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A B S T R A C T  

By considering the disturbance caused by ice floes in polar regions, the trajectory 

tracking control problem for uncertain unmanned surface vessels (USVs) is 

investigated in this paper. USVs for trajectory tracking missions in polar regions are 

required to not only overcome common disturbances and perturbations such as model 

uncertainties and environmental disturbances caused by winds, waves and currents, 

but it must also consider the stochastic resistance generated by ice floes. However, 

studies on the stochastic model of ice floes resistance on USVs are insufficient, making 

it difficult to a design tracking controller. This paper proposes a discrete integral 

sliding-mode control (DISMC) with a disturbance observer based on Gaussian process 

regression (GPR) technique, which could steer uncertain USVs to track predefined 

trajectories under disturbance without knowing its upper bound. Compared to the 

existing methods for USV control, (1)  to the best of our knowledge, this study is 

among the first to address the trajectory tracking control problem of USVs in ice-floe 

sea conditions; (2) a novel fully data-driven disturbance observer is proposed that 

approximates the mean and autocorrelation function of the lumped uncertainties 

without requiring prior knowledge about the stochastic ice resistance; and (3)  a novel 

DISMC given the autocorrelation function of uncertainties instead of the uncertain 

upper bound is proposed and proved to be stable with a probability of 1. The proposed 

method offers a significant approach for controlling USVs in ice-covered sea areas.

1. Introduction 

The environment in polar regions has garnered global attention. Unmanned and autonomous exploration 

through predefined trajectories in ice-covered ocean areas is a vital technology for future scientific research 

and commercial exploitation in polar regions [1]. During explorations and expeditions through extreme 

environments in polar regions, the motion of unmanned surface vessels (USVs) is affected by winds, waves, 

currents, and the uncertain resistance caused by ice floes. A reliable trajectory tracking strategy under 

perturbations and disturbances is a key technology that determines the success or failure of the exploitation 

missions. From the perspective of stochastic analysis theory, the spectrum of ocean waves, winds, and currents 

has been well established and verified since the 1990s [2]. The maneuverability of ships under the influence 
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of winds, waves, and currents has been extensively investigated [3]. However, prior knowledge about the 

stochastic properties of disturbance forces caused by ice floes is insufficient [4-6]. Thus, the control strategies 

that could steer USVs in ice-covered ocean areas are required to not only overcome common disturbances and 

perturbations such as model uncertainties and environmental disturbances caused by winds, waves, and 

currents, but it must also consider the stochastic resistance generated by ice floes. However, traditional 

trajectory tracking control methods often require the stochastic properties of the uncertainties, such as the 

upper bound, to be known beforehand, making it a significant challenge when addressing the tracking problem 

in the aforementioned scenario — this places a premium on trajectory tracking control for uncertain USVs. 

Trajectory tracking control methods for USVs can be classified in two aspects: model-free controls and 

model-based controls. PID or PD control are conventional model-free methods, which have limited robustness 

to uncertainties and disturbances [7,8]. To improve their adaptability, adaptive variants have been developed, 

for example an adaptive proportional–integral–derivative controller based on soft actor–critic (SAC-PID) has 

been proposed in [9], demonstrating enhanced robustness in uncertain marine environments. Intelligent 

algorithm such as fuzzy logic and artificial neural network (ANN) is then developed to improve the 

adaptability and robustness of PID or PD control to uncertainties [10,11]. However, these methods still provide 

insufficient precision when addressing uncertain systems. In addition, approaches based on fuzzy logic may 

provide high steady-state error. Data-driven theories, like deep learning (DL), reinforcement learning (RL) 

and etc, are advanced model-free methods for USVs control, which enables USVs to learn control strategies 

from datasets. However, large-scale real-world dataset are needed for the learning-based methods, and the 

stability of the closed-loop system must be carefully validated. To further improve the control performance, 

model-based control methods, such as the sliding mode control (SMC) [12], backstepping control [13-15] and 

model predictive control [16-19] are developed. Nonlinear adaptive heading control for underactuated surface 

vessels with constrained input and sideslip angle compensation has been investigated in [20], providing 

improved maneuverability under realistic dynamic constraints. Moreover, in practical navigation scenarios, 

trajectory and speed control in curved channels has also been studied [21], which further highlights the 

importance of developing robust control strategies under constrained waterways. Model-based methods 

require either the accurate dynamic model of the USV or the stochastic properties of uncertainties, which are 

also sensitive to uncertainties. Disturbances observer methods are developed to improve the adaptiveness and 

robustness of the tracking control by approximating model perturbations and disturbances [22]. The 

disturbances observer is designed to estimate uncertainties and disturbances in the system online and feedback 

the estimation into the controller to compensate for uncertainties and disturbances. Machine learning (ML) 

methods, which provide the ability to approximate nonlinear functions, can also be applied to build such 

observer, making it possible to learn unknown dynamics online, while imposing a significant computational 

burden. Model-based methods provide improved precision and dynamic performance, however, they often 

lack robustness and adaptability. Conversely, model-free methods yield strong control qualities but require 

extensive real-world datasets and significant computational resources. Developing hybrid approaches that 

leverage the strengths of both model-based and model-free techniques is significant to enhancing the 

robustness and adaptability of USVs in uncertain environments, but it has been considered challenging - it is 

this aspect that is addressed here. 

Controllers based on SMC theory are considered a promising way to develop hybrid methods. As a 

robust control method, SMC has been widely used for unmanned systems. By utilizing SMC, the system states 

can be maintained on the sliding surface, ensuring robustness of the closed-loop system against uncertainties 

and disturbances. However, the reaching phase decreases the effectiveness of SMC such that the stability of 

the closed-loop system should be carefully verified. To overcome this issue, the integral SMC (ISMC) is 

proposed that could eliminate the reaching phase while providing a nominal system (the system without 

unknown dynamics) that defines the dynamics of the matched disturbance system [23]. The switching term in 

SMC effectively suppresses the disturbance, although it may cause the chattering phenomenon. A possible 

approach is to introduce DOs to estimate the lumped uncertainties, which could reduce the switching gain 

thereby enhancing adaptability while mitigating chattering effects [24,25]. Furthermore, using ML methods 

to establish DOs suggests a hybrid approach. This method combines the precision and good dynamic 
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performance of model-based approaches with the benefits of model-free methods in approximating 

uncertainties. 

Although conventional hybrid methods have shown promising results in control performance and 

eliminating chattering, these methods rely on expert experience or large prior experimental data [26]. Hybrid 

methods integrating an ML-based DO into a controller with an SMC structure show effective performance; 

however, several issues remain. First, the estimation error of the learning-based DO is often assumed to be 

bounded [26]. For ANN-based DOs, this assumption can be guaranteed according to the Weierstrass 

approximation theorem [27]. ANN-DOs have been successfully applied in marine control, such as adaptive 

SMC for USVs under wave disturbances [25], but they require substantial training data and offer limited 

interpretability due to their black-box nature. In contrast, probabilistic methods like the invariant extended 

Kalman filter [28] and Gaussian process regression (GPR) [29] provide posterior distributions (often zero-

mean Gaussian) that do not always satisfy bounded error assumptions, invalidating traditional stability criteria 

reliant on deterministic bounds. 

