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ARTICLE INFO ABSTRACT
Keywords: By considering the disturbance caused by ice floes in polar regions, the trajectory
Unmanned surface vessels tracking control problem for uncertain unmanned surface vessels (USVs) is

investigated in this paper. USVs for trajectory tracking missions in polar regions are

Gaussian process regression . ) .
p & required to not only overcome common disturbances and perturbations such as model

Discrete integral sliding-mode uncertainties and environmental disturbances caused by winds, waves and currents,
control but it must also consider the stochastic resistance generated by ice floes. However,
Stochastic discrete-time systems studies on the stochastic model of ice floes resistance on USVs are insufficient, making

it difficult to a design tracking controller. This paper proposes a discrete integral
sliding-mode control (DISMC) with a disturbance observer based on Gaussian process
regression (GPR) technique, which could steer uncertain USVs to track predefined
trajectories under disturbance without knowing its upper bound. Compared to the
existing methods for USV control, (1) to the best of our knowledge, this study is
among the first to address the trajectory tracking control problem of USVs in ice-floe
sea conditions; (2) a novel fully data-driven disturbance observer is proposed that
approximates the mean and autocorrelation function of the lumped uncertainties
without requiring prior knowledge about the stochastic ice resistance; and (3) a novel
DISMC given the autocorrelation function of uncertainties instead of the uncertain
upper bound is proposed and proved to be stable with a probability of 1. The proposed
method offers a significant approach for controlling USVs in ice-covered sea areas.

1. Introduction

The environment in polar regions has garnered global attention. Unmanned and autonomous exploration
through predefined trajectories in ice-covered ocean areas is a vital technology for future scientific research
and commercial exploitation in polar regions [1]. During explorations and expeditions through extreme
environments in polar regions, the motion of unmanned surface vessels (USVs) is affected by winds, waves,
currents, and the uncertain resistance caused by ice floes. A reliable trajectory tracking strategy under
perturbations and disturbances is a key technology that determines the success or failure of the exploitation
missions. From the perspective of stochastic analysis theory, the spectrum of ocean waves, winds, and currents
has been well established and verified since the 1990s [2]. The maneuverability of ships under the influence
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of winds, waves, and currents has been extensively investigated [3]. However, prior knowledge about the
stochastic properties of disturbance forces caused by ice floes is insufficient [4-6]. Thus, the control strategies
that could steer USVs in ice-covered ocean areas are required to not only overcome common disturbances and
perturbations such as model uncertainties and environmental disturbances caused by winds, waves, and
currents, but it must also consider the stochastic resistance generated by ice floes. However, traditional
trajectory tracking control methods often require the stochastic properties of the uncertainties, such as the
upper bound, to be known beforehand, making it a significant challenge when addressing the tracking problem
in the aforementioned scenario — this places a premium on trajectory tracking control for uncertain USVs.

Trajectory tracking control methods for USVs can be classified in two aspects: model-free controls and
model-based controls. PID or PD control are conventional model-free methods, which have limited robustness
to uncertainties and disturbances [7,8]. To improve their adaptability, adaptive variants have been developed,
for example an adaptive proportional—integral—derivative controller based on soft actor—critic (SAC-PID) has
been proposed in [9], demonstrating enhanced robustness in uncertain marine environments. Intelligent
algorithm such as fuzzy logic and artificial neural network (ANN) is then developed to improve the
adaptability and robustness of PID or PD control to uncertainties [10,11]. However, these methods still provide
insufficient precision when addressing uncertain systems. In addition, approaches based on fuzzy logic may
provide high steady-state error. Data-driven theories, like deep learning (DL), reinforcement learning (RL)
and etc, are advanced model-free methods for USVs control, which enables USVs to learn control strategies
from datasets. However, large-scale real-world dataset are needed for the learning-based methods, and the
stability of the closed-loop system must be carefully validated. To further improve the control performance,
model-based control methods, such as the sliding mode control (SMC) [12], backstepping control [13-15] and
model predictive control [16-19] are developed. Nonlinear adaptive heading control for underactuated surface
vessels with constrained input and sideslip angle compensation has been investigated in [20], providing
improved maneuverability under realistic dynamic constraints. Moreover, in practical navigation scenarios,
trajectory and speed control in curved channels has also been studied [21], which further highlights the
importance of developing robust control strategies under constrained waterways. Model-based methods
require either the accurate dynamic model of the USV or the stochastic properties of uncertainties, which are
also sensitive to uncertainties. Disturbances observer methods are developed to improve the adaptiveness and
robustness of the tracking control by approximating model perturbations and disturbances [22]. The
disturbances observer is designed to estimate uncertainties and disturbances in the system online and feedback
the estimation into the controller to compensate for uncertainties and disturbances. Machine learning (ML)
methods, which provide the ability to approximate nonlinear functions, can also be applied to build such
observer, making it possible to learn unknown dynamics online, while imposing a significant computational
burden. Model-based methods provide improved precision and dynamic performance, however, they often
lack robustness and adaptability. Conversely, model-free methods yield strong control qualities but require
extensive real-world datasets and significant computational resources. Developing hybrid approaches that
leverage the strengths of both model-based and model-free techniques is significant to enhancing the
robustness and adaptability of USVs in uncertain environments, but it has been considered challenging - it is
this aspect that is addressed here.

Controllers based on SMC theory are considered a promising way to develop hybrid methods. As a
robust control method, SMC has been widely used for unmanned systems. By utilizing SMC, the system states
can be maintained on the sliding surface, ensuring robustness of the closed-loop system against uncertainties
and disturbances. However, the reaching phase decreases the effectiveness of SMC such that the stability of
the closed-loop system should be carefully verified. To overcome this issue, the integral SMC (ISMC) is
proposed that could eliminate the reaching phase while providing a nominal system (the system without
unknown dynamics) that defines the dynamics of the matched disturbance system [23]. The switching term in
SMC effectively suppresses the disturbance, although it may cause the chattering phenomenon. A possible
approach is to introduce DOs to estimate the lumped uncertainties, which could reduce the switching gain
thereby enhancing adaptability while mitigating chattering effects [24,25]. Furthermore, using ML methods
to establish DOs suggests a hybrid approach. This method combines the precision and good dynamic
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performance of model-based approaches with the benefits of model-free methods in approximating
uncertainties.

