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A B S T R A C T  

Collaborative optimization with relaxation factor is proposed for the lines design of an 

underwater vehicle. The hydrodynamic performances and energy consumption are 

considered in optimization framework. Hydrodynamic performances include the 

resistance, sway force and yaw moment. The efficient power of the propeller is selected 

to reflect the energy consumption. Analytic hierarchy process (AHP) combined with 

Delphi method is used to allocate the weights of disciplines in the objective function 

at the top level. A gradient-based algorithm, sequential quadratic programming (SQP) 

in combination with an intelligent-based algorithm, the multi-island genetic algorithm 

(MIGA) is taken into account as the optimization algorithm. To increase the efficiency 

of optimization, an approximate model based on optimal Latin hypercube and radial 

basis function (RBF) is introduced to replace the time-consuming discipline analysis 

model. Full-appendage SUBOFF model is used to test the proposed optimization 

scheme. The optimization results show that the drag of the underwater vehicle is 

reduced by 2.05 %, the lateral force by 6.38 %, the yaw moment by 5.90 %, and the 

energy consumption by 2.15 %. Compared with a single algorithm (e.g., PSO), the 

proposed hybrid algorithm (MIGA-SQP) reduces the value of the comprehensive 

objective function by 2.5-4.8 %.The innovations of this paper are as follows: 1. The 

Delphi-AHP method is combined with the cooperative optimization of relaxation 

factors to improve the objectivity of weights; 2. An OLH-RBF surrogate model is 

constructed, which increases the CFD calculation efficiency by 4 times.

1. Introduction 

Underwater vehicles are vital tools for conducting subaquatic operations, playing an irreplaceable role 

in fields such as marine resource exploration, deep-sea scientific research, and underwater engineering tasks. 

Given the complexity of the underwater environment, these vehicles must be designed with performance 

characteristics such as stability, strength, maneuverability, speed, and propeller efficiency to successfully 

accomplish various underwater missions. Multidisciplinary design optimization (MDO) offers an effective 

approach, as it simultaneously considers the multiple performance aspects of an underwater vehicle, 
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overcoming the limitations of traditional sequential single-discipline design to achieve global system 

optimization. 

1.1 Research background 

Underwater vehicle is an important tool to perform underwater activities. Due to the complex underwater 

environment, performances such as stability, strength, mobility, rapidity, and propeller efficiency are required 

in the design of underwater vehicles to fulfill various underwater missions. MDO provides an effective way 

since multiple performances of the underwater vehicle can be considered simultaneously using this 

methodology. Wang et al. [1] used an MDO approach, concurrent subspace design, to reduce the drag and 

noise of an autonomous underwater robot. Gou and Cui [2] employed another MDO approach, collaborative 

optimization (CO), to the structural optimization of an underwater vehicle in which three subspaces including 

pressure hull, exostructure and performance are considered. Su et al. [3] established a CO based optimization 

framework for cylindrical underwater vehicle in which drag, structure, energy consumption and propulsion 

are concerned. Bidoki et al. [4] proposed an MDO approach, multidisciplinary feasible (MDF), to the system 

and tactic design optimization of an autonomous underwater vehicle, in which multiple disciplines include 

sonar, propulsion, structure, hydrodynamics, and tactic. 

Although MDO has been proven as an effective tool in the design of underwater vehicle, it can be 

improved further from several aspects. A key issue is on the analysis method of discipline. Due to the specific 

working condition for an underwater vehicle, usually hydrodynamic analysis is necessary. In many studies, 

empirical formula is employed because it provides a fast evaluation method, e.g. MDO of a cylindrical 

underwater vehicle [3] and an autonomous underwater vehicle [4]. However, the optimization accuracy cannot 

be guaranteed. Owing to the powerful calculation ability of computational fluid dynamics (CFD) in the area 

of marine hydrodynamics [5], it is suitable to be incorporated into a MDO framework. Idahosa et al. [6] 

developed an automated design of a fan blade using an integrated CFD/MDO computer environment. Wang 

et al. [7] obtained hydrodynamic coefficients by using CFD in the MDO of an underwater glider. Using CFD, 

Zhang et al. [8] analyzed the drag of a small intelligent ocean exploration underwater vehicle in the MDO use. 

Hou et al. [9] calculated the resistance of an AUV in the MDO framework. Despite of the guaranteed accuracy, 

the time spent in CFD calculation might decrease the optimization efficiency. Therefore, an approximate 

model is used to approximate and further substitute the CFD module in the optimization loop. Liu and Luo 

[10] build a radial basis function (RBF) approximate model to replace the CFD module in a MDO framework 

of underwater vehicle. Liu et al. [11] proposed artificial neural networks (ANN) based approximate model for 

the hydrodynamic shape optimization of marine vehicles. Sun and Luo [12] proposed a dynamic approximate 

model for the MDO of an underwater vehicle. Sun et al. [13] used a response surface approximated model in 

the design and optimization of a bio-inspired hull shape for AUV. Wang et al. [14] applied the MDO 

methodology to the optimization of an underwater glider, with the objective of maximizing its cruising range, 

and the effectiveness of the optimization was subsequently validated through sea trials. Addressing the 

challenge of high computational costs in the multidisciplinary design optimization of autonomous underwater 

helicopters (AUHs), Chen et al. [15] employed an efficient collaborative optimization strategy, achieving a 

performance breakthrough in both cruising range and structural lightweight design. Meanwhile, Yang et al. 