To address these, GPR has emerged as a powerful tool in control literature for non-parametric 

disturbance estimation, particularly in stochastic and data-scarce environments. GPR-based DOs enable online 

approximation of nonlinear disturbances without assuming prior distributions, leveraging kernel functions to 

model correlations in residuals [30]. Recent works have demonstrated GPR-DOs in rejecting unmodeled 

dynamics for inverted pendulums and urban air mobility systems, where GPR compensates for multi-

dimensional disturbances using small datasets (e.g., <500 samples), outperforming ANN in sample efficiency 

by 2-3 times. In marine applications, GPR has been integrated with model predictive control for trajectory 

tracking under uncertain currents and fixed-time control for USVs, quantifying uncertainty via confidence 

intervals to enhance robustness. Compared to ANN-DOs, GPR-DOs provide not only point estimates but also 

variance predictions, facilitating probabilistic stability analysis in discrete-time systems. Accordingly, the 

controller design and stability analysis given the posterior estimation of uncertainties are worthy of further 

investigations. Moreover, ML methods are developed based on discrete-time dynamic models, but proofs of 

closed-loop stability for existing hybrid methods are often in continuous form [25,31]. Considering the 

advantages of easy implementation and small-sample estimation of probabilistic DOs, it is necessary to 

investigate the design of a hybrid controller and criteria for closed-loop stability for a discrete SMC system 

with posterior estimation following a given probability distribution [32,33]. 

Trajectory tracking control for USVs in uncertain environments such as ice-covered ocean areas shows 

both theoretical and practical challenges. Theoretically, the spectrum of stochastic resistance caused by ice 

floes is not fully established, making it impossible to regulate control parameters as specifically as when 

addressing wind wave disturbances. Although feasible controllers may be established using an arbitrarily 

upper bound on the lumped uncertainties, it may lead to problems such as excessive gain or chattering. In 

practice, it is a significant challenge to obtain real-world data on the stochastic disturbance caused by ice floes, 

both from numerical simulations and from real-world environments, that are sufficiently large and accurate to 

train effective controllers. Consequently, novel control strategies need to be developed. 

Considering the disturbance caused by ice floes in polar regions, the trajectory tracking control problem 

for uncertain unmanned surface vessels (USVs) is investigated in this paper. A discrete integral sliding-mode 

control (DISMC) with a fully data-driven DO, based on Gaussian process regression (GPR) technique, is 

proposed, which could steer uncertain USVs to track predefined trajectories under disturbance without 

knowing its upper bound. Theoretically, the control parameters can be adaptively implemented based on the 

observed lumped uncertainties. In practice, GPR-based observer does not require large, real-world datasets, 

while the stability of the closed-loop system can be ensured. By implementing the proposed method, an 

uncertain USV can trace given trajectories in ice-covered ocean areas, which— to the best of our knowledge—

has not been explicitly addressed in existing studies. Numerical simulations illustrate the superior performance 

of the proposed controller in comparison to the existing methods. The main contributions of this paper can be 

summarized as follows: 

1. A novel hybrid method that consists of a DISMC and a GPR-based DO is proposed for solving the 

trajectory tracking control problem for USVs under disturbance caused by ice floes. 



Q. Zhao et al. Brodogradnja Volume 76 Number 2 (2026) 77206 

 

4 

 

2. Compared to the existing disturbance observer [22,25,26,34], a novel disturbance observer based on GPR 

technique is proposed that the mean function and autocorrelation function of the lumped uncertainties can 

be estimated in a fully data-driven manner without requiring prior knowledge. 

3. Compared to the conventional ISMC [25,26,35], a novel DISMC given the autocorrelation function of 

uncertainties instead of the uncertain upper bound is proposed and proved to be stable with a probability 

of 1. 

This paper is organized as follows. Section 2 introduces the necessary preliminaries including the discrete 

3 degrees of freedom dynamic equations of surface vessels, assumptions considered in this paper, and problem 

descriptions. For a discrete stochastic system with bounded uncertainties, a trajectory tracking control based 

on discrete integral sliding mode control is proposed and the closed-loop system is proved to be stable in 

Section 3. A disturbance observer based on Gaussian process regression is proposed in Section 4, which 

improves the control quality under stochastic uncertainties. A discrete integral sliding mode control 

considering Gaussian white noise and the proof of stability are also given in Section 4. The nominal control 

that stabilizes the dynamic system without uncertainties based on the backstepping technique is given in 

Section 5. Numerical simulations are conducted and discussed in Section 6, which demonstrate the superior 

performance in comparison with traditional trajectory tracking methods for surface vessels. Section 7 

concludes this paper. 

Notation. Throughout this paper, n m  denotes the n m  dimensional Euclidean space. 0  denotes 

the set of all natural numbers. | |v and v  denotes the 1-norm, i.e., the sum of the absolute values of the 

elements, and the 2-norm of vector v , respectively. Pr( )X  and  X  denote the probability and the 

mathematical expectations of a stochastic variable X , respectively. n n

nI   represents a n n  identity 

matrix. For a vector  1 2 nY y y y=  , ( )  1 2sgn sign( ) sign( ) sign( ) : n n

nY y y y=  →  

represents the vector sign function, where sign( ) :y →  is given by: 

,s 0ig

1, 0

( ) 0

1, 0

n

y

y y

y




= =
− 

 (1) 

The superscript   is used to denote the transpose of a vector or matrix. 

2. Preliminaries and problem formulation 

2.1 Discrete 3 degrees of freedom dynamics of a surface vessel 

The 3 degrees of freedom (3-DOF, surge, sway, and yaw) dynamic model of a USV considered in this 

paper is given as follows. As shown in Figure 1, the surge, sway, and yaw motion are represented as x , y  

and  , and surge, sway, and yaw velocities are represented as xv , 
yv  and v , respectively. 

Reference trajectory

 

Fig. 1  Definition of reference coordinate frames of the vessel dynamics 
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Let   3x y = 


 and 3

x yv v v v =   


 , the 3-DOF dynamic equations of the surface 

vessel are given by [36]: 

( )

( )

( ) ( ) ( ) , , ( , , )ice

J v

Mv C v v D v v G F v t F v t

 

   

=


+ + + = + +




 (2) 

where the rotation matrix ( )J   is defined as: 

cos sin 0

( ) sin cos 0

0 0 1

J

 

  

− 
 

=
 
  

 (3) 

3 3M   is a symmetric positive-definite inertia matrix. 
3 3( )C v   represents the centripetal and 

Coriolis torques matrix. 3 3( )D v   is the damping matrix. 
3( )G v    represents the gravitational matrix. 

3( , , )F v t   denotes the lumped model uncertainties, including modeling uncertainties and forces and 

torques generated by winds, wave, and current, given by: 

( ), , dis CDF v t  = −  (4) 

where dis  are forces and torques generated by wind, wave, current, and 
CD  represents model uncertainties 

in ( )C v  and ( )D v , the details are as follows: 

( ) ( ) ( )

( ) ( ) ( )

0

0

1

1

C

D

C v C v

D v D v





= +

= +
 (5) 

where 
0( )C v  and 0 ( )D v  correspond to the nominal parts of the dynamic model, and 

C  and 
D  account for 

the unmodeled or uncertain components. 3( , , )iceF v t   represents the additional resistance exerted by ice 

floes on the USV. 