Although conventional hybrid methods have shown promising results in control performance and
eliminating chattering, these methods rely on expert experience or large prior experimental data [26]. Hybrid
methods integrating an ML-based DO into a controller with an SMC structure show effective performance;
however, several issues remain. First, the estimation error of the learning-based DO is often assumed to be
bounded [26]. For ANN-based DOs, this assumption can be guaranteed according to the Weierstrass
approximation theorem [27]. ANN-DOs have been successfully applied in marine control, such as adaptive
SMC for USVs under wave disturbances [25], but they require substantial training data and offer limited
interpretability due to their black-box nature. In contrast, probabilistic methods like the invariant extended
Kalman filter [28] and Gaussian process regression (GPR) [29] provide posterior distributions (often zero-
mean Gaussian) that do not always satisfy bounded error assumptions, invalidating traditional stability criteria
reliant on deterministic bounds.

To address these, GPR has emerged as a powerful tool in control literature for non-parametric
disturbance estimation, particularly in stochastic and data-scarce environments. GPR-based DOs enable online
approximation of nonlinear disturbances without assuming prior distributions, leveraging kernel functions to
model correlations in residuals [30]. Recent works have demonstrated GPR-DOs in rejecting unmodeled
dynamics for inverted pendulums and urban air mobility systems, where GPR compensates for multi-
dimensional disturbances using small datasets (e.g., <500 samples), outperforming ANN in sample efficiency
by 2-3 times. In marine applications, GPR has been integrated with model predictive control for trajectory
tracking under uncertain currents and fixed-time control for USVs, quantifying uncertainty via confidence
intervals to enhance robustness. Compared to ANN-DOs, GPR-DOs provide not only point estimates but also
variance predictions, facilitating probabilistic stability analysis in discrete-time systems. Accordingly, the
controller design and stability analysis given the posterior estimation of uncertainties are worthy of further
investigations. Moreover, ML methods are developed based on discrete-time dynamic models, but proofs of
closed-loop stability for existing hybrid methods are often in continuous form [25,31]. Considering the
advantages of easy implementation and small-sample estimation of probabilistic DOs, it is necessary to
investigate the design of a hybrid controller and criteria for closed-loop stability for a discrete SMC system
with posterior estimation following a given probability distribution [32,33].

Trajectory tracking control for USVs in uncertain environments such as ice-covered ocean areas shows
both theoretical and practical challenges. Theoretically, the spectrum of stochastic resistance caused by ice
floes 1s not fully established, making it impossible to regulate control parameters as specifically as when
addressing wind wave disturbances. Although feasible controllers may be established using an arbitrarily
upper bound on the lumped uncertainties, it may lead to problems such as excessive gain or chattering. In
practice, it is a significant challenge to obtain real-world data on the stochastic disturbance caused by ice floes,
both from numerical simulations and from real-world environments, that are sufficiently large and accurate to
train effective controllers. Consequently, novel control strategies need to be developed.

Considering the disturbance caused by ice floes in polar regions, the trajectory tracking control problem
for uncertain unmanned surface vessels (USVs) is investigated in this paper. A discrete integral sliding-mode
control (DISMC) with a fully data-driven DO, based on Gaussian process regression (GPR) technique, is
proposed, which could steer uncertain USVs to track predefined trajectories under disturbance without
knowing its upper bound. Theoretically, the control parameters can be adaptively implemented based on the
observed lumped uncertainties. In practice, GPR-based observer does not require large, real-world datasets,
while the stability of the closed-loop system can be ensured. By implementing the proposed method, an
uncertain USV can trace given trajectories in ice-covered ocean areas, which— to the best of our knowledge—
has not been explicitly addressed in existing studies. Numerical simulations illustrate the superior performance
of the proposed controller in comparison to the existing methods. The main contributions of this paper can be
summarized as follows:

1. A novel hybrid method that consists of a DISMC and a GPR-based DO is proposed for solving the
trajectory tracking control problem for USVs under disturbance caused by ice floes.

3
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2. Compared to the existing disturbance observer [22,25,26,34], a novel disturbance observer based on GPR
technique is proposed that the mean function and autocorrelation function of the lumped uncertainties can
be estimated in a fully data-driven manner without requiring prior knowledge.

3. Compared to the conventional ISMC [25,26,35], a novel DISMC given the autocorrelation function of
uncertainties instead of the uncertain upper bound is proposed and proved to be stable with a probability
of 1.

This paper is organized as follows. Section 2 introduces the necessary preliminaries including the discrete
3 degrees of freedom dynamic equations of surface vessels, assumptions considered in this paper, and problem
descriptions. For a discrete stochastic system with bounded uncertainties, a trajectory tracking control based
on discrete integral sliding mode control is proposed and the closed-loop system is proved to be stable in
Section 3. A disturbance observer based on Gaussian process regression is proposed in Section 4, which
improves the control quality under stochastic uncertainties. A discrete integral sliding mode control
considering Gaussian white noise and the proof of stability are also given in Section 4. The nominal control
that stabilizes the dynamic system without uncertainties based on the backstepping technique is given in
Section 5. Numerical simulations are conducted and discussed in Section 6, which demonstrate the superior
performance in comparison with traditional trajectory tracking methods for surface vessels. Section 7
concludes this paper.

Notation. Throughout this paper, R" denotes the nxm dimensional Euclidean space. N denotes
the set of all natural numbers. |v| and |v|| denotes the 1-norm, i.e., the sum of the absolute values of the
elements, and the 2-norm of vector v, respectively. Pr(X) and E[X ] denote the probability and the
mathematical expectations of a stochastic variable X , respectively. /, e R™ represents a nxn identity
matrix. For a vector Y=[y », ... »,], sen(Y)=[sign(y,) sign(y,) ... sign(y,)]:R">R"
represents the vector sign function, where sign(y):R — R is given by:

Ly>0

sign(y)=4 0,y=0 (1
-1,y<0

The superscript T is used to denote the transpose of a vector or matrix.

2. Preliminaries and problem formulation

2.1 Discrete 3 degrees of freedom dynamics of a surface vessel

The 3 degrees of freedom (3-DOF, surge, sway, and yaw) dynamic model of a USV considered in this
paper is given as follows. As shown in Figure 1, the surge, sway, and yaw motion are represented as x, y

and ¥ , and surge, sway, and yaw velocities are represented as v

X

, v, and v, , respectively.