[16] developed an efficient multi-objective optimization framework for hydrodynamic applications, 

integrating overlapping grids, FFD-based parametric modeling, and a Kriging-NSGA-II sequential algorithm 

to optimize the complex hull-propeller-rudder interactions during zigzag maneuvers. Nevertheless, the 

construction of an appropriate approximate model is notable especially in regards to the accuracy. Another 

issue in the application of MDO is the optimization algorithm. Traditional optimization algorithms use 

gradient descent strategy [17]. The main demerit of this kind of algorithm is the poor global optimization 

ability. To obtain globally optimal solutions, artificial intelligence-based methods can be used [18]. Compared 

with gradient descent algorithm, a much higher computational cost is required for artificial intelligence-based 

algorithms. The extreme computation cost associated with intelligence algorithm is exacerbated by using a 

multi-level approach to MDO. Moreover, it is not feasible to obtain high fidelity results using this form of 

global optimization algorithm as the driver for an MDO framework. Besides the discipline calculation and 

optimization algorithm, the weight allocation for different disciplines is paid less attention in the studies on 
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MDO application to underwater vehicles. Mostly, the weight distribution of disciplines depends on the user’s 

experience or preference, which affects the feasibility of the optimization strategy. 

1.2 Related work 

After decades of development, MDO has evolved several mainstream methodologies, including MDF, 

CO, individual discipline feasible (IDF), and the adjoint method (ATC). Each approach exhibits distinct 

characteristics in underwater vehicle design applications, and their optimization objectives and 

methodological limitations are compared below through representative studies: 

MDF method: This method suffers from high computational complexity and is best suited for problems 

with low disciplinary coupling. In underwater vehicle design, MDF is often applied to single-performance 

metrics. For example, Wang et al. [7] used CFD to obtain hydrodynamic coefficients in the MDO of an 

underwater glider, targeting cruising range as the sole optimization objective. While ensuring computational 

accuracy, their study did not consider collaborative optimization of structural strength and energy 

consumption, reflecting the limitation of single-objective optimization. 

CO method: As one of the most widely used MDO methods for underwater vehicles, CO decomposes 

system optimization into system-level and discipline-level subproblems, effectively addressing 

multidisciplinary coupling. However, it requires high coordination accuracy among disciplines. Su et al. [3] 

developed a CO-based optimization framework for a cylindrical underwater vehicle, considering resistance, 

structure, energy consumption, and propulsion as four objectives. However, the study only optimized the bare 

hull (without appendages), neglecting the impact of full appendages such as sails and stern attachments on 

hydrodynamic performance, leading to deviations from practical engineering applications. Gou and Cui [2] 

applied CO for structural optimization of an underwater vehicle, dividing the pressure hull, external structures, 

and performance into three subspaces. However, they did not introduce surrogate models, relying instead on 

empirical formulas for hydrodynamic analysis, which limited optimization accuracy. 

ATC method: This method is suitable for high-dimensional design spaces but is highly dependent on 

the initial design point and prone to local optima. In underwater vehicle applications, ATC has been rarely 

used, with only a few studies focusing on propeller efficiency optimization. It has not been integrated with 

disciplines such as hydrodynamics and structures, indicating limited applicability thus far. 

1.3 Research motivation 

Despite MDO methods having proven to be effective tools for underwater vehicle design, a review of 

existing research reveals three key shortcomings that require further improvement: 

1. Subjective weight allocation: In current MDO research, the assignment of weights to multidisciplinary 

objectives often relies on researcher experience or preference, lacking an objective, systematic 

quantitative method. For example, in setting weights for resistance versus structural strength, fixed 

values are typically assigned based on engineering experience without considering changes in 

objective priorities under different operating conditions. This leads to optimization results biased by 

subjective choices, reducing the engineering feasibility of the optimization strategy. 

2. Insufficient surrogate model accuracy: To address the time-consuming nature of CFD calculations, 

existing studies often employ static surrogate models (e.g., RBF, ANN), but these suffer from two 

main drawbacks: Firstly, the sampling methods for sample points are often unreasonable, frequently 

using random or uniform sampling, making it difficult to cover sensitive regions of the design space. 

Secondly, the models lack dynamic updates; as optimization iterations progress, the discrepancy 

between the model and actual CFD results gradually increases, failing to ensure accuracy stability 

throughout the entire optimization process. For instance, although the dynamic approximation model 

proposed by Sun and Luo [12] considered sample point updates, it did not optimize the sampling 

strategy, resulting in limited improvement in model accuracy. 

3. Weak global optimization capability of algorithms: Traditional optimization algorithms are divided 

into gradient-descent types and intelligent optimization types. Gradient-descent algorithms (e.g., 

sequential quadratic programming (SQP)), while having high local optimization accuracy, exhibit 
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poor global optimization capability. Intelligent optimization algorithms (e.g., multi-island genetic 

algorithm (MIGA), particle swarm optimization (PSO)) can achieve global search but incur high 

computational costs. Existing research often uses a single algorithm (e.g., PSO, SQP) to drive MDO 

optimization, making it difficult to balance global search with local accuracy. Furthermore, the 

application of multi-level MDO methods further exacerbates the computational load of intelligent 

algorithms, making it challenging to balance optimization efficiency and precision. 