Let  1 2  x x x   = =  
  , and  x yu     = =  


, we have: 

1 1

2 ( ) ( ) ( ) ( ( ) ( ) ( ) ( , , ) ( , , ))

( ) ( )( ( ) ( ) ( ) ( , , )) ( ) ( )( ( , , ))

( ) ( , ) ( , , )

ice

ice

x J v J M J M C v v D v v G F v t F v t

C v v D v v G F v t J v F v t

u v v t

      

       

  

− −= + + − − − − −

= + − − − − + −

= + +







 (6) 

where: 

1( ) ( ) ,

( , ) ( )( ( ) ( ) ( ) ( , , )) ( )

( , , ) ( )( ( , , )).

ice

J M

v C v v D v v G F v t J v

v t F v t

 

    

  

−=

= − − − − +

=









 (7) 

The 3-DOF dynamic model can be described as an affine nonlinear system given by: 

1 2

2 ( , ) ( , , )

x x

x u v v t 

=


= + +



 
 (8) 
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Assume a sampling interval of [0, ]T +   , where   denoting the upper bound on time, 

0[0, ]k
T

  


, and  1 2( ) ( ), ( )x k x k x k=


, and denoting: 

( ) ( ( ))

( ) ( ( ), ( ))

( ) ( ( ), ( ), )

k k

k k v k

k k v k k







=

=

=







 (9) 

the discrete 3-DOF dynamics of the surface vessel is given by: 

1 2 1

2 2

( 1) ( ) ( )

( 1) ( ( ) ( ) ( ) ( )) ( )

x k Tx k x k

x k T k k u k k x k

+ = +


+ = + + + 
 (10) 

Note that ( )k  is invertible and ( )k  is a stochastic process representing the lumped uncertainties. The 

nominal system is given by: 

1 2 1

2 2

( 1) ( ) ( )

( 1) ( ( ) ( ) ( )) ( )

x k Tx k x k

x k T k k u k x k

+ = +


+ = + + 
 (11) 

System (10) is a stochastic nonlinear system. The reason for that a discrete-time dynamic model is 

considered is given as follows. If the continuous-time model is utilized, the system with lumped uncertainty 

becomes a stochastic differential system. In this case, the calculus of lumped uncertainty process must be 

considered and the synthesis method for deterministic systems cannot be applied. In contrast, using the 

description in Problem 2, system (11) becomes a Markov process and the sequence of states { }kx  becomes a 

Markov chain. Thus, the discrete stochastic systems theory is capable of system synthesis. 

2.2 Problem formulation 

In this paper, following assumptions according to system (10) would be applied. 

Assumption 1. The reference position trajectory { ( )}dx k  of system (10) is Lipschitz continuous, i.e., its 

sufficiently high order derivatives are known and bounded. 

Assumption 2([13]). All states in system (10) are available for feedback and bounded. 

Assumption 3. The lumped uncertainty ( )k  in system (10) is a zero-mean stationary stochastic process with 

an autocorrelation function of 
1 2( , )R k k . 

Remark 1. Based on Assumption 1 and Assumption2, reference trajectories would be smooth enough to satisfy 

the maneuverability of USVs in practice and the states feedback control is feasible (neglecting the 

measurement errors). Assumption 3 is a commonly used assumption when addressing the stochastic system. 

Traditional trajectory tracking control problem generally assume that the lumped uncertainty ( )k  is 

bounded, i.e., for every k  , there exists a constant   such that: 

( ) ( )k k‖ ‖  (12) 

Under this assumption, the traditional trajectory tracking control problem is given as follows. 

Problem 1. Considering system (10) with Assumption 1, Assumption 2, and Eq.(12), design a control sequence 

{ ( )}u k  making the tracking errors 
1( ) ( ) ( )de t x k x k= − , where ( )dx k  satisfies Assumption 1 denotes the 

reference trajectory, converges to 0. 

However, when solving the trajectory tracking problem involving disturbance caused by ice floes, the 

upper bound of the lumped uncertainty cannot be appropriately defined. An arbitrary   may increase control 
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gain and amplify chattering. Besides, if data-driven approaches are employed to estimate the uncertainties, 

only ANN-based DOs can provide estimations with guaranteed error bounds. The challenge lies in the 

substantial amount of prior data required to train such network estimators – data is often difficult to obtain in 

real-world applications (for instance, the mechanical properties of sea ice floes in a specific region). To relax 

the assumption of bounded uncertainties and enable USVs to achieve trajectory control without prior 

knowledge about disturbance, Assumption 3 is introduced. This assumption is also capable of methods 

estimating the autocorrelation function of a stochastic process, particularly when leveraging a Bayesian 

framework.  Therefore, the problem to be solved in this paper is given as follows. 

Problem 2. Considering system (10) with Assumption 1, Assumption 2, and Assumption 3, design a control 

sequence { ( )}u k  making the tracking errors ( )e t  converges to 0. 

Problem 1 is solved using the DISMC method in Section 3, which is also the foundation for solving 

Problem 2. 

3. Design of DISMC for trajectory tracking control for surface vessels under bounded stochastic 

uncertainties 

The change of tracking errors over time is defined as: 

1 1

2

( ) ( 1) ( )

( 1) ( ) ( ( 1) ( ))

( ) ( )

d d

d

e k e k e k

x k x k x k x k

Tx k x k

 = + −

= + − − + −

= −

 (13) 

The filter error is defined as: 

2

1 1
( ) ( ) ( ) ( ) ( ) ( )ds k e k e k x k x k e k

T T
 =  + = −  +  (14) 

where   is a constant. Differentiating Eq. (14) with respect to k  and applying Eq. (10), there is: 

( )2 2

( ) ( 1) ( )

1
( 1) ( ) ( 1) ( ) ( ( 1) ( ))

1
( ) ( ) ( ) ( ) ( ( 1) ( )) ( ).

d d

d d

s k s k s k

x k x k x k x k e k e k
T

k k u k k x k x k e k
T





 = + −

= + − −  + − + + −

= + + −  + − + 

 
(15) 

Let 
0( ) ( ) ( )su k u k u k= + , where 

0( )u k  represents the nominal control which is utilized to control the 

nominal dynamics, i.e., the system without uncertainties, given by: 

0

1
( ) ( ) ( ) ( ( 1) ( )) ( )d dk k u k x k x k e k

T
 = + −  + − +   (16) 

and ( )su k  is the robust term. The sliding surface is defined as: 


1

0

0

1
( ) ( ) (0) ( ) ( ) ( ) ( ) ( ( 1) ( )) ( )

k

d d

i

k s k s i i u i i x i x i e i
T

  
−

=


= − − + + −  + − +  


   (17) 

Thus, the differentiation of the sliding mode surface with respect to k  can be calculated as: 

0

( ) ( 1) ( )

1
( ) ( ) ( ) ( ) ( ( 1) ( )) ( )

( ) ( ) ( )

d d

s

k k k

s k k k u k x k x k e k
T

k u k k

  



 = + −

=  − + −  + − + 

= +





 (18) 



Q. Zhao et al. Brodogradnja Volume 76 Number 2 (2026) 77206 

 

8 

 

The design of the nominal control 
0( )u k  are addressed in Section 5. The following theorem gives a 

solution to ( )su k  that stabilizes system (15). 