Reference trajectory
x A

Xo

>
>

0. Yo Y.

Fig. 1 Definition of reference coordinate frames of the vessel dynamics
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Let :[x y t//]T eR’ and v=[vx v, v ]T eR’, the 3-DOF dynamic equations of the surface

74
vessel are given by [36]:

n=J(@m)v @
Mv+C(v)w+D)yw+G(n)=t+F, (77, v,t) + F(n,v,t)
where the rotation matrix J(77) is defined as:
cosy —siny O
J(n)=|siny cosy O 3)

0 0 1

M eR*? is a symmetric positive-definite inertia matrix. C(v) € R™ represents the centripetal and
Coriolis torques matrix. D(v) € R*® is the damping matrix. G(v) € R’ represents the gravitational matrix.
F(n,v,t)eR’ denotes the lumped model uncertainties, including modeling uncertainties and forces and
torques generated by winds, wave, and current, given by:

F(?],v,t) =Tais —Tep 4)

where 7, are forces and torques generated by wind, wave, current, and 7., represents model uncertainties
in C(v) and D(v), the details are as follows:

C(v)=(1+68.)C, (v)

D(v)=(1+3,)D, (+) ©)

where C,;(v) and D,(v) correspond to the nominal parts of the dynamic model, and 6, and J,, account for
the unmodeled or uncertain components. F,_(17,v,¢) € R’ represents the additional resistance exerted by ice
floes on the USV.

Let x=[x, x,] = [UT n' ]T ,and u=7= [rx 7,7, ]T , we have:

X, =J@v+J(M 't +J (M (-C(v)v— D) —G(17) - F(17,v,t) — F,(17,v,1))
=G(m)7+Gm)(-C)v— DWW —G(17) - F,,(1,v,1)) + J (1)v— G()(F (1, v,1)) (6)
=G(mu+Fn,v)+D@,v,t)

where:

G =J(mM™,

Fn,v)=Gn)(-C(v)v—DW)v—G(17) - F,(17,v,1)) + J (17)v (7

D(n,v,t) = G(n)(F(1,v,1)).

The 3-DOF dynamic model can be described as an affine nonlinear system given by:

X, =X,
x, =Gu+F(n,v)+D(n,v,t) (®)
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Assume a sampling interval of 7€[0,7]cR, , where 7 denoting the upper bound on time,

ke [0,%] cN,, and x(k) =[x, (k),x, (k)]T , and denoting:

G(k) =G(n(k))
F (k) = F(n(k),v(k)) ©)
D(k) = D(n(k), v(k), k)

the discrete 3-DOF dynamics of the surface vessel is given by:

{xl (k+1) =Tx,(k)+x,(k)

x,(k+1) =T(F(k)+G(k)u(k)+D(k))+x,(k) (10)

Note that G(k) is invertible and D(k) is a stochastic process representing the lumped uncertainties. The
nominal system is given by:

{xl (k+1)=Tx, (k) +x, (k)

x, (k+1) = T(F (k) +G(k)u(k)) +x, (k) (11)

System (10) is a stochastic nonlinear system. The reason for that a discrete-time dynamic model is
considered is given as follows. If the continuous-time model is utilized, the system with lumped uncertainty
becomes a stochastic differential system. In this case, the calculus of lumped uncertainty process must be
considered and the synthesis method for deterministic systems cannot be applied. In contrast, using the
description in Problem 2, system (11) becomes a Markov process and the sequence of states {x, } becomes a
Markov chain. Thus, the discrete stochastic systems theory is capable of system synthesis.

2.2 Problem formulation

In this paper, following assumptions according to system (10) would be applied.
Assumption 1. The reference position trajectory {x,(k)} of system (10) is Lipschitz continuous, i.e., its
sufficiently high order derivatives are known and bounded.
Assumption 2([13]). All states in system (10) are available for feedback and bounded.
Assumption 3. The lumped uncertainty D(k) in system (10) is a zero-mean stationary stochastic process with
an autocorrelation function of R(k,,k,).
Remark 1. Based on Assumption I and Assumption?2, reference trajectories would be smooth enough to satisfy

the maneuverability of USVs in practice and the states feedback control is feasible (neglecting the
measurement errors). Assumption 3 is a commonly used assumption when addressing the stochastic system.

Traditional trajectory tracking control problem generally assume that the lumped uncertainty D(k) is
bounded, i.e., for every k , there exists a constant y such that:

I DI < y (k) (12)

Under this assumption, the traditional trajectory tracking control problem is given as follows.
Problem 1. Considering system (10) with Assumption 1, Assumption 2, and Eq.(12), design a control sequence
{u(k)} making the tracking errors e(t)=x,(k)—x,(k), where x,(k) satisfies Assumption 1 denotes the
reference trajectory, converges to 0.

However, when solving the trajectory tracking problem involving disturbance caused by ice floes, the
upper bound of the lumped uncertainty cannot be appropriately defined. An arbitrary y may increase control
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gain and amplify chattering. Besides, if data-driven approaches are employed to estimate the uncertainties,
only ANN-based DOs can provide estimations with guaranteed error bounds. The challenge lies in the
substantial amount of prior data required to train such network estimators — data is often difficult to obtain in
real-world applications (for instance, the mechanical properties of sea ice floes in a specific region). To relax
the assumption of bounded uncertainties and enable USVs to achieve trajectory control without prior
knowledge about disturbance, Assumption 3 is introduced. This assumption is also capable of methods
estimating the autocorrelation function of a stochastic process, particularly when leveraging a Bayesian
framework. Therefore, the problem to be solved in this paper is given as follows.

Problem 2. Considering system (10) with Assumption 1, Assumption 2, and Assumption 3, design a control
sequence {u(k)} making the tracking errors e(t) converges to 0.

Problem 1 is solved using the DISMC method in Section 3, which is also the foundation for solving
Problem 2.

3. Design of DISMC for trajectory tracking control for surface vessels under bounded stochastic
uncertainties

The change of tracking errors over time is defined as:
Ae(k) =e(k+1)—e(k)
= x,(k+ D) =x, ()~ (x, (k + 1) —x, (k) (13)
=Tx,(k)—Ax, (k)

The filter error is defined as:
1 1
s(k)= P Ae(k)+ Ae(k) = x,(k)— P Ax, (k) + Ae(k) (14)
where A is a constant. Differentiating Eq. (14) with respect to £ and applying Eq. (10), there is:
As(k)=s(k+1)—s(k)

=x,(k+1) —x2(k)—%(Axd (k+1)—Axd(k))+/1(e(k+1) —e(k)) (15)

=F(k)+G(k)u(k)+D(k)— % (Ax, (k+1)—Ax,(k)) + AAe(k).