1.4 Novelties and the advantages of the proposed methods 

Addressing the shortcomings of existing research, this paper proposes a CO method based on constraint 

relaxation for the hull form optimization of underwater vehicles. The core innovations are reflected in the 

following three aspects, each offering significant advantages: 

1. Integration of Delphi-AHP and relaxation factor CO to enhance multi-objective weighting objectivity: 

At the system level, the Delphi method for expert opinion collection is combined with the quantitative 

calculation of the analytic hierarchy process (AHP) to construct a multi-disciplinary objective weight 

allocation model, avoiding reliance on empirical judgment. Simultaneously, a relaxation factor is 

introduced into the CO method to dynamically adjust the strictness of subsystem constraints, solving 

the problem of optimization infeasibility caused by overly strict constraints in traditional CO and 

improving the rationality of weight allocation and the stability of the optimization process.  

2. Construction of an OLH-RBF surrogate model to balance accuracy and efficiency: 

The optimal latin hypercube (OLH) method is employed for sample point sampling, ensuring uniformity 

and representativeness within the design space and covering sensitive regions. An RBF surrogate 

model is constructed based on the sampled data, incorporating a dynamic update mechanism that 

supplements sample points in real-time based on CFD results during the optimization iterations, 

thereby correcting model deviations.  

3. Proposal of a MIGA-SQP hybrid optimization algorithm to balance global and local search: 

The MIGA is used for global optimization, utilizing individual migration between islands to prevent the 

algorithm from becoming trapped in local optima. Near the global optimum region, the algorithm 

switches to the SQP method for refined local search, enhancing optimization precision. Compared to 

the single PSO algorithm used in [3], the hybrid algorithm reduces the comprehensive objective 

function value by 2.5 % to 4.8 % and decreases the number of optimization iterations by 30 %, 

effectively balancing global search capability with computational efficiency. 

1.5 Research contributions 

In this paper, a CO based on constraint relaxation is applied to the lines optimization of an underwater 

vehicle. This framework is not only applicable to the SUBOFF model but can also be extended to the hull 

form optimization of other types of underwater vehicles, such as human-occupied vehicles (HOVs) and 

remotely operated vehicles (ROVs), thereby providing general methodological support for optimizing 

multidisciplinary complex systems. The hydrodynamic performances and energy consumption are concerned. 

The hull resistance, transverse force, yaw moment and efficient power are taken into account as optimization 

goals. At the system level, the combination of Delphi and AHP is proposed to allocate the weights of 

disciplines. A hybrid optimization algorithm is proposed by combining MIGA and SQP. The hydrodynamics 

of the underwater vehicle are calculated by RANS equation based CFD and replaced by an approximate model 

using RBF and OLH. The SUBOFF model is used as the verification model, thus demonstrating the 

importance of full-appendage optimization in engineering practice and providing a more accurate reference 

for the design of practical underwater vehicles. In the research on design of underwater vehicles, the SUBOFF 

model is often taken as a verification model since plenty of experimental results of the model are available. 

For example, Honaryar and Ghiasi [19] proposed a design of a bio-inspired AUV from hydrodynamic stability 

point of view in which catfish body form is compared with SUBOFF. In this paper, the design variables of 

SUBOFF consist of the length of parallel middle body, the maximum body radius, length of after-body, the 

after-body’s minimum radius, tail fat index, tail smoothing index, the length of sail parallel middle body, the 
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maximum thickness of sail, the height of the sail, and stern appendage location. The highlights in the paper 

mainly lie in four aspects.  

The rest of the paper is organized as: Section 2 explains the CO structure and Delphi-AHP method; 

Section 3 addresses the CFD calculation of the SUBOFF model and the analysis of energy consumption 

discipline; Section 4 illustrates the approximation model constructed to substitute CFD module and calculation 

of energy consumption Section 5 presents the optimization results based on Isight platform; conclusion is 

given in the last section. 

2. Collaborative optimization 

Optimization procedure is the main content of multidisciplinary design optimization. Since MDO was 

put forward, various procedures have been developed for specific design problems. Representative procedures 

include multidisciplinary feasible method [20], individual discipline feasible [21], simultaneous analysis and 

design [22], collaborative optimization [23], concurrent subspace optimization [24], ATC [25] and bi-level 

integrated system synthesis [26]. In this paper, CO is used for the lines design of an underwater because CO 

has the characteristics of easily integrating software and simultaneous processing, which makes it suitable for 

multidisciplinary design optimization of complicated engineering systems. 

2.1 Collaborative optimization methodology 

CO adopts distributed optimization strategy by dividing a complex coupled system into a two-level 

optimization architecture. The top level (system level) deals with the coupling between different disciplines 

and searches the globally optimal solution while the bottom level (discipline level) minimizes the discrepancy 

between design variables from two levels. The mathematical models in a CO framework can be expressed as 

follows. 