Theorem 1. Consider discrete-time system (18) with Assumption 1, 2 and 3. For 

( ) ( )    1 2,0 2,1 2

,1
| ( ) |

1 ,
| ( ) |

b

n
k

n
k









  −  +

 
 − − 

 

 
 +   
 

 
(19) 

and  1 2,a a a  , where 

2 2 2

1

2 2 2

2

(1 ) | ( ) | (1 ) | ( ) |

(1 ) | ( ) | (1 ) | ( ) |

b k b k n
a

n

b k b k n
a

n

  

  

 − − − −
=




− + − −
=



 (20) 

with n  denoting the dimension of the system, if 

1( ) ( )( ( ( )) ( ))su k k a sgn k b k −= − −  (21) 

then ( ) 0k =  is globally a.s. exponentially stable, i.e., for 
3(0) Pr lim ( ) 0 1

k
k 

→

   = =
 

 ‖， ‖ . 

Proof . Substituting Eq. (21) with Eq. (18), we have: 

( 1) ( ( )) (1 ) ( ) ( )k a sgn k b k k  + = − + − +   (22) 

Define a Lyapunov function candidate given by: 

1( ) ( ) ( )V k k k =   (23) 

such that: 

1

1 1

1 1 1

1 1

2 2

( ( 1)) ( )

( ( ) ( )) ( ( ) ( ))

( ) ( ) 2 ( ) ( ) ( ) ( )

( ) ( ) (0)

(1 ) ( ) ( ) 2 (1 ) | ( ) | (0)

V x k x k

m k k m k k

m k m k k m k k k

m k m k R

a n b k k a b k R  

 +  

 = + + 

     = + +     

= +

= + − − − +

















  (24) 

where 
1( ) ( ( )) (1 ) ( )m k a sgn k b k = − + −  such that: 

1 1

2 2 2

( ( 1)) ( ) ( ( ))

  (1 ) 1 ( ) ( ) 2 (1 ) | ( ) |

V x k x k V x k

a n b k k a b k   

 +  − 

  + − − − − + 




 (25) 

If the following inequality holds: 
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2

2 2

0 (1 ) 1 1

2 (1 ) | ( ) | 0

b

a n a b k 

  − − 


− − + 
 (26) 

then: 

1 1 1( ( 1)) ( ) ( ( )) ( ( ))V x k x k V x k V x k +  −    (27) 

Moreover, making 1 2 1c c= = , we have: 

2 2

1 1 2( ) ( ( )) ( )c x k V x k c x k   (28) 

Eq. (27) and Eq. (28) imply that the Expectation of the derivative of the Lyapunov function 1( ( ))V x k  is 

not larger than a radial unbounded, positive definite function that has an infinitesimal upper bound. According 

to [37], we have: 

Pr lim ( ) 0 1
k

k
→

 = =
 

‖ ‖  (29) 

Eq. (29) implies that the probability of that the system trajectory converges to the equilibrium point 

( ) 0k =  is 1. 

We now solve a  and b . The first inequality of Eq. (26) suggests that: 

( ) ( )1 2,0 2,1 2b −  +  (30) 

To ensure that the second inequality in Eq. (26) holds, b  must also satisfy: 

2 2 24(1 ) | ( ) | 4 0b k n − −   (31) 

implying that: 

,1 1 ,
| ( ) | | ( ) |

b n n
k k

 

 

   
 − −  +    
   

 (32) 

Based on Eq. (30) and Eq. (32), we proof Eq. (19). Moreover, if Eq. (32) holds, the quadratic inequality 

with respect to a  must have solutions in  , i.e., 1 2a a a  , where 1a  and 2a  are given by Eq. (20). 

Therefore, the stability of the sliding surface is guaranteed. 

4. Design of DISMC for tracking control with Gaussian process regression of surface vessels 

In this section, an observer based on GPR technique is developed that can estimate the lumping 

uncertainties ( )k . By employing the proposed observer, a novel DISMC is proposed. 

4.1 Disturbance observer based on Gaussian process regression 

The following gives the design of GPR-based observer. GPR provides a method for predicting the output 

of a stochastic process in function space using supervised learning approaches, which has significant 

advantages in nonlinear regression and few-shot learning. To inference ( )k  using { ( )}x k , a Gaussian 

process regressor is designed. 

The training data set is defined as  ( ), ( )X k k  where: 
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 

 

( ) (0), (1), , ( )

( ) (0), (1), , ( )

X k x x x k

k k

= 


=  
 (33) 

Considering Assumption 2, ( )k  can be calculated as: 

2 2( 1) ( 1 )
( )

x k x k k
i

T

+ − +
=

∣
  (34) 

at time 1k +  with 2 ( 1| )x k k+  denoting the predicted state at 1k +  employing the nominal system (11). 

Assuming that ( 1)k − , ( )k , and the joint distribution of ( 1)k −  and ( )k  are Gaussian distributions 

given by: 

( )

( )

( )

1 1, 1

,

( 1) ~ ,

( ) ~ ,

( 1)
~ ,

( )

k k k

k k k

k

k

k

k

− − −−

− 
 
 

μ Λ

μ Λ

μ Σ












 
(35) 

where  1k k−=μ μ μ


 and the covariance matrix Σ  is defined as: 

( )

( ) ( )

1, 1 1,

, 1 ,

( ( 1), ( 1)) ( 1), ( )

( ), ( 1) ( ), ( )

k k k k

k k k k

K X k X k K X k x k

K x k X k K x k x k

− − −

−

 
=  
 

− − − 
=  

− 

Σ Σ
Σ

Σ Σ
 (36) 

where ( , )K    is the covariance matrix function that defines the covariance of data sets { ( )}x k , which can be 

calculated using predefined kernel function ( , )k    as: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(0), (0) (0), (1) (0), ( )

(1), (0) (1), (1) (1), ( )

( ), (0) ( ), (1) ( ), ( )

k x x k x x k x x k

k x x k x x k x x k
K

k x k x k x k x k x k x k

 
 
 =
 
 
  









 (37) 

Using the GPR method, the disturbance ( )k  can be estimated using the state trajectory ( 1)k −  as 

shown in Lemma 1. 