Let u(k)=u (k)+u,(k), where u,(k) represents the nominal control which is utilized to control the
nominal dynamics, i.e., the system without uncertainties, given by:

Q=F k) +G(k)u,(k) —%(Axd (k+1)=x, (k) + AAe(k) (16)
and u (k) is the robust term. The sliding surface is defined as:
o(k)=s(k)—s(0)— kZ_l‘,[}" (D) +G(Duy (1) + (i) - % (Ax, (i +1)=x, (@) + Me(i)} (17)

Thus, the differentiation of the sliding mode surface with respect to & can be calculated as:
Ao(k)=oc(k+1)—o(k)
1
= As(k) = F (k) + G(k)u, (k) - ;(Axd(k +1) —x, (k)) + AAe(k) (13)
=G(k)u, (k) +D(k)
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The design of the nominal control u,(k) are addressed in Section 5. The following theorem gives a

solution to u (k) that stabilizes system (15).
Theorem 1. Consider discrete-time system (18) with Assumption 1, 2 and 3. For

Vbe{(l—\/io)u(2,1+\/§)}
m{_Oo’l_\/zla(yk)l} (19)

u{”ﬁwaﬁkn’w}}

and Ya € [al,az], where

, c1=D)oh)] —JU=b)’ | o(k) [ —ny’

1

! (20)
o, = 1= o) 1=b) | o) —ny’
n
with n denoting the dimension of the system, if
u, (k) =G (k)(~a sgn(co(k)) —bo(k)) 2
then o(k)=0 is globally a.s. exponentially stable, i.e., for Vo (0) R%PrDi_}IgH o(k)ll= O} =1.
Proof . Substituting Eq. (21) with Eq. (18), we have:
o(k+1)=—-a sgn(o(k))+(1-b)o(k)+D(k) (22)
Define a Lyapunov function candidate given by:
Vi(k)=o(k) o(k) (23)

such that:
B[V (x(k+1)| x(k)]
=B (m,(k)+D(k))" (m,(k)+D(k)) |
=E[ m, (k)" m, (k) |+ 2E[ D(k) m,(k) |+ E[ D(k) D(k) | (24)
= m, (k)" m, (k) + R(0)
= a*n+(1-b)’o(k)" o(k)-2a(1-b)| o(k)|+R(0)
where m, (k) =—a sgn(o(k))+(1-b)o(k) such that:
B[V, (x(k+1)| x(k) |-V, (x(k))

(25)
<a’n+|(1-b)’ ~1]o(k) o(k) - 2a(1-b) | o(k) | +°

If the following inequality holds:
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{0 <(1-b)Y-1<1
> > (26)
an-2a(1-b)|o(k)|+y <0
then:
B[ V;(x(k+1)| x(k) |-V, (x(k)) < a¥; (x(k)) 27)
Moreover, making ¢, =c¢, =1, we have:
& e <V ey < e, x| (28)

Eq. (27) and Eq. (28) imply that the Expectation of the derivative of the Lyapunov function V,(x(k)) is

not larger than a radial unbounded, positive definite function that has an infinitesimal upper bound. According
to [37], we have:

p{ggn a(k)||=0J:1 (29)

Eq. (29) implies that the probability of that the system trajectory converges to the equilibrium point
o(k)=0 is 1.

We now solve a and b . The first inequality of Eq. (26) suggests that:
be(l—ﬁ,o)u(2,1+ﬁ) (30)

To ensure that the second inequality in Eq. (26) holds, » must also satisfy:

41-b) |o(k)|" —4ny*> >0 (31)
implying that:
ol y Y
b{ ! ﬁw(kﬂ}u{“ﬁww’ } 32

Based on Eq. (30) and Eq. (32), we proof Eq. (19). Moreover, if Eq. (32) holds, the quadratic inequality
with respect to @ must have solutions in R, ie., ¢, <a<a,, where a, and a, are given by Eq. (20).

Therefore, the stability of the sliding surface is guaranteed.

4. Design of DISMC for tracking control with Gaussian process regression of surface vessels

In this section, an observer based on GPR technique is developed that can estimate the lumping
uncertainties D(k). By employing the proposed observer, a novel DISMC is proposed.

4.1 Disturbance observer based on Gaussian process regression

The following gives the design of GPR-based observer. GPR provides a method for predicting the output
of a stochastic process in function space using supervised learning approaches, which has significant
advantages in nonlinear regression and few-shot learning. To inference D(k) using {x(k)}, a Gaussian

process regressor is designed.
The training data set is defined as {X (k),]D)(k)} where:
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{X(k) ={x(0),x(1),...,x(k)}

33

D(k) = {D(0), D().... D(k)} G
Considering Assumption 2, D(k) can be calculated as:

D(l.)zxz(lﬁtl)—xz(k+1| k) (34)

T

at time k+1 with x,(k+1|k) denoting the predicted state at k+1 employing the nominal system (11).
Assuming that D(k—1), D(k), and the joint distribution of ID(k—1) and D(k) are Gaussian distributions
given by:

D(k=1)~ N (2 Ay )
D)~ N (m,. A,

(35)
Dk —1)
{ D(k) } ~N(wx)
where p=[p, , m,] and the covariance matrix X is defined as:
_Zk—l k-1 Ek—l kj|
5 : ,
Ek k-1 Ek k
- ’ (36)
_ K(X(k-1),X(k-1)) K(X(k —1),x(k))}
| K(x(k),X(k-1) K (x0k),x(h))

where K(-,-) is the covariance matrix function that defines the covariance of data sets {x(k)}, which can be
calculated using predefined kernel function 4(-,-) as:

k(x(O),x(O)) k(x(O),x(l)) k(x(O),x(k))
B k(x(l),x(O)) k(x(l),x(l)) k(x(l),x(k))

G7)
k(x(k),x(0)) k(x(k),x(1)) - k(x(k),x(k))

Using the GPR method, the disturbance D(k) can be estimated using the state trajectory ID(k—1) as
shown in Lemma 1.

Lemma 1. If D(k—1), D(k), and the joint distribution of them are Gaussian distributions defined as Eq. (35),
the conditional distribution of D(k) given D(k —1) is also Gaussian, i.e.:

Pr| D()[D(k —1) |~ N (k). T(k) ), (38)
where
u(k) = K(x(k), X(k —l))K(X(k -1, X(k-1))"D(k-1)
I'tk)= K(x(k),x(k))—K(x(k),X(k—1))IC (39)
K=K(X((k-1),X(k-1)"K(X(k-1),x(k))
Proof. The precision matrix of the joint distribution can be calculated as:

10
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- |:Ak—1,k—1 Ak—l,k:| _y-l (40)
Ak,k—l Ak,k

The quadratic form in the exponent of the Gaussian distribution given by Eq. (35) can be calculated as:

—O® W) O® -

=—%(D(k>—uk ) A (D) -1,

_%(D(k)_"k )T Ak,k—l(]D)(k_l)_ukfl) “D)

1
=~ (PR=D =1 )) Ay (DO -py)
1
_E(]D)(k _1) i )T Ak,k (]D)(k _1) - llkfl)
As a function of D(k), Eq. (41) is again a quadratic form, and hence the corresponding conditional

distribution Pr[D(k)| ]D)(k—l)] is still Gaussian. Denoting the means and covariance of the conditional
distribution as (k) and I'(k), respectively, we have:

Pr| D()[D(k—1) |~ N (pa(k), T(k)) (42)

We now derive the expressions for u(k) and I'(k). Consider the quadratic form in Eq. (41) as a
function of D(k), coefficients entering the second order term in D(k) of Eq. (41) can be calculated as:

—% (D) —m) A (D(K) ) (43)
Therefore, the covariance of the conditional distribution is given by:

T(k)= AL} (44)
Now consider all the terms in Eq. (41) that are linear in D(k) given by:

D) { Ay — A (De—D—p, )} (45)

Thus, we have:

(k) = A;,lk {Ak,kuk vA VP (]D)(k -D-p, )}

B (46)
=W+ A A (]D)(k —D-n )
According to the matrix inversion lemma, we have:
_ _ -1
Ak,lk = Akil,k—l + Ak,k—l (Ak,k) Alj,k—l (47)
= K(X(k), X (k)" = K(X (k),x(k))K
where
K=K(X(k-1),X(k—1)" K(X(k—1),x(k)) (48)

11
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is the Schur complement of X . This ends the proof.
Based on Lemma 1, the maximum a posteriori estimation of D(k) is u(k). According to the law of

large numbers, the estimation errors decrease proportionally with an increase in the number of sample points,
implying that:

lim [F(%)] =0 (49)

Besides, the covariance function k(x,x") applied in this paper is the radial basis function (RBF) kernel
given by:

k(x,x') = o exp {_("2—;’“)2} (50)

where O';- is the variance of the output and / is the length scale parameter.

Eq. (42) also suggests that the estimation error is a zero-means white Gaussian noise (ZWGN) with a
covariance I'(k). Finally, the observer can be expressed as:

D(k) = pulke) + W (), W (k) ~ N'(0,T(k)) 1

For real-time USV control, the GPR-based disturbance observer adopts a sliding-window scheme to
prevent unbounded dataset growth. At each control step & , the most recent 100 samples are retained (N <100)
and older samples are discarded. The model is re-trained every 20 control steps (at step 10 for initialization)
because the floating-ice disturbance varies slowly relative to the controller sampling interval of 7 =10ms .
Overall, the online implementation integrates a sliding-window data management scheme and scheduled
model updates to maintain stable performance under stochastic disturbances while keeping the computation
tractable, which is summarized in Algorithm 1.

12
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Algorithm 1 Online GPR-Based Disturbance Observer (GPR-DO)

Parameter Initialization: Sliding window size N =100; retraining

interval N, pdate

=20 ; controller sampling period 7' =100ms .

GP Model Initialization:
1: Initialize empty dataset D =& and GP hyperparameters.
2: Train the initial GP model (mean g, (-), covariance I'((-) ) using
a few nominal samples or prior knowledge.
Online Update (executed at each control step £ ):
1: Collect the current system state x, =[x,y,w,u,v,r]’ and
compute the residual disturbance sample (xk,aA’k) from model—
measurement differences.

2: Append the new sample (xk,aA’ ,) to the dataset D.
3:1f [D|> N, then

delete the oldest sample to maintain a fixed-size window.
end if

4:Ifmod (k,N,,,,.)=0 or k<10 then

date
Retrain the GP model using the samples in D.
Update the mean and covariance functions #,(-) and I', (-
by maximizing the marginal likelihood.
end if
5: Predict the disturbance for the next step:

i = 1(x,) 2 =0 (0 %00)

6: Output c;’,m to the DISMC controller for real-time disturbance
compensation.
7: Proceed to the next control step k < k +1

This windowed and periodic-update strategy limits the cubic training cost of conventional GPR from
O(N?) to a fixed and manageable level.

Remark 2. The observer Eq.(51) is a fully data-driven method that could estimate the lumped uncertainties
in a probabilistic manner, which does not require any prior knowledge of the system model. This makes it
particularly suitable for USV control problems where the ice resistance is unknown a priori.
4.2 Design of DISMC for trajectory tracking under white Gaussian noise
The dynamic equations of surface vessels with disturbance observer based on GPR can be described as:
{xl (k+1)=Tx,(k)+x,(k)

X, (k+1) =T(F(k)+G(k)u(k)+ u(k)+W(k))+x,(k) (52)

Using the methodology proposed in Section 3, we derive the DISMC method for system (52). Let
e(k) =x,(k)—x,(k) denote the tracking error and x,(k)=17,(k)= [x(k) y(k) l//(k)]T denote the reference
trajectory. The differentiation of the tracking error can be calculated as:

13
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Ae(k) = e(k +1) —e(k)
=x,(k+1)—x,(k) = (x, (k +1) = x, (k)) (53)
= T, (k) - Ax,, (k)

The filter error is still represented by:
s(k)= %Ae(k) + de(k)=x,(k)— % Ax, (k) + Ae(k) (54)

Differentiating Eq. (54), there is:
As(k) =s(k+1)—s(k)

=X, (k+1)=x, (k) —%(Axd (k+1) = Ax, (k)) + Ale(k +1) —e(k))

(55)
= F(k)+G(k)u(k)+ (k) +W (k) —%(Axd (k+1) = Ax, (k) + AAe(k)
The corresponding nominal system is given by:
Q= F (k) +G(kyu, (k) + pu(k) - % (Ax, (k +1) = x,(k)) + AAe(k) (56)

The controller is still given as u(k)=u_ (k)+u,(k) where u,(k) represents the nominal control and
u (k) represents the robust term. The sliding surface is defined as:

o(k)=s(k)—s(0)- kj[]‘" () + Gty (i) + (i) —% (Ax, ((+1D) —x, () + ﬂAe(i)} (57)
The differentiation of the sliding surface can be calculated as:
Ao(k)=o(k+1)—o(k)
= As(k) = F (k) + G(k)u, (k) - %(Axd (k+1)=x, (k) + Ade(k) (58)
=G(k)u (k)+W (k)

The design of the nominal control is addressed in Section 5. We now give Theorem 2 that solve the
robust term.