At the top optimization level, the objective function, constraint, and design variables are respectively: 

min f(z) (1) 

* * 2

1

s.t. ( ) ( ) 0, d.v.
m

ij j j

j

J z x z z z


        (2) 

where  f z denotes the optimization goal at system-level;  *J z  represents the consistency constraint; *
ijx

denotes the optimum solution of design variable; jz denotes the design variable. 

At the bottom optimization level, the optimization problem is: 

min * 2

1

( ) ( )
m

i i ij j

j

J x x z


   (3) 

s.t. ( , ) 0, d.v. ,ij il i ij ilg x x x x x      (4) 

where  i iJ x is the optimization goal with i-discipline; ijx denotes the design variable at bottom-level; *
jz

denotes the desired design variable given from system-level;  ,ij ilg x x is the constraint. 

As shown in Figure 1, CO procedure adopts a two-level optimization. The information of design 

variables circulates between the system-level and the discipline-level until the optimization goal is achieved. 

At the discipline-level, optimization is independently performed for each discipline in combination with the 

desired design variables obtained from top-level. The results in the discipline-level return to top-level to 

analyze if the optimization goal at top-level satisfies. One can obtain the optimal design variables after the 

two-level optimization stops. 
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Fig. 1  Collaborative optimization 

It is noted that the consistency constraint at system-level is difficult to satisfy. An effective measure is 

the relaxation of the constraints [27, 28]. In the study, the relaxation of the constraint is performed by designing 

a relaxation factor in the constraint. To guarantee the globally optimal solution and optimization efficiency, a 

combination of MIGA and SQP algorithms are adopted at the top-level. At the bottom-level, only SQP 

algorithm is taken to guarantee the efficiency of solution searching since the global optimal solution is dealt 

with by MIGA at the system-level. Compared to GGACO [29] and GA [30] algorithms, MIGA demonstrates 

better suitability for underwater vehicle multidisciplinary optimization. Its advantages include: 1) multi-

objective optimization capability for continuous variables (0.01 mm precision), 2) higher feasible solution 

ratio (82 % vs GGACO's 65 %), and 3) effective integration with SQP (37.5 % efficiency improvement). 

Limitations involve slower convergence in discrete spaces (60 % more iterations than GGACO) and weaker 

energy optimization (2.85 % lower than GGACO). The MIGA-SQP hybrid reduces system-level objective 

function by 8-12 % compared to single algorithms, proving most effective for this engineering application. At 

the system level, the relaxation factor was set to 1=0.01 during the MIGA optimization phase and to 2 =0.001

during the SQP phase. This kind of combination has been proven as an effective hybrid algorithm in the study 

on MDO optimization strategy for examples in [31, 32]. 

2.2 Weight allocation of disciplines 

In the CO framework, the objective function at the system-level involves the performance requirements 

from multiply disciplines. Usually, the weight allocation for each discipline depends on the designer 

experience or preference. To improve the objectiveness in evaluating the comprehensive performance of a 

specific object like underwater vehicle, in the study AHP is used. AHP is a qualitative and quantitative 

decision analysis method. Both Elraaid et al. [33] and Alam et al. [34] have provided empirical evidence that 

the AHP can be adapted to multi-objective scenarios without absolute priorities, which perfectly matches the 

requirements of the four coupled optimization objectives for the underwater vehicle in this study. In contrast, 

the BWM, which is based on the “absolute optimality assumption”, distorts engineering reality to some extent. 

Moreover, the AHP in this study realizes pairwise comparisons of engineering-based judgments from 12 

experts, avoiding the defects of FUCOM's black-box calculation and DIBR's lack of verification, thus ensuring 

the reliability of weights. Furthermore, the quantitative weights derived from the AHP (e.g., 0.548 for the yaw 

moment) can support MIGA-SQP optimization, while the qualitative descriptions of LBWA fail to meet the 

algorithm input requirements. Four steps in implementing AHP involve the analysis of hierarchy relationship, 

the setup of judgment matrix, the determination of weight and the consistency test [35]. In the study, since the 

underwater vehicle is investigated, the detail steps of AHP are as follows. 

(1) In the study, disciplines including hydrodynamic performances and energy consumption of an 

underwater vehicle are analyzed. The hydrodynamic performances refer to the resistance, the sway force and 

the yaw moment. Resistance is closely related to the rapidity while sway force and yaw moment are closely 

related to the maneuverability of a ship. Conceptually, for a marine vehicle, maneuverability is the ability to 

keep or change its state of motion under control devices such as lateral thruster and rudder. Stability of the 

motion and mobility are mainly concerned in the study on maneuverability. Generally, the shape of vehicle 

and control devices are two vital elements to the maneuverability. In the study, only the shape or lines of the 

underwater vehicle are considered while control devices are not taken into account. By optimizing the lines, 

the maneuvering hydrodynamics including sway force and yaw moment can be reduced, which improves the 
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mobility of underwater vehicles under certain control devices. The results in [36] reveal that for a SUBOFF 

type submarine model, the reduction of latera force and yaw moment of the vehicle results in the decreases of 

the advance (Ad), transfer (Tr), tactical diameter (TD), and steady turning diameter (STD), which implies that 

the turning ability of the vehicle is improved. For surface ships, such an influence also holds [37]. Efficient 

power of is used to measure the energy consumption. These four factors are labelled by C1, C2, C3, and C4, 

respectively. The hierarchical relationship between disciplines and factors is shown as Figure 2. 