Lemma 1. If ( 1)k − , ( )k , and the joint distribution of them are Gaussian distributions defined as Eq. (35), 

the conditional distribution of ( )k  given ( 1)k −  is also Gaussian, i.e.: 

( )Pr ( ) ( 1) ~ ( ), ( ) ,k k k k −  
   (38) 

where  

( )

( ) ( )

1

1

( ) ( ), ( 1) ( ( 1), ( 1)) ( 1)

( ) ( ), ( ) ( ), ( 1)

( ( 1), ( 1)) ( ( 1), ( ))

k K x k X k K X k X k k

k K x k x k K x k X k

K X k X k K X k x k

 −

−

 = − − − −

 = − −
 = − − −







 (39) 

Proof. The precision matrix of the joint distribution can be calculated as: 
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1, 1 1, 1

, 1 ,

k k k k

k k k k

− − − −

−

 
= = 
 

Λ Λ
Λ Σ

Λ Λ
 (40) 

The quadratic form in the exponent of the Gaussian distribution given by Eq. (35) can be calculated as: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

,

, 1 1

1 1,

1 , 1

1
( ( ) ) ( ( ) )

2

1
( ) ( )

2

1
( ) ( 1)

2

1
( 1) ( )

2

1
( 1) ( 1)

2

k k k k

k k k k

k k k k

k k k k

k k

k k

k k

k k

k k

−

− −

− −

− −

− − −

= − − −

− − − −

− − − −

− − − − −

μ Σ μ

μ Λ μ

μ Λ μ

μ Λ μ

μ Λ μ

























 (41) 

As a function of ( )k , Eq. (41) is again a quadratic form, and hence the corresponding conditional 

distribution Pr ( ) ( 1)k k −  ∣  is still Gaussian. Denoting the means and covariance of the conditional 

distribution as ( )k  and ( )k , respectively, we have: 

( )Pr ( ) ( 1) ~ ( ), ( )k k k k −  
   (42) 

We now derive the expressions for ( )k  and ( )k . Consider the quadratic form in Eq. (41) as a 

function of ( )k , coefficients entering the second order term in ( )k  of Eq. (41) can be calculated as: 

,

1
( ( ) ) ( ( ) )

2
k k k kk k− − −μ Λ μ

  (43) 

Therefore, the covariance of the conditional distribution is given by: 

1

,( ) k kk − = Λ  (44) 

Now consider all the terms in Eq. (41) that are linear in ( )k  given by: 

( ) , , 1 1( ) ( 1)k k k k k kk k− −− − −Λ μ Λ μ
   (45) 

Thus, we have: 

( ) 

( )

1

, , , 1 1

1

, , 1 1

( ) ( 1)

( 1)

k k k k k k k k

k k k k k k

k k

k

 −

− −

−

− −

= − − −

= + − −

Λ Λ μ Λ μ

μ Λ Λ μ




 (46) 

According to the matrix inversion lemma, we have: 

( )
11 1

, 1, 1 , 1 , , 1

1( ( ), ( )) ( ( ), ( ))

k k k k k k k k k k

K X k X k K X k x k

−− −

− − − −

−

= +

= −

Λ Λ Λ Λ Λ



 (47) 

where 

1( ( 1), ( 1)) ( ( 1), ( ))K X k X k K X k x k−= − − −  (48) 
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is the Schur complement of Σ . This ends the proof. 

Based on Lemma 1, the maximum a posteriori estimation of ( )k  is ( )k . According to the law of 

large numbers, the estimation errors decrease proportionally with an increase in the number of sample points, 

implying that: 

lim ( ) 0
k

k
→

 =  (49) 

Besides, the covariance function ( , )k x x  applied in this paper is the radial basis function (RBF) kernel 

given by: 

( )
2

2

2
( , ) exp

2
f

x x
k x x

l


 − −
 =  

  

 (50) 

where 
2

f  is the variance of the output and l  is the length scale parameter. 

Eq. (42) also suggests that the estimation error is a zero-means white Gaussian noise (ZWGN) with a 

covariance ( )k . Finally, the observer can be expressed as: 

( ) ( ) ( ), ( ) ~ (0, ( ))k k W k W k k= +   (51) 

For real-time USV control, the GPR-based disturbance observer adopts a sliding-window scheme to 

prevent unbounded dataset growth. At each control step k , the most recent 100 samples are retained ( 100N  ) 

and older samples are discarded. The model is re-trained every 20 control steps (at step 10 for initialization) 

because the floating-ice disturbance varies slowly relative to the controller sampling interval of 10T ms= . 

Overall, the online implementation integrates a sliding-window data management scheme and scheduled 

model updates to maintain stable performance under stochastic disturbances while keeping the computation 

tractable, which is summarized in Algorithm 1. 
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Algorithm 1 Online GPR-Based Disturbance Observer (GPR-DO) 

Parameter Initialization: Sliding window size 
wN =100; retraining 

interval 20updateN = ; controller sampling period 100T ms= . 

GP Model Initialization:  

1: Initialize empty dataset =   and GP hyperparameters. 

2: Train the initial GP model (mean 
0 ( )  , covariance 0 ( )  ) using 

a few nominal samples or prior knowledge. 

Online Update (executed at each control step k ): 

1: Collect the current system state [ , , , , , ]T

kx x y u v r=  and 

compute the residual disturbance sample ˆ( , )k kx d  from model–

measurement differences.  

2: Append the new sample ˆ( , )k kx d  to the dataset  . 

3: If wN  then  

delete the oldest sample to maintain a fixed-size window. 

end if  

4: If mod ( , ) 0updatek N =  or 10k   then 

Retrain the GP model using the samples in  . 

Update the mean and covariance functions ( )k   and ( )k   

by maximizing the marginal likelihood. 

end if 

5: Predict the disturbance for the next step: 

1 1
ˆ ( )k k kd x+ += , 1 1 1( , )k k k kx x+ + + =   

6: Output 1
ˆ

kd +  to the DISMC controller for real-time disturbance 

compensation. 

7: Proceed to the next control step 1k k +  

This windowed and periodic-update strategy limits the cubic training cost of conventional GPR from 
3( )O N  to a fixed and manageable level. 

Remark 2. The observer Eq.(51) is a fully data-driven method that could estimate the lumped uncertainties 

in a probabilistic manner, which does not require any prior knowledge of the system model. This makes it 

particularly suitable for USV control problems where the ice resistance is unknown a priori. 

4.2 Design of DISMC for trajectory tracking under white Gaussian noise 

The dynamic equations of surface vessels with disturbance observer based on GPR can be described as: 

1 2 1

2 2

( 1) ( ) ( )

( 1) ( ( ) ( ) ( ) ( ) ( )) ( )

x k Tx k x k

x k T k k u k k W k x k

+ = +


+ = + + + + 
 (52) 

Using the methodology proposed in Section 3, we derive the DISMC method for system (52). Let 

1 2( ) ( ) ( )e k x k x k= −  denote the tracking error and  ( ) ( ) ( ) ( ) ( )d dx k k x k y k k = =


 denote the reference 

trajectory. The differentiation of the tracking error can be calculated as: 
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1 1

2

( ) ( 1) ( )

( 1) ( ) ( ( 1) ( ))

( ) ( )

d d

d

e k e k e k

x k x k x k x k

Tx k x k

 = + −

= + − − + −

= −

 (53) 

The filter error is still represented by: 

2

1 1
( ) ( ) ( ) ( ) ( ) ( )ds k e k e k x k x k e k

T T
 =  + = −  +  (54) 

Differentiating Eq. (54), there is: 

2 2

( ) ( 1) ( )

1
( 1) ( ) ( ( 1) ( )) ( ( 1) ( ))

1
( ) ( ) ( ) ( ) ( ) ( ( 1) ( )) ( )

d d

d d

s k s k s k

x k x k x k x k e k e k
T

k k u k k W k x k x k e k
T



 

 = + −

= + − −  + − + + −

= + + + −  + − + 

 
(55) 

The corresponding nominal system is given by: 

0

1
( ) ( ) ( ) ( ) ( ( 1) ( )) ( )d dk k u k k x k x k e k

T
  = + + −  + − +   (56) 

The controller is still given as 
0( ) ( ) ( )su k u k u k= +  where 

0( )u k  represents the nominal control and 

( )su k  represents the robust term. The sliding surface is defined as: 


1

0

0

1
( ) ( ) (0) ( ) ( ) ( ) ( ) ( ( 1) ( )) ( )

k

d d

i

k s k s i i u i i x i x i e i
T

  
−

=


= − − + + −  + − +  


   (57) 

The differentiation of the sliding surface can be calculated as: 

0

( ) ( 1) ( )

1
( ) ( ) ( ) ( ) ( ( 1) ( )) ( )

( ) ( ) ( )

d d

s

k k k

s k k k u k x k x k e k
T

k u k W k

  



 = + −

=  − + −  + − + 

= +





 (58) 

The design of the nominal control is addressed in Section 5. We now give Theorem 2 that solve the 

robust term. 