Theorem 2. Consider discrete-time system (18) with Assumption 1,2. For any given a,b € R satisfying

ae[al,az]
Jnl(k Jnl'(k (59)
be{(1—@,0)u(2,1+ﬁ)}mH:—oo,l— |;}§)|)}u{1+ |01;]£)|),w}}

where

g 4= o] —J(1=b)’ [ (k) [ —nI'(k)

1

n
L _1=0)|o(k) [ +J(=b) [ (k) } ~nT (k)

2

(60)

n

14
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with n denoting the dimension of the system, there exists a control sequence
u, (k) =G (k)(—asgn(o(k)) —bo(k)) (61)
such that the closed-loop system of system (55) globally a.s. exponentially stable, i.e., Pr[llci_r)g || o(k)|l=0]=1
Proof. The closed-loop system can be derived by substituting Eq. (61) with Eq. (58) as:
o(k+1)=—asgn(o(k))+(1-b)o(k)+W (k) (62)
Denoting m, (k) =—asgn(c(k))+(1—-b)o(k), the Lyapunov function candidate is defined as:
V() =o(k) o(k) (63)
Considering E[W(k)] =0, we have:
B[V, (x(k+1)| x(k)]
= B[ (m, (k) + W (k)" (m, (k) + W (k) ]
= [ m, (k)" my (k) |+ 2B W (k)" m, (k) |n+ B[ W (k) W (k) |
=m, (k) m,(k)+T(k)=a’n+(1-b) o(k) o(k)-2a(1-b)| o(k)| +T'(k)

(64)

Thus, the differentiation of the Lyapunov function can be calculated as:
B[V, (x(k+1)| x(k) |-V, (x(k))
=a’n+(1-b)’c(k) o(k)—2a(l1-b)|o(k)|-oc(k) o(k)+T (k) (65)
=a’n+[(1-b)’ ~1]|o(k) o(k) - 2a(1-b)| o(k) | +T (k)

If a and b satisfy:

o
then:
B[V, (x(k+1)] x(k) |-V, (x(k)) < @ (x(k)) (67)
Moreover, let ¢, = ¢, =1, we have:
¢ x| <V, (x(k)) <, |xk)| (68)

Eq. (67) and Eq. (68) imply that the Expectation of the derivative of the Lyapunov function V;(x(k)) is

not larger than a radial unbounded, positive definite function that has an infinitesimal upper bound. According
to [33], we have:

Pr| limll o) =0 =1 (69)
Eq. (69) implies that the probability that the system trajectory converges to the equilibrium point
o(k)=0 is 1.
Eq. (66) suggests that:
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{O<(l—b) ~1<1 70)

4(1-b)’ |o(k) | —4nT'(k) >0

Thus, we have:

be{(1—ﬁ,o)u(2,1+ﬁ)}m{—oo,l—W}U[HW oo}} 1)

|o (k)| lo(k)|

Meanwhile, a must satisfy:

a<ala,

o = 1=D) 00| 1=0)" | oW -l (®) )

n

, d=Dlo®)] +(1=b)* | o (k)" —nL(k)

2

n

Eq. (71) and (72) guarantees that Eq. (66) holds and further guarantees the stability of system (62).

Under the control law Eq. (61), the system trajectory will converge to the sliding surface with probability
1, even in the presence of uncertainties. In the next section, we will implement the backstepping control to

design the nominal controller u,(k) to ensure that the system trajectory converges to the desired trajectory.

5. Design of the nominal controller implementing backstepping control

The nominal system considered in the section is given by:

x,(k+1)=Tx,(k)+x,(k)
5, (k1) = T(F (k) + Gy (k) + (k) + x, (k) (73)
Firstly, denoting z,(k) =x,(k)—x,(k), we have:
z,(k+1)=Tx,(k)—Ax, (k) +z,(k) (74)

If Tx,(k)—Ax, (k) =—kz (k) and 0 <k, <2, then Eq. (74) is stable. The virtual control errors is defined

as:

o, (z,(k)) =—kz,(k)+ Ax (k) (75)
Secondly, denoting z,(k) =Tx, (k) -, (z,(k)), we have:
z,(k+1)—z,(k)
=T(F (k) +G(k)uy (k) + p(k)) = (=k (2, (k +1) — z, (k) + Ax, (k +1) - Ax, (k)) (76)
= T(F (k) + Gk )y (k) + p(k)) = ki'z, (k) — (Ax, (k +1) = Ax, (k)
If
T(F(k)+G(k)u, (k) + p(k)) —(Ax, (k+1)—Ax, (k) =—k,z,(k),0< k, <2 (77)

then z,(k+1)=(1-k,)z,(k)—k’z (k) . Therefore, the closed-loop equation for system |z, zz]T can be
calculated as:
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24D [a-k)1, 0 [z
SN I TR VY [ENTS 78
The characteristic equation of system (78) is given by:
[ﬁ—(l—kl)][ﬂ.—(l—kz)]:() (79)

Thus, the eigenvalues of system (78) are 4, =1—k, and 4, =1-k,. Noting that 0<k,k, <2, we have
-1< 4,4, <1, implying that the closed-loop system (78) is globally and exponentially stable.

Finally, the nominal control is given by:

uy (k) = g_l(k){%[_kzzz (k) + (Ax, (k +1) = Ax, (k) = pa(k) = F (k)]

(80)
2, (k) = Ty (k) + ky (x, (k) — x, (k) — Ax, (k)
The block diagram of the overall control scheme in this paper can be seen in Figure 2.
\Controller | : Disturbance
@ > DISMC Robust | * (%) :
+ Controller : *7:(777 v, t) ,
Virtual velocity Backstepping U(k) U(k) >

control command Controller

Reference Ma (k)
Trajectory + A e (k)

|

|

GPR-based :
Disturbance |
Observer |
|

|

|

|

|

A A

State Feedback

Fig. 2 The block diagram of the control scheme

6. Simulations

6.1 Simulation environment

We now give the stochastic disturbance model implemented in the simulation, including disturbance
generated by ice floes, winds, waves, and currents.

According to [38,39], the resistance caused by ice floes on the USV is related to the ice thickness /,
the density of ice p,, Froude number F : and the velocity of the USV V', as given by:

7

F. (.v,t)=]0.5C,p,BHV " -cosyr  0.5C,p,BHV 5" -siny OT

_kb
C,=kF, (81)
E, =V/\gHn

where C, denotes the ice resistance coefficient depending on the modified Froude number F,,p , B denotes

the beam width of the vessel, k. and k, are empirical coefficients associated with the Froude number, and g
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represents the gravitational acceleration. The modified Froude number £, describes the dimensionless
velocity of the vessel in an icy environment.

To simulate the stochastic ice disturbance, both /I and p, are set as colored noise given by:

H:HO+WH(k)’pi:pi0+VVp(k) (82)

where both W, (k) and W (k) are colored noise processes generated by low-pass filters applied to white

Gaussian noises.

To further validate the statistical characteristics of the generated brash ice thickness signal, we visualize
its behavior both in the time domain and the probability domain. Figure 3 shows the time-varying disturbance
in brash ice thickness produced by the colored noise model, illustrating the slow-varying, inertial nature of
environmental fluctuations. Figure 4 presents the probability distribution of the generated brash ice thickness,
along with a fitted Gaussian curve. The histogram demonstrates that the colored noise output approximately
follows a Gaussian distribution, which aligns with the assumption of zero-mean stationary stochastic processes
stated in Assumption 3. This confirms the rationality of using the proposed second-order low-pass filter to
simulate realistic ice thickness variations.

