyage planning outcome. The Pierson-

Moskowitz model, which was selected for this voyage planning analysis, predicted a mean duration of 347.3 

hours with a 95 % confidence interval spanning from 302 to 375 hours. While the actual voyage duration of 

336.0 hours falls within this distribution, approximately 11 hours below the predicted mean, the framework's 

absolute calibration presents notable challenges that warrant careful examination. 

The discrepancy between the predicted and actual arrival times exposes fundamental limitations in 

maritime uncertainty quantification. Despite the Pierson-Moskowitz model's reasonable central tendency 

prediction, the uncertainty bounds appear to be mis-calibrated in their temporal translation. This miscalibration 

likely stems from several interconnected factors. The models demonstrate a tendency toward conservative 

speed estimates, suggesting a systematic overweighting of adverse weather probabilities in the uncertainty 

framework. Furthermore, the transformation process from meteorological variables to ship speed predictions 

may not adequately capture all sources of variability, particularly the complex non-linear interactions between 

environmental conditions and vessel performance. The assumption of temporal independence between voyage 

segments also merits scrutiny, as correlations in weather patterns and cumulative effects on vessel 

performance could lead to overestimation of aggregate uncertainty. 

Comparing the three models, the Pierson-Moskowitz implementation produces a slightly wider 

distribution than both JONSWAP and NavCad, with its 95 % confidence interval spanning approximately 73 

hours. This broader uncertainty range reflects the model's more conservative approach to capturing fully 

developed sea states characteristic of North Atlantic conditions.  
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Fig. 10  The probability distributions of voyage time and ETA for the chosen case study 

The convergence of all three models toward similar mean values (ranging from 338.8 to 347.3 hours) 

suggests that extended voyage predictions tend toward climatological averages, though this convergence may 

inadvertently mask the true probability of extreme events that could significantly impact voyage duration. 

These findings emphasise that while the framework successfully captures relative uncertainty patterns 

and their evolution throughout the voyage, achieving accurate absolute calibration remains an ongoing 

challenge in marine operations. The practical implication is that operational systems should prioritise relative 

risk assessment over firm adherence to statistical confidence bounds. The implications of our findings also 

align with risk factors identified in [38], where it was found that weather-related delays and perils of the sea 

constitute high-risk areas for general cargo ship operators. Our uncertainty quantification framework provides 

a quantitative basis for managing these risks through improved voyage planning. Continuous recalibration, 

based on accumulated voyage data and observed outcomes, will be crucial for enhancing the reliability of 

future predictions and improving the framework's operational efficiency in real-world voyage planning 

applications. 

4. Conclusions 

This study has developed and validated a comprehensive data-driven framework for quantifying 

attainable ship speed uncertainty under stochastic weather conditions. Through 2,028 simulations and a 

transatlantic case study, we established that wave height uncertainties show the strongest correlations with 

speed prediction errors (0.65-0.97), confirming their dominant role in ship speed loss mechanisms. The 

comparative assessment of three modelling approaches revealed that the NTPRO 5000 Pierson-Moskowitz 

implementation provides the most balanced uncertainty propagation, with physically interpretable correlation 

patterns that vary smoothly with environmental conditions. However, the Rotterdam to New York case study 

exposed critical calibration challenges: the 95% confidence interval failed to capture the actual arrival time 

(the ship arriving 35 hours after the lower bound for P-M spectrum ETA estimation), and unbounded statistical 

uncertainties reached ±8.00 knots, exceeding the vessel's 14.5-knot maximum speed. These findings highlight 

the distinction between statistical uncertainty quantification for analysis and operationally bounded 

uncertainty for practical implementation.  

The framework demonstrates significant operational value despite these challenges. The systematic 

evolution of ETA uncertainty, from ±211 hours at departure to ±27 hours mid-voyage, provides mariners with 

quantitative risk assessments for voyage planning. The non-monotonic uncertainty pattern observed, where 

uncertainty peaked during mid-Atlantic transit rather than increasing linearly with time, reveals that forecast 

skill varies spatially and depends on prevailing weather systems. All three models predicted voyage durations 

0.5-3 % longer than nominal, confirming systematic weather-induced speed loss in winter North Atlantic 

conditions. For practical applications, the framework proves more suitable for relative risk assessment than 

absolute uncertainty bounds, suggesting that operational systems should focus on identifying periods of high 

uncertainty for enhanced monitoring rather than relying solely on statistical confidence intervals. 
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Several limitations constrain the current framework's applicability. The exclusion of ocean currents, 

reliance on normal distributions that may inadequately capture extreme events, and validation limited to a 

single vessel type all require addressing in future implementations. Additionally, the advantage of the Pierson-

Moskowitz spectrum over JONSWAP for uncertainty propagation observed in this study is specific to North 

Atlantic conditions and may not hold for other ocean regions where different wave generation mechanisms 

and fetch conditions prevail. Most critically, the unbounded statistical approach must be replaced with 

physically constrained models that respect engine power limitations (maximum 14.5 knots) and minimum 

steerage requirements (3-4 knots). The systematic over-prediction of adverse conditions observed in the case 

study also indicates the need for bias correction mechanisms in operational deployment. One limitation of this 

study is also that while the theoretical framework treats peak wave period as an independent variable affecting 

attainable ship speed, the practical implementation constrains it to be a dependent quantity coupled to 

significant wave height through the Pierson-Moskowitz and JONSWAP spectral formulations. This 

simplification, though physically justified for the North Atlantic routes where wind seas predominate and 

swell typically aligns with local wind waves, may not adequately capture speed reductions in regions with 

complex wave climates featuring significant swell-wind sea misalignment or where period-height 

relationships deviate from standard spectral assumptions.  