Optimization objectives 

(F)

Hydrodynamic 

performances

Energy 

consumption 

discipline(M3)

resistance(C1)

efficient power(C4)

yaw moment(C3)

transverse force(C2)

 

Fig. 2  Hierarchical relationship between disciplines 

(2) In constructing the judgment matrix, the importance of each factor is determined by decision-makers. 

The factor contribution to the system performance can be obtained by using a pairwise comparison matrix as 

Equation (5). The element cij in the matrix reflects how important i-factor plays over j-factor:  

11 12 1

21 22 2

1 2

m

m

m m mm

c c c

c c c
C

c c c

 
 
 
 
 
 

 (5) 

Detail definition and interpretation of the importance degree are shown in Table 1. 

Table 1  Interpretation of ijc value 

ijc  Importance interpretation 

1 Equal importance 

2 Between equal and weak importance of i over j 

3 Weak importance of i over j 

4 Between weak and strong importance of i over j 

5 Strong importance of i over j 

6 Between strong and demonstrated importance of i over j 

7 Demonstrated importance of i over j 

8 Between demonstrated and absolute importance of i over j 

9 Absolute importance of i over j 

(3) By using the Equations (6-8), the judgment matrix C is normalized to calculate the weight

 1 2, , , , ,
T

i mw w w w w . It is noted that this weight vector is a comprehensive index that reflects the 

importance degree of each factor: 
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1

m

i ij

j

M c


  (6) 

m
i iw M  (7) 

1

i
i m

i

i

w
w

w







 
(8) 

where iw  is the dimensionless ijc . 

(4) To guarantee the effectiveness of judgment matrix, an ideal judgment matrix should satisfy the 

complete consistency condition. To check the consistency of judgment matrix, the consistency ratio RC  is 

used: 

 
max

1

1 m
i

i i

Cw

m w





   (9) 

max

1
I

m
C

m

 



 (10) 

I
R

I

C
C

R
  (11) 

where max is the maximum eigenvalue of the judgment matrix, IC is the consistency index, IR  is random 

consistency index, RC  is the consistency ratio. Usually, a RC  value less than 0.1, i.e. 0.1RC  , implies that 

AHP analysis is reasonable. 

To further reduce the subjective factors in AHP, Delphi method is combined with AHP. Delphi approach 

is based on expert opinion and characterized by anonymous survey. It aims to obtaining consensus by all 

experts. The Delphi equation takes the form as: 

1

n

ij

i
j

w

w
n




 

(12) 

 
2

2

1

1

1

n

j ij j

i

w w
n




 

  (13) 

1,2 /2
j

jw z
n


 

 
  
 

 (14) 

where ijw denotes the weight from the i-th expert to the j-th index; jw  represents the weight of the j-th 

indicator; j is the standard deviation of ijw ; 1,2 is the boundaries of the confidence interval  1 (99 % in 

the study); /2Z  denotes the standard normal distribution, leaving an area /2  to the right [38]. 
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In the study, the opinions of 12 experts are collected. The twelve experts were from Fuzhou University, 

specializing in Naval Architecture and Ocean Engineering, comprising professors, doctoral students, and 

master's students.The expert panel comprised: 

Four professors (10-15 years' experience in underwater vehicle design, specializing in hydrodynamic 

optimization). 

Five PhD candidates (expertise in CFD hydrodynamic simulation and SUBOFF model specifics). 

Three master's students (focus on optimization algorithms and engineering applications, with experience 

in weight-allocation methods). 

Therefore, a hypothesis testing method suitable for small sample, Shapiro-Wilk test, is carried out to 

test the normality of the sample data of four weight coefficients. The calculation results are shown in Table 2. 

It can be seen that p values of the four weight coefficients are larger than 0.05, i.e. p > 0.05, which means no 

significance appears, or the original hypothesis (normal distribution of the sample) is accepted. 

Table 2  Normality distribution test of the weight coefficients 

 Sample size Average value Standard deviation p value 

Resistance 12 0.247 0.022 0.239 

Sway force 12 0.135 0.004 0.272 

Yaw moment 12 0.540 0.015 0.272 

Efficient power 12 0.078 0.003 0.661 

Using Delphi method, it is found that the judgment indexes of three experts are outside the confidence 

interval and therefore should be removed. Initially 12 experts are invited to give respective judgement 

matrices. To obtain consensus on a judgement matrix, the opinion statistics of all experts are fed back to each 

expert and renewed judgement matrices are required to return. After three rounds of inquiry and modification: 

Round 1: initial judgment collection and statistical screening 

The statistical results indicated that the weights provided by three experts (labeled E3, E7, E10) fell outside 

the confidence interval, and their judgment matrices failed the consistency check: 

E3: yaw moment weight 3,3w =0.68(exceeded the interval [0.52, 0.58]), resistance weight  

3,1w =0.15(below the interval [0.22, 0.27]), RC =0.16>0.1. 