Theorem 2. Consider discrete-time system (18) with Assumption 1,2. For any given ,a b  satisfying 

 

( ) ( ) 

1 2,

( ) ( )
1 2,0 2,1 2 ,1 1 ,

| ( ) | | ( ) |

a a a

n k n k
b

k k 



      
 −  +  − −  +     

        

 (59) 

where 

2 2

1

2 2

2

(1 ) | ( ) | (1 ) | ( ) | ( )

(1 ) | ( ) | (1 ) | ( ) | ( )

b k b k n k
a

n

b k b k n k
a

n

 

 

− − − − 
=

− + − − 
=

 (60) 
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with n  denoting the dimension of the system, there exists a control sequence 

1( ) ( )( sgn( ( )) ( ))su k k a k b k −= − −  (61) 

such that the closed-loop system of system (55) globally a.s. exponentially stable, i.e., Pr[lim ( ) 0] 1
k

k
→

= =  

Proof. The closed-loop system can be derived by substituting Eq. (61) with Eq. (58) as: 

( 1) sgn( ( )) (1 ) ( ) ( )k a k b k W k  + = − + − +  (62) 

Denoting 
2( ) sgn( ( )) (1 ) ( )m k a k b k = − + − , the Lyapunov function candidate is defined as: 

2( ) ( ) ( )V k k k =   (63) 

Considering  ( ) 0W k = , we have: 

2

2 2

2 2 2

2 2

2 2

( ( 1)) ( )

( ( ) ( )) ( ( ) ( ))

( ) ( ) 2 ( ) ( ) ( ) ( )

( ) ( ) ( ) (1 ) ( ) ( ) 2 (1 ) | ( ) | ( )

V x k x k

m k W k m k W k

m k m k W k m k n W k W k

m k m k k a n b k k a b k k  

 +  

 = + + 

     = + +     

= +  = + − − − +













 (64) 

Thus, the differentiation of the Lyapunov function can be calculated as: 

2 2

2 2

2 2

( ( 1)) ( ) ( ( ))

(1 ) ( ) ( ) 2 (1 ) | ( ) | ( ) ( ) ( )

(1 ) 1 ( ) ( ) 2 (1 ) | ( ) | ( )

V x k x k V x k

a n b k k a b k k k k

a n b k k a b k k

    

  

 +  − 

= + − − − − +

 = + − − − − + 







 (65) 

If a  and b  satisfy: 

2

2

2 (1 ) | ( ) | ( ) 0

0 (1 ) 1 1

a n a b k k

b

 − − + 


 − − 
 (66) 

then: 

2 2 2( ( 1)) ( ) ( ( )) ( ( ))V x k x k V x k V x k +  −    (67) 

Moreover, let 1 2 1c c= = , we have: 

2 2

1 2 2( ) ( ( )) ( )c x k V x k c x k   (68) 

Eq. (67) and Eq. (68) imply that the Expectation of the derivative of the Lyapunov function 1( ( ))V x k  is 

not larger than a radial unbounded, positive definite function that has an infinitesimal upper bound. According 

to [33], we have: 

Pr lim ( ) 0 1
k

k
→

 = =
 

‖ ‖  (69) 

Eq. (69) implies that the probability that the system trajectory converges to the equilibrium point 

( ) 0k =  is 1. 

Eq. (66) suggests that: 
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2

2 2

0 (1 ) 1 1

4(1 ) | ( ) | 4 ( ) 0

b

b k n k

  − − 


− −  
 (70) 

Thus, we have: 

( ) ( )  ( ) ( )
1 2,0 2,1 2 ,1 1 ,

| ( ) | | ( ) |

n k n k
b

k k 

      
 −  +  − −  +     

        

 (71) 

Meanwhile, a  must satisfy: 

1 2

2 2

1

2 2

2

(1 ) | ( ) | (1 ) | ( ) | ( )

(1 ) | ( ) | (1 ) | ( ) | ( )

a a a

b k b k n k
a

n

b k b k n k
a

n

 

 


  


− − − − 
=


 − + − − 
 =


 (72) 

Eq. (71) and (72) guarantees that Eq. (66) holds and further guarantees the stability of system (62). 

Under the control law Eq. (61), the system trajectory will converge to the sliding surface with probability 

1, even in the presence of uncertainties. In the next section, we will implement the backstepping control to 

design the nominal controller 
0( )u k  to ensure that the system trajectory converges to the desired trajectory. 

5. Design of the nominal controller implementing backstepping control 

The nominal system considered in the section is given by: 

1 2 1

2 0 2

( 1) ( ) ( )

( 1) ( ( ) ( ) ( ) ( )) ( )

x k Tx k x k

x k T k k u k k x k

+ = +


+ = + + + 
 (73) 

Firstly, denoting 
1 1( ) ( ) ( )dz k x k x k= − , we have: 

1 2 1( 1) ( ) ( ) ( )dz k Tx k x k z k+ = − +  (74) 

If 
2 1 1( ) ( ) ( )dTx k x k k z k− = −  and 

10 2k  , then Eq. (74) is stable. The virtual control errors is defined 

as: 

1 1 1 1( ( )) ( ) ( )dz k k z k x k = − +  (75) 

Secondly, denoting 
2 2 1 1( ) ( ) ( ( ))z k Tx k z k= − , we have: 

2 2

0 1 1 1

2

0 1 1

( 1) ( )

( ( ) ( ) ( ) ( )) ( ( ( 1) ( )) ( 1) ( ))

( ( ) ( ) ( ) ( )) ( ) ( ( 1) ( ))

d d

d d

z k z k

T k k u k k k z k z k x k x k

T k k u k k k z k x k x k





+ −

= + + − − + − +  + −

= + + − −  + −





 (76) 

If 

0 2 2 2( ( ) ( ) ( ) ( )) ( ( 1) ( )) ( ),0 2d dT k k u k k x k x k k z k k+ + −  + − = −    (77) 

then 2

2 2 2 1 1( 1) (1 ) ( ) ( )z k k z k k z k+ = − − . Therefore, the closed-loop equation for system  1 2z z


can be 

calculated as: 
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1 31 1

2

1 3 2 32 2

(1 ) 0( 1) ( )

(1 )( 1) ( )

k Iz k z k

k I k Iz k z k

−+     
=     

− −+    
 (78) 

The characteristic equation of system (78) is given by: 

  1 2(1 ) (1 ) 0k k − − − − =  (79) 

Thus, the eigenvalues of system (78) are 
1 11 k = −  and 2 21 k = − .  Noting that 

1 20 , 2k k  , we have 

1 21 , 1 −   , implying that the closed-loop system (78) is globally and exponentially stable. 