Bra15h Ice Thic}(lness Digyu:bance lqduced by polor?d Nf)i(se ovaer Time e Pr(zbabili’ty Dis‘tributitl)n of Brash !ce Thickne§s Disgurbaqce
ol | I “. - ;\‘ | | I T
o8} } ’ H i ’ ”‘ ‘ ‘ ‘ H ‘ _ £ 35
. |l ‘.f.’ IR R _
o.ll | (1) u‘ ,M i n il g
5 | | | ;"” i W I LM |
NI TN
éo“H 'm H 'u‘ "\ ‘I L‘\ H‘\ | ! | | 2 il
mo.a#”\ . l” ‘ H W ‘““ \|J g .l

_ y v\ ‘ “ ’H ”f\' ‘r' ‘ \ \ﬂ
0.2 “ ' ‘ ‘ ‘ [l ’ | ‘ 05 M

A 1 | R A B 1 0 ~

o

L
0 50 100 150 200 250 300 0.1 0.2 03 04 0.5 06 0.7 0.8 0.9 1

Time t (s) Brash Ice Thickness H (m)
Fig. 3 Time-varying brash ice thickness disturbance modeled Fig. 4 Time-varying brash ice thickness disturbance
by colored noise modeled by colored noise

The wave spectrum model implemented in the simulation is the Pierson-Moskowitz spectrum [2] given
by:

S(ew) = “wgs exp{—ﬂ(%j } (83)

where w =2x f with f representing the wave frequency in Hertz, ¢ =g /U, s with U, representing the
wind speed at a height of 19.5m above the sea surface,  and £ are empirical coefficients. The disturbance

of wind and currents are all time invariant signal. Coefficients implemented in the simulation are listed in
Table 1.

To characterize the wave-induced stochastic disturbances under different wind conditions, the classical
Pierson-Moskowitz spectrum is adopted, as described in Eq. (83). Figure 5 illustrates the variation of the wave
energy spectral density under different wind speeds. The spectrum demonstrates a peak shifting behavior as
wind speed increases, with higher wind speeds producing higher energy levels at lower frequencies. Both

. . . 2 2 .
representations, in units of m” -s and m~/Hz , are shown for comparison and completeness.
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Table 1. Coefficients used in the simulation environment

Parameter Value
H, 0.1m
-3
Pio 900kg -m
-1
U19.5 Sm-s
k 0.6
c
k, 0.9
-3
@ 8.1x10
Yij 0.74
1F;iz_erson-Moskowitz Spectrum for Different Wind Speeds 5 Pierson-Moskowitz Spectrum (Adjusted Units)
U=5m/is U=5m/s
—U=7ms 181 —U=7mis
10 F U=9mis U=9m/is
—U=11ms 16 —U=11m/s
U=13m/is U =13m/s
U=15m/s 14} U=15m/s
8r U=17m/s U=17m/s
- U=19m/s w12}t »773;13@75
o =
Es £ 1
3 =
@ @ 08}
sl
0.6
0.4}
ol
§ "L
0 - 0 - - . )
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Frequency (Hz) Frequency (Hz)

Fig. 5 Pierson-Moskowitz spectrum under varying wind speeds in units of m°-s and m* / Hz

6.2 Simulation results

Numerical simulations are conducted by implementing the 4th order Runge-Kutta method in the following
environment. Parameters of the dynamic model of the USV implemented in the simulations are given as
follows:

0 0
M = 0 m,, m,,
0 my, my
;(v)
)= ()
—Ci3 (V) —Cy3 (V) 0 (34)
d,,(v) 0 0
D(v) = { dy,(v) dy(v)
dsz (v) dy(v)
G(n)= [0 0 0
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where m,, =25.8, m,, =24.6612, m,; =1.0948 , m,, =1.0948 , my; =2.76 , c;(v) =—24.6612v—1.0948r ,
¢, ()=258u , and d,(v)=0.7225+1.3274[u|+5.8664u’ , d,,(v)=0.8612+36.2823|]+8.05| ,
d,,(v)=— 0.1079+0.845|v|+3.45|r|, d;,(v) =—0.1025-5.0437y| -0.13|r], dy;(v) =1.9—0.08u|+0.75|r].

The forces and torques generated by wind, wave, and current are chosen as:

61’ + 6sin(uv) + 50sin(0.5¢) — 50sin(0.1¢)

T, =|4.5u" +4.5 sin(u)+35sin(0.5t—%)—505in(0.3t) (85)

—~0.247° —30sin(0.9¢ + %) ~30sin(0.1¢)

We also consider the uncertainty of the model, such that:
Tep =6:C, (v)v+8,D,(v)v (86)

where 6. =0.3sin(0.52¢-0.12) and &, =—0.25¢c0s(0.13¢+0.67).

Two different cases are considered in the simulation study.
1. Casel:
The reference trajectory can be described as:

X, 4sin(0.02¢)
7, =| ya |=]2:5(1-cos(0.02¢)) (87)
v, 0.02¢

The initial state of the vessel is set to 7(0)=|1.2 1.2 %} and V(O)z[O 0 O].

2. Casell:
The reference trajectory can be described as:
X, 4sin(0.02¢)
m,=| ¥y, |=|2.5sin(2-0.02t) 88)
V4 0.02¢

The initial state of the vessel is set to 77(0) = [—1 0 0] and v(O) = [0 0 0].

The proposed method is compared with the state-of-art continuity approaches, including SMC,
backstepping control, ISMC, backstepping ISMC (BISMC). In simulations using SMC, a linear sliding surface
and a constant rate reaching law given by

s =—Q sgn(s) (89)
where 0=[100 100 IOI]T. The backstepping control employed in the simulations is designed using the
same method mentioned in Section 5 with gains selected as k£, =10 and &, =10. The ISMC employed in the

simulations are develop based on a integrate sliding surface with parameters selected as [5 5 5]T and a
constant rate reaching law with parameters of [100 100 101]T . The BISMC employed in the simulations
are develop based on [25]. The gains of the nominal controller of DISMC with GPR method employed in the
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simulations are selected as k, =5 and k, =5. a and b of u (k) in Eq. (19) are given as the minimum value
in the solution set.