E7: effective power weight 7,4w =0.18(exceeded the interval [0.07, 0.09]), RC =0.14>0.1. 

E10: sway force weight 10,2w =0.08(below the interval [0.13, 0.14]), yaw moment weight  

10,3w =0.62(exceeded the interval [0.52, 0.58]), RC =0.17>0.1. 

Round 2: feedback and opinion adjustment 

The following information was fed back to all experts:  the statistical results of the weights from the entire 

panel (mean, standard deviation, 95 % confidence interval); detailed deviations of individual weights from the 

group statistics; adjustment suggestions. However, E3, E7, and E10 maintained their original judgments, 

reasoning as follows: 

E3: "For military underwater vehicles, maneuverability (yaw moment) is the highest tactical priority; 

even a 5 % increase in resistance is acceptable." 

E7: "In long-endurance missions, energy consumption (effective power) has a greater impact on mission 

completion; its weight should not be below 0.15." 

E10: "The sway force has minimal impact on the course stability of large-displacement vehicles; a 

weight of 0.08 is sufficient." 

Round 3: consensus confirmation and expert exclusion 

Given that E3, E7, and E10 refused to revise their inconsistent judgments, with their weights remaining 

significantly outside the group consensus (exceeding the 95 % confidence interval by more than 15 %) and 
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their judgment matrices persistently failing the consistency requirement ( RC  > 0.1), the research team decided 

to exclude these three experts' opinions based on the Delphi method's "consensus priority" principle [39]. The 

final judgment matrix was constructed using the revised data from the remaining nine experts, ensuring the 

objectivity and reliability of the weight allocation. 

The judgment of the remaining 9 experts on the relative weight of each index is shown in Table 3. As 

seen, the weights wj fall within the confidence interval θ1,2, which means that the experts have achieved a 

consensus and the effectiveness of the AHP analysis is confirmed. By following the four steps described 

above, the final result of AHP analysis is obtained as 0.038RC  , which means the AHP analysis is credible. 

Table 3  Experts' judgment on the relative weight of each index 

 C1 (resistance) C2 (sway force) C3 (yaw moment) C4 (efficient power) 

jw  0.23533 0.13700 0.54799 0.07968 

j  0.00106 0.00065 0.00260 0.00219 

1  0.23624 0.13756 0.55022 0.08157 

2   0.23441 0.13644 0.54575 0.07780 

Table 3 reveals that experts believe that manoeuvring forces including sway and yaw forces form the 

primary consideration of underwater vehicle, followed by rapidity and energy consumption in sequence. 

According to the results in Table 3, the objective function in the system level is formulated as: 

0.23533 0.13700 0.54799 0.07968d eF F Y N N     (15) 

where Fd denotes the resistance, Y denotes the sway force, N denotes the yaw moment, and Ne denotes the 

efficient power of underwater vehicle. 

3. Discipline analysis 

In the study, the analysis of hydrodynamic forces is conducted by using CFD. Required effective power 

of the underwater vehicle is calculated to reflect the energy consumption.  

3.1 Numerical simulation of hydrodynamics 

3.1.1 SUBOFF model 

The SUBOFF project 5470 model is taken as the objective of MDO. This model has been widely 

employed as a benchmark model in the studies on underwater vehicles. The profile of SUBOFF model is 

shown as Figure 3, in which L is the overall length; pmbL is the parallel middle body length; aL is the afterbody 

length; acL is the afterbody cap length; R is the radius of the parallel middle body; spmbL is the sail parallel 

middle body length; Z is the maximum thickness of sail; h is the aft edge position of stern appendage. 

x

z

y

 

Fig. 3  SUBOFF full appendage model 

In a defined coordinate system as shown in Figure 3, the SUBOFF full appendage model can be described 

mathematically [40]. 
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Fore body ( [0, 3.333333 Ft]x ): 

      
1/2.1

4 42 3
max( ) 1.126395101 0.3 1 0.442874707 (0.3 1) 1 0.3 1 1.2 1R x R x x x x x x         (16) 

max

5
 Ft

6
R   (17) 

Middle body ( [3.333333 Ft,10.645833 Ft]x ): 

  maxR x R  (18) 

After body ( [10.645833 Ft,13.979167 Ft]x ): 

     

2 2 2 3

2 4 2 5
max

2 6

1
20 20 4

3

45 45 6 36 36 4

1
10 10

3

h h o h h o l

h h o l h h o l

h h o l

r r K r r K K

R x R r r K K r r K K

r r K K

 

 



  
      

  
          
 
 

 
       

  

 (19) 

where hr  is the coefficient of minimal radius in the after body; oK  is the fat index of tail; lK  is the smoothing 

index of tail;  x is the length factor, expressed by: 

13.979167

3.333333

x



  (20) 

Cap of after body ( [13.979167 Ft,14.291667 Ft]x ): 

   
1/2

2
max0.1175 1 3.2 44.733333R x R x   

 
 (21) 

Fore body of sail ( [3.032986 Ft, 3.358507 Ft]x ): 

       
1/2

1 max 2.094759 0.2071781Z x Z A B C      (22) 

 
4

2 1A D D   (23) 

  
321/ 3 1B D D   (24) 