Future research should prioritise three key areas. First, implementing bounded uncertainty distributions 

through truncated normal or beta distributions would ensure physically realistic speed predictions while 

preserving uncertainty information. Second, integrating ensemble weather forecasts and machine learning 

approaches could capture non-linear relationships between weather patterns and ship performance, potentially 

using LSTM networks or Transformer architectures with interpretability mechanisms. Third, developing real-

time adaptation capabilities through online learning would enable continuous refinement of uncertainty 

estimates based on observed voyage data, addressing the calibration issues identified in this study. 

In conclusion, this research provides a robust foundation for uncertainty-aware maritime operations, 

despite revealing significant challenges in absolute uncertainty quantification. The transition from 

deterministic to probabilistic voyage planning represents a fundamental shift in maritime operational 

philosophy, one that acknowledges the inherent uncertainties in ocean navigation while providing actionable 

insights for their management. As the shipping industry advances toward autonomous operations and faces 

increasingly stringent environmental regulations, the framework developed here offers essential tools for risk-

based decision-making. The key insight is not that we can perfectly predict uncertainty, but that we can 

systematically quantify and communicate it, enabling more informed decisions even when our confidence 

bounds prove imperfect. 
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Appendix 1. Pseudo-code of the integrated framework for attainable ship speed uncertainty quantification 

INPUT: Weather forecasts (NOAA GFS), Ship parameters, Route waypoints 

OUTPUT: Attainable ship speed uncertainties, ETA with confidence intervals 

BEGIN 

    // ========== INITIALIZATION ========== 

    Grid ← 2619 points in North Atlantic [20°N-65°N, 70°W-10°W] at 50 nm spacing 

    Lead_times ← {[0-24h], [24-72h], [72-120h], [120-168h]} 

    Sea_states ← {[0-2.5m], [2.5-4m], [4-6m], [6-9m]}  

    Encounter_angles ← {Head[0-30°], Bow[30-60°], Beam[60-120°], Stern[120-150°], Following[150-180°]} 

    // ========== WEATHER FORECAST PROCESSING ========== 

    FOR each lead_time IN Lead_times DO 

        FOR each grid_point IN Grid DO 

            // Extract meteorological variables 

            Weather[grid_point, lead_time] ← {Hs, Tp, βwaves, Vwind, βwind} 

            // Calculate encounter angle for 25 ship headings (0-360° at 15° intervals) 
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            αwaves  

        END FOR 

    END FOR 

        // ========== SHIP PERFORMANCE LOOKUP TABLES ========== 

    // Generate via simulations: 2028 scenarios for NTPRO, 1014 for NavCad 

    FOR Vref IN {12.0, 13.5, 14.5} knots DO 

        FOR Hs IN {0, 1, 2, ..., 12} meters DO 

            FOR αwaves IN {0°, 15°, 30°, ..., 180°} DO 

                Vatt_JONSWAP[Vref, Hs, αwaves] ← NTPRO_5000(JONSWAP_spectrum) 

                Vatt_PM[Vref, Hs, αwaves] ← NTPRO_5000(Pierson-Moskowitz_spectrum) 

                Vatt_NavCad[Vref, Hs, αwaves] ← NavCad(quasi-static_method) 

            END FOR 

        END FOR 

    END FOR 

        // ========== UNCERTAINTY QUANTIFICATION ========== 

    FOR each lead_time IN Lead_times DO 

        FOR each sea_state IN Sea_states DO 

            // Meteorological uncertainty metrics 

            n ← number_of_forecast_observation_pairs 

            // Calculate uncertainty metrics              

            RMSE, MAE, Bias, IoA, CRPS, FSS, UGR, CMAE: (5)-(14)             

            // Propagate to attainable ship speed 

            Vatt_forecast ← LookupTable[Hs_forecast, αwaves_forecast, Vref] 

            Vatt_actual ← LookupTable[Hs_actual, αwaves_actual, Vref] 

            // Speed uncertainty metrics (same formulas applied to Vatt) 

            Speed_Metrics[lead_time, sea_state] ← {RMSE, MAE, Bias, IoA, CRPS, FSS} 

        END FOR 

    END FOR 

        // ========== CORRELATION ANALYSIS ========== 

    FOR each metric IN {RMSE, MAE, Bias, IoA, CRPS, FSS} DO 

        // Pearson correlation between weather and speed uncertainties 

        rxy: (45), (46)  

    END FOR 

        // ========== VOYAGE PLANNING WITH UNCERTAINTY ========== 

    current_position ← start_waypoint 

    current_time ← departure_time 

    cumulative_uncertainty ← 0 

        WHILE distance_to_destination > 0 DO 

        // Get weather at nearest grid point 

        weather ← Weather[nearest_grid_point, current_time] 

        lead_time ← current_time - departure_time 

        // Lookup attainable speed and uncertainty 

        Vatt_mean ← LookupTable[weather.Hs, weather.αwaves, Vref] 

        ε ← Speed_Metrics[lead_time, sea_state_class] 

        // Sample actual speed from distribution 

        Vatt_actual: (23) 

        // 95% confidence intervals 

        CI: (25)  

        // Update position and propagate uncertainty 

        current_position ← current_position + Vatt_actual × Δt 

        current_time ← current_time + Δt 

        cumulative_uncertainty  
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    END WHILE 

        // Final ETA with uncertainty bounds 

    ETA ← current_time 

    ETA_uncertainty ← cumulative_uncertainty 

    ETA_CI ← [ETA ± 1.96×ETA_uncertainty] 

        RETURN {Speed_Metrics, Correlations_rxy, ETA, ETA_CI} 

END 