Ship trayectories
T T T T

Reference trajectory

51 e - - BISMC i

- - - - - DISMC with GPR
” \----BS
----sMc
----1IsMC
4 / N\ 8
4 \
sk / i
|
1
\
\
\
\
\

y-coordinate

x-coordinate

Fig. 6 Case I: Reference trajectory and real trajectory of the USV under the BS, SMC, ISMC, BISMC, and DISMC with GPR
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Fig. 7 Case I: Comparison in tracking error in x -axis, Fig. 8 Case I: Velocity trajectories of x -axis (X ), y -axis
y -axis, and ¥ -axis under the BS, SMC, ISMC, BISMC, and (7 ), and ¥ -axis (y )under the BS, SMC, ISMC, BISMC,
DISMC with GPR. Tracking errors for ¢ € HO, 400] with a and DISMC with GPR. Detailed view for ¢ € [0,0.5] that
detailed view fort € [370, 400 shows the effect of the peaking phenomenon at the USV
velocities

The trajectory tracking results for Case I are shown in Figure 6 - Figure 12. Figure 6 compares the
reference trajectory with the trajectories generated by the five controllers. Figure 6 and Figure 7 show that the
proposed method has the fastest convergence time while the convergence time of SMC method is the slowest.
Moreover, the overshoot of the sliding mode controls is small compared with the backstepping control. This
is because the control command provided by the backstepping control is proportional to the kinematic tracking
error. Figure 8 provides a clear depiction of the initial velocity transients and the resulting peak responses,
which are critical for evaluating dynamic control performance.

Comparisons of the trajectory tracking errors under the proposed method and the state-of-the-art
methods are further shown in Figure 7 with mean square errors each controller listed in Table 2. Simulation
results demonstrate that the mean square error of the proposed method is the smallest among all the tested
methods. SMC, BC, ISMC, and BISMC methods show stronger oscillation compared to the proposed method,
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which is because the proposed method employ a disturbance observer that significantly increases the
robustness of the closed-loop system.

Control in axis x [N]

200 2000
100 0
e 0 ©
-2000
-100
200 -4000
0 100 200 300 400 0 02 04 06 08 1 1.2
Time [s] Time [s]
Control in axis y [N]
200 1000
BISMC
100 DISMC with GPR
500 8BS
= o0 = SMC
= I ISMC
-100 4
-200
-500
0 100 200 300 400 0 02 04 06 08 1 12
Time [s] Time [s]
Control in orientation angle [N]
100 100
50 4
z 9 = -100
e [
-50 -200
-100 -300
0 100 200 300 400 0 02 0.4 06 08 1
Time [s] Time [s|

Fig. 9 Case I: Control efforts provided by BS, SMC, ISMC, BISMC, and DISMC with GPR. Control inputs for ¢ € [O, 400] in the
left column. The right column shows a detailed view for ¢ € [0, 1 .2] that demonstrates the peaking phenomenon at initial instants

Table 2. Comparison of mean square errors (MSEs) under the BS, SMC, ISMC, BISMC, and DISMC with GPR

Controller MES of x—y space MES of ¢ space
Backstepping 0.0015 0.0124
SMC 0.0010 0.0011
ISMC 0.0013 0.0005
BISMC 0.0009 0.0003
DISMC with GPR 0.0008 0.0003

Control commands shown in Figure 9 verify that the proposed method provides less chattering compared
to the ISMC and SMC. Consequently, numerical simulation results demonstrate that the proposed method
converges faster while provided smaller tracking error than the state-of-art approaches.
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Fig. 10 Case I: Displays the lumped disturbances in all three Fig. 11 Case I: Demonstrates the Gaussian Process
degrees of freedom under the BS, SMC, ISMC, BISMC, and Regression (GPR)-based modeling of lumped disturbances
DISMC with GPR under the DISMC with GPR controller
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Fig. 12 Case I: [llustrates the forces acting on the USV in the presence of floating ice fragments in the x and y directions, as
well as the ice thickness distribution and its probability density function

Disturbance, GPR-DO, and ANN-DO Predictions for x-axis
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Fig. 13 Case I: Comparison of lumped disturbance predictions using GPR-DO and ANN-DO under ice floe sea states

Figure 10 illustrates the variations of the lumped disturbances acting on the system in the x, y and
w directions. These disturbances include model uncertainties and external environmental forces.

Figure 11 focuses on the proposed DISMC with Gaussian Process Regression (GPR), showing how
GPR models the lumped disturbances. In this method, GPR is employed to estimate the unknown disturbances
online and incorporate them into the control law for compensation, thereby enhancing control performance.
The figure shows the fitting and prediction results of the GPR model, which closely match the actual
disturbances. The accuracy of the GPR-based estimation confirms the effectiveness of the proposed control
strategy in handling uncertain and time-varying disturbances.

Figure 12 depicts the forces acting on the system in the x and y directions under a floating ice
environment, as well as the ice thickness distribution and its probability density. It is clearly observed that the
forces in both directions increase significantly with the thickness of the ice, highlighting the impact of
environmental variability on the USV's dynamics.

To validate the efficacy of the proposed GPR-based disturbance observer (GPR-DO) against
conventional ANN-based DOs, Fig. 13 illustrates the real-time predictions of lumped disturbances (including
stochastic ice floe resistance) across the three degrees of freedom (DOF) for the USV. The actual disturbances,
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synthesized via an Ornstein-Uhlenbeck process mimicking ice impacts [4-6], exhibit significant stochastic
variations, particularly in the yaw DOF due to rotational torques from floe collisions. As shown, the GPR
mean predictions closely track the true disturbances with minimal bias, while the 95% confidence intervals
(shaded regions) effectively capture the epistemic uncertainty without prior distributional assumptions - a key
advantage over ANN, which relies on deterministic point estimates and shows larger deviations during
transient phases (e.g., initial 10-20 s with limited data).
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Fig. 14 Case II: Reference trajectory and real trajectory of the USV under the BS, SMC, ISMC, BISMC, and DISMC with GPR
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The trajectory tracking results for Case II are shown in Figure 14 and Figure 15. Similar to the previous
simulation, the proposed DISMC with GPR generates relatively smooth control inputs, under which the USV
converges more rapidly to the desired trajectory. These results further validate the superior tracking
performance and robustness of the proposed control scheme, particularly in the presence of environmental
disturbances and model uncertainties.

7. Conclusion

In this work, we proposed a discrete integral sliding-mode trajectory tracking control with a disturbance
observer based on Gaussian process regression for uncertain unmanned surface vessels operating in ice-
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covered ocean areas. The method has ensured precise trajectory tracking under disturbances from winds,
waves, currents, and ice floes. We established the stability criterion of the discrete closed-loop system under
bounded lumped uncertainties using discrete stochastic system theory and further analyzed stability when the
estimation error was Gaussian distributed. Simulation results have demonstrated the superior performance of
the proposed method. This study has provided a basis for developing probabilistic observer—based hybrid
control approaches, and future work will address input saturation and actuator faults.
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