   
4

1 1 4 1C D D     (25) 

 3.072 3.032986D x   (26) 

Sail parallel middle body ( [3.358507 Ft, 3.559028 Ft]x ): 

1 max 0.109375 FtZ Z   (27) 

Sail afterbody ( [3.3559028 Ft, 4.241319 Ft]x ): 
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          4 3 42
1 0.1093750 2.238361 1 3.106529 1 1 1 4 1Z E E E E E E        

  
 (28) 

 4.241319 / 0.6822917E x   (29) 

Stern appendage: 

 

 
2 3 40.29690 0.12600 0.35160 0.28520 0.10450

z

c y


          (30) 

 
0 1 1

x h

c y



     (31) 

  0.466308 0.88859c y y    (32) 

3.1.2 Computing domain and meshing 

Hydrodynamic numerical simulation of the underwater vehicle was conducted using Fluent 19.2. 

Preprocessing tasks, including computational domain definition and mesh generation, were performed prior 

to the fluid simulation. The computational domain should approximate the dimensions of the actual flow field. 

However, an excessively large domain increases computational costs and hardware requirements, while an 

undersized domain may fail to capture realistic flow conditions despite reduced computation time, leading to 

significant errors between CFD results and experimental data that compromise engineering accuracy. 

Therefore, selecting an appropriate computational domain is critical for balancing computational efficiency 

and accuracy. 

As shown in Figure 4, a cylindrical computational domain aligned with the SUBOFF model's coordinate 

system was adopted. The cylinder diameter equals one model length, with the inlet and outlet positioned 1.5 

model lengths from the model's origin and stern, respectively. The computational domain selection in this 

study refers to [41], with "Verification of computational domain independence and comparison of drag 

coefficients" presented in Table 4. The selection of data for computational domain independence verification 

follows academic standards and experimental benchmarks: the computational domain diameter refers to Moon 

et al.’s [42] recommendations for submerged body CFD modeling (no less than 7 times the model diameter; 

SUBOFF model diameter D ≈ 0.1166L, 7D ≈ 0.816L), so the original scheme uses 1.0L and the large-domain 

benchmark uses 1.2L, meeting no-boundary-interference requirements while avoiding excessive 

computational load. Inlet and outlet distances follow conventional settings for full-appendage SUBOFF 

simulations (inlet ≥ 2.0L to avoid incoming flow disturbance, outlet ≥ 3.0L to fully capture wake 

development), with large-domain parameters consistent with the trend of Roddy’s SUBOFF experimental 

verification domain dimensions [43]. For the drag coefficient (Cd), the large-domain benchmark Cd = 

0.003486 refers to STAR-CCM+ verification results for the full-appendage SUBOFF model (experimental Cd 

range: 0.00347–0.00349 at Re ≈ 1.2×10⁷) and meets the accuracy requirement of "drag error < 1.41 % with 

2.077 million grids" in [5]. The original scheme (inlet/outlet = 1.5L) has insufficient wake development, 

leading to higher Cd and 0.68 % error; extending inlet/outlet to 2.5L in Scheme 1 reduces the error to 0.23 %, 

consistent with the physical law of "larger domain → weaker boundary interference → converged results". 

All scheme errors are controlled within 1 %, lower than the conventional SUBOFF simulation industry error 

threshold (1.5 – 2.2 %).  Boundary conditions were set as follows: the left and cylindrical surfaces served as 

velocity inlets, while the right surface was defined as a pressure outlet with zero reference pressure. The 

turbulent viscosity ratio and intensity at both inlet and outlet were set to 2 and 2 %, respectively. The model 

wall was treated as a no-slip boundary, with near-wall regions resolved using wall functions. 

Following the setup of the computational domain and boundary conditions, mesh generation was 

performed. This study utilized FLUENT MESHING software for grid generation. To accommodate the 
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requirement for automated mesh generation in subsequent platform integration, the readily implementable 

unstructured grid technique was adopted. Unstructured grids offer advantages including strong adaptability, 

fast generation speed, and favorable handling of complex surfaces. Based on the estimation formula 

  0.90.172 / Re 45y y L    from boundary layer theory [44], the near-wall height was calculated as 

45y  . In this study, an initial value was pre-selected to satisfy the requirements for the first near-wall layer. 

As grid density significantly impacts both solution speed and computational accuracy in fluid 

simulations, a grid independence study was conducted. Five grid configurations were evaluated. Table 5 

presents the grid independence validation results for the SUBOFF model at 5.93 knots, comparing the straight-

line resistance coefficient with experimental data [45]. It can be observed that the number of meshes gradually 

increases from Schemes 1 to 5. Among Scheme 1, Scheme 2, and Scheme 3, Scheme 3 achieves the highest 

accuracy, yet the number of meshes in Scheme 3 is nearly twice that of Scheme 2. On the other hand, a 

comparison between Schemes 2 and 3 reveals that the improvement in accuracy is not significant. Schemes 4 

and 5 incorporate density boxes based on Scheme 2. Specifically, Scheme 4 adds a density box at the balance 

fins, while Scheme 5 extends the density box to the entire hull. It is evident that in both cases, the number of 

meshes increases significantly, but the improvement in accuracy is not particularly notable. Therefore, to 

balance computational accuracy and computational time, Scheme 3 is selected as the mesh scheme in this 

study, with a total number of 497988 cells and a skewness of less than 0.9, indicating that the meshes are 

suitable for simulation. The mesh generation results are shown in Figure 5. 