Finally, the nominal control is given by: 

1

2 2

2

0

2 1 1

1
( ){ [ ( ) ( ( 1) ( )) ( ) ( )]}

( ) ( ) ( ( ) ( )) )

(

(

) d d

d d

u k k z k x k x k k k
T

z k Tx k k

k

k x x k x k

−
− +  + − − −


 = + − −

=




 (80) 

The block diagram of the overall control scheme in this paper can be seen in Figure 2. 

Reference 

Trajectory

Backstepping 

Controller

DISMC Robust

Controller

USV

+ - +

GPR-based 

Disturbance 

Observer

+

Disturbance

Virtual velocity

control command

State Feedback

+

-

Filter error

Nominal model

Controller

 

Fig. 2  The block diagram of the control scheme 

6. Simulations 

6.1 Simulation environment 

We now give the stochastic disturbance model implemented in the simulation, including disturbance 

generated by ice floes, winds, waves, and currents. 

According to [38,39], the resistance caused by ice floes on the USV is related to the ice thickness H , 

the density of ice i , Froude number 
prF  and the velocity of the USV V , as given by: 

( ) 2 2

ice , , 0.5 cos 0.5 sin 0

/

b

p

p

n n

p i p i

k

p c r

r

F v t C BHV C BHV

C k F

F V gH

      



−

 =   

=

=



 (81) 

where 
pC  denotes the ice resistance coefficient depending on the modified Froude number 

prF , B  denotes 

the beam width of the vessel, ck  and bk  are empirical coefficients associated with the Froude number, and g
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represents the gravitational acceleration. The modified Froude number 
prF describes the dimensionless 

velocity of the vessel in an icy environment. 

To simulate the stochastic ice disturbance, both H  and i  are set as colored noise given by: 

0 0( ), ( )H i iH H W k W k = + = +  (82) 

where both ( )HW k  and ( )W k  are colored noise processes generated by low-pass filters applied to white 

Gaussian noises. 

To further validate the statistical characteristics of the generated brash ice thickness signal, we visualize 

its behavior both in the time domain and the probability domain. Figure 3 shows the time-varying disturbance 

in brash ice thickness produced by the colored noise model, illustrating the slow-varying, inertial nature of 

environmental fluctuations. Figure 4 presents the probability distribution of the generated brash ice thickness, 

along with a fitted Gaussian curve. The histogram demonstrates that the colored noise output approximately 

follows a Gaussian distribution, which aligns with the assumption of zero-mean stationary stochastic processes 

stated in Assumption 3. This confirms the rationality of using the proposed second-order low-pass filter to 

simulate realistic ice thickness variations. 

 

Fig. 3  Time-varying brash ice thickness disturbance modeled 

by colored noise 

 

 

Fig. 4  Time-varying brash ice thickness disturbance 

modeled by colored noise 

The wave spectrum model implemented in the simulation is the Pierson-Moskowitz spectrum [2] given 

by: 

42

0

5
( ) exp

g
S


 

 

  
= −  

   

 (83) 

where 2 f =  with f  representing the wave frequency in Hertz, 
0 19.5/g U =  with 19.5U  representing the 

wind speed at a height of 19.5m above the sea surface,   and   are empirical coefficients. The disturbance 

of wind and currents are all time invariant signal. Coefficients implemented in the simulation are listed in 

Table 1. 

To characterize the wave-induced stochastic disturbances under different wind conditions, the classical 

Pierson-Moskowitz spectrum is adopted, as described in Eq. (83). Figure 5 illustrates the variation of the wave 

energy spectral density under different wind speeds. The spectrum demonstrates a peak shifting behavior as 

wind speed increases, with higher wind speeds producing higher energy levels at lower frequencies. Both 

representations, in units of 
2m s  and 

2 / Hzm  , are shown for comparison and completeness. 
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Table 1. Coefficients used in the simulation environment 

Parameter Value 

0H  0.1 m  

0i  3900kg m−  

19.5U  15m s−  

ck  0.6 

bk  0.9 

  38.1 10−  

  0.74 

 

Fig. 5  Pierson-Moskowitz spectrum under varying wind speeds in units of 2m s  and 2 /m Hz  

6.2 Simulation results 

Numerical simulations are conducted by implementing the 4th order Runge-Kutta method in the following 

environment. Parameters of the dynamic model of the USV implemented in the simulations are given as 

follows: 

 

11

22 23

32 33

13

23

13 23

11

22 23

32 33

0 0

0

0

0 0 ( )

( ) 0 0 ( )

( ) ( ) 0

( ) 0 0

( ) 0 ( ) ( )

0 ( ) ( )

( ) 0 0 0

m

M m m

m m

c v

C v c v

c v c v

d v

D v d v d v

d v d v

G 

 
 

=
 
  

 
 

=
 
 − − 

 
 

=
 
  

=


 (84) 
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where 
11 25.8m = , 22 24.6612m = , 23 1.0948m = , 32 1.0948m = , 33 2.76m = , 

13( ) 24.6612 1.0948c v v r= − − , 

23( ) 25.8c v u= , and 
2

11( ) 0.7225 1.3274 5.8664d v u u= + + , 22 ( ) 0.8612 36.2823 8.05d v v r= + + ,  

23( )d v = −  0.1079 0.845 3.45v r+ + , 32 ( ) 0.1025 5.0437 0.13d v v r= − − − , 33( ) 1.9 0.08 0.75d v u r= − + . 

The forces and torques generated by wind, wave, and current are chosen as: 

3

2

3

6 6sin( ) 50sin(0.5 ) 50sin(0.1 )

4.5 4.5sin( ) 35sin(0.5 ) 50sin(0.3 )
6

0.24 30sin(0.9 ) 30sin(0.1 )
3

dis

u u t t

u t t

r t t




 



 
 + + −
 
 = + + − −
 
 
 − − + −
 

 (85) 

We also consider the uncertainty of the model, such that: 

( ) ( )0 0CD C DC v v D v v  = +  (86) 

where ( )0.3sin 0.52 0.12C t = −  and ( )0.25cos 0.13 0.67D t = − + . 

Two different cases are considered in the simulation study. 

1. Case Ⅰ: 

The reference trajectory can be described as: 

( )

( )( )
4sin 0.02

2.5 1 cos 0.02

0.02

d

d d

d

x t

y t

t





  
  

= = −  
     

 (87) 

The initial state of the vessel is set to ( )0 1.2 1.2
3




 
=  
 

 and ( )  0 0 0 0v = . 

2. Case Ⅱ: 

The reference trajectory can be described as: 

( )

( )

4sin 0.02

2.5sin 2 0.02

0.02

d

d d

d

x t

y t

t





  
  

= =   
     

 (88) 

The initial state of the vessel is set to ( )  0 1 0 0 = −  and ( )  0 0 0 0v = . 

The proposed method is compared with the state-of-art continuity approaches, including SMC, 

backstepping control, ISMC, backstepping ISMC (BISMC). In simulations using SMC, a linear sliding surface 

and a constant rate reaching law given by 

( )s Q sgn s= −  (89) 

where  100 100 101Q =


. The backstepping control employed in the simulations is designed using the 

same method mentioned in Section 5 with gains selected as 
1 10k = and 

2 10k = . The ISMC employed in the 

simulations are develop based on a integrate sliding surface with parameters selected as  5 5 5


 and a 

constant rate reaching law with parameters of  100 100 101


. The BISMC employed in the simulations 

are develop based on [25]. The gains of the nominal controller of DISMC with GPR method employed in the 
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simulations are selected as 
1 5k =  and 2 5k = . a  and b  of ( )su k  in Eq. (19) are given as the minimum value 

in the solution set. 

 

Fig. 6  Case I: Reference trajectory and real trajectory of the USV under the BS, SMC, ISMC, BISMC, and DISMC with GPR 

 

Fig. 7  Case I:  Comparison in tracking error in x -axis,  

y -axis, and  -axis under the BS, SMC, ISMC, BISMC, and 

DISMC with GPR. Tracking errors for  0, 400t  with a 

detailed view for  370,400t  

 

 

Fig. 8  Case I: Velocity trajectories of x -axis ( x), y -axis  

( y ), and  -axis ( )under the BS, SMC, ISMC, BISMC, 

and DISMC with GPR. Detailed view for  0,0.5t  that 

shows the effect of the peaking phenomenon at the USV 

velocities 

The trajectory tracking results for Case I are shown in Figure 6 - Figure 12. Figure 6 compares the 

reference trajectory with the trajectories generated by the five controllers. Figure 6 and Figure 7 show that the 

proposed method has the fastest convergence time while the convergence time of SMC method is the slowest. 

Moreover, the overshoot of the sliding mode controls is small compared with the backstepping control. This 

is because the control command provided by the backstepping control is proportional to the kinematic tracking 

error. Figure 8 provides a clear depiction of the initial velocity transients and the resulting peak responses, 

which are critical for evaluating dynamic control performance. 

Comparisons of the trajectory tracking errors under the proposed method and the state-of-the-art 

methods are further shown in Figure 7 with mean square errors each controller listed in Table 2. Simulation 

results demonstrate that the mean square error of the proposed method is the smallest among all the tested 

methods. SMC, BC, ISMC, and BISMC methods show stronger oscillation compared to the proposed method, 
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which is because the proposed method employ a disturbance observer that significantly increases the 

robustness of the closed-loop system. 

 

Fig. 9  Case I: Control efforts provided by BS, SMC, ISMC, BISMC, and DISMC with GPR.  Control inputs for  0, 400t  in the 

left column. The right column shows a detailed view for  0,1.2t  that demonstrates the peaking phenomenon at initial instants 

Table 2.  Comparison of mean square errors (MSEs) under the BS, SMC, ISMC, BISMC, and DISMC with GPR 

Controller MES of x y−  space MES of   space 

Backstepping 0.0015 0.0124 

SMC 0.0010 0.0011 

ISMC 0.0013 0.0005 

BISMC 0.0009 0.0003 

DISMC with GPR 0.0008 0.0003 

Control commands shown in Figure 9 verify that the proposed method provides less chattering compared 

to the ISMC and SMC. Consequently, numerical simulation results demonstrate that the proposed method 

converges faster while provided smaller tracking error than the state-of-art approaches. 

 

Fig. 10  Case I: Displays the lumped disturbances in all three 

degrees of freedom under the BS, SMC, ISMC, BISMC, and 

DISMC with GPR 

 

 

Fig. 11  Case I: Demonstrates the Gaussian Process 

Regression (GPR)-based modeling of lumped disturbances 

under the DISMC with GPR controller 
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Fig. 12  Case I: Illustrates the forces acting on the USV in the presence of floating ice fragments in the x  and y  directions, as 

well as the ice thickness distribution and its probability density function 

 

Fig. 13  Case I: Comparison of lumped disturbance predictions using GPR-DO and ANN-DO under ice floe sea states 

Figure 10 illustrates the variations of the lumped disturbances acting on the system in the x , y  and 

 directions. These disturbances include model uncertainties and external environmental forces. 

Figure 11 focuses on the proposed DISMC with Gaussian Process Regression (GPR), showing how 

GPR models the lumped disturbances. In this method, GPR is employed to estimate the unknown disturbances 

online and incorporate them into the control law for compensation, thereby enhancing control performance. 

The figure shows the fitting and prediction results of the GPR model, which closely match the actual 

disturbances. The accuracy of the GPR-based estimation confirms the effectiveness of the proposed control 

strategy in handling uncertain and time-varying disturbances. 

Figure 12 depicts the forces acting on the system in the x  and y  directions under a floating ice 

environment, as well as the ice thickness distribution and its probability density. It is clearly observed that the 

forces in both directions increase significantly with the thickness of the ice, highlighting the impact of 

environmental variability on the USV's dynamics. 

To validate the efficacy of the proposed GPR-based disturbance observer (GPR-DO) against 

conventional ANN-based DOs, Fig. 13 illustrates the real-time predictions of lumped disturbances (including 

stochastic ice floe resistance) across the three degrees of freedom (DOF) for the USV. The actual disturbances, 
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synthesized via an Ornstein-Uhlenbeck process mimicking ice impacts [4-6], exhibit significant stochastic 

variations, particularly in the yaw DOF due to rotational torques from floe collisions. As shown, the GPR 

mean predictions closely track the true disturbances with minimal bias, while the 95% confidence intervals 

(shaded regions) effectively capture the epistemic uncertainty without prior distributional assumptions - a key 

advantage over ANN, which relies on deterministic point estimates and shows larger deviations during 

transient phases (e.g., initial 10-20 s with limited data). 

 

Fig. 14  Case Ⅱ: Reference trajectory and real trajectory of the USV under the BS, SMC, ISMC, BISMC, and DISMC with GPR 

 

Fig. 15  Case Ⅱ: Comparison in tracking error in  x -axis, y -axis, and   -axis under the BS, SMC, ISMC, BISMC, and DISMC 

with GPR. Tracking errors for with a detailed view for  370,400t  

The trajectory tracking results for Case II are shown in Figure 14 and Figure 15. Similar to the previous 

simulation, the proposed DISMC with GPR generates relatively smooth control inputs, under which the USV 

converges more rapidly to the desired trajectory. These results further validate the superior tracking 

performance and robustness of the proposed control scheme, particularly in the presence of environmental 

disturbances and model uncertainties. 

7. Conclusion 

In this work, we proposed a discrete integral sliding-mode trajectory tracking control with a disturbance 

observer based on Gaussian process regression for uncertain unmanned surface vessels operating in ice-
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covered ocean areas. The method has ensured precise trajectory tracking under disturbances from winds, 

waves, currents, and ice floes. We established the stability criterion of the discrete closed-loop system under 

bounded lumped uncertainties using discrete stochastic system theory and further analyzed stability when the 

estimation error was Gaussian distributed. Simulation results have demonstrated the superior performance of 

the proposed method. This study has provided a basis for developing probabilistic observer–based hybrid 

control approaches, and future work will address input saturation and actuator faults. 
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