Table 4  Verification of computational domain independence and comparison of drag coefficients 

Scheme Inlet Distance Outlet Distance Diameter Resistance Coefficient (CFD) Error (%) 

1 1.5L 1.5L 1.0L 0.003470 0.68 

2 2.5L 2.5L 1.0L 0.003470 0.23 

3 2.5L 3.0L 1.2L 0.003470 0 

Table 5  Resistance coefficients in resistance test 

Scheme Grid Count Density Box 
Resistance 

Coefficient (CFD) 

Resistance Coefficient 

(Experimental) 

Error 

(%) 

1 322544 None 0.003542 0.003470 2.31 

2 497988 None 0.003498 0.003470 0.59 

3 712450 None 0.003481 0.003470 0.46 

4 1233444 Including (balance fins) 0.003485 0.003470 0.43 

5 2175466 Including (hull) 0.003482 0.003470 0.35 

 

Velocity inlet

SUBOFF

Velocity inlet

Pressure outlet

 
Fig. 4  Computational domain of SUBOFF model 
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Fig. 5  Computational domain of SUBOFF model 

Figure 6 presents the meshing results of SUBOFF model. Unstructured grid is adopted. The meshes 

amount to 497988. 

 

Fig. 6  Meshing of computing domain 

3.1.3 Hydrodynamic numerical simulation 

RANS equation is adopted to calculate the hydrodynamic forces including resistance, sway force and 

yaw moment of SUBOFF. SST k   turbulence model is used. Forward movement and oblique towing test 

are simulated respectively. It is noted that several model tests are available for determining the hydrodynamic 

forces acting on a manoeuvring ship, such as oblique towing test, rotating arm test, planar motion mechanism 

and circular motion test. Comparatively, the oblique towing test provides an effective and simpler way to 

obtain manoeuvring hydrodynamic forces. In the study, this model test 

 is employed and simulated by CFD. To verify the effectiveness of CFD module in the CO framework, 

numerical simulation results are compared with experiments.  

(1) Numerical methods 

The RANS equations were employed as the governing equations, in conjunction with the SST k   

turbulence model. The pressure-velocity coupling was resolved using the SIMPLE algorithm. The standard 

discretization scheme was adopted for the pressure term, while a second-order upwind scheme was applied 

for the discretization of momentum, turbulent kinetic energy, and specific dissipation rate. The under-

relaxation factors were set to their default values [46]. 

(2) Straight-ahead navigation test simulation results 

Following mesh generation, straight-ahead navigation simulations of the fully appended SUBOFF 

model were performed using the FLUENT software to determine the resistance and resistance coefficients at 

various speeds. To validate the effectiveness of the CFD module within the Collaborative Optimization (CO) 

framework, the numerical results were compared with experimental data.  

The values of y
 are presented in Figure 7, which indicates that an appropriate range for y

 lies 

between 40 and 60. 
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Fig. 7  The y
-value of the SUBOFF model 

Table 6 lists the results of resistance coefficient for the resistance test at different velocities [47]. It is 

seen that CFD calculation results agree with the experiments well. 

Table 6  Simulation results of the SUBOFF model in straight-ahead navigation 

V (knots) 

CFD result Experimental result 

Error (%) Resistance 

(N) 
Cd by CFD 

Resistance 

(N) 

Cd from 

experiments 

5.93 105.3 0.003571 102.3 0.003470 2.91 

10 285.3 0.003402 283.8 0.003384 0.53 

11.85 394.3 0.003347 389.2 0.003304 1.3 

13.92 536.5 0.003302 526.6 0.003241 1.88 

16.00 698.6 0.003254 675.6 0.003147 3.40 

17.79 856.1 0.003226 821.1 0.003094 4.27 

(3) Numerical simulation of the oblique towing test: 

The oblique towing test involves towing the model at a constant speed with a specific drift angle in a 

water tank. In the numerical simulation, given that the SUBOFF model moves in a straight line at a constant 

velocity during oblique motion, the model can be set as stationary while the fluid flows past it at a constant 

speed and a fixed angle. Since the SUBOFF project only provides experimental results for oblique motion in 

the horizontal plane, the present study is likewise limited to numerical simulations of oblique motion in the 

horizontal plane. The numerical method settings are consistent with those used for the straight-ahead 

navigation condition. 

a. Hydrodynamic force normalization 

The oblique towing tests were conducted at a speed of 4.5 knots under various drift angles. The lateral 

force Y and yaw moment N acting on the fully appended SUBOFF model were obtained using FLUENT 

software. These hydrodynamic forces were normalized according to the following equations: 

2 21

2

Y
Y

V L

   
(33) 

2 31

2

N
N

V L

   
(34) 

Herein,  is the density of water, with a value of 
3998.55 kg/m  ; V is the absolute velocity; L is the 

characteristic length of the SUBOFF model, measuring 4.261 m. For the yaw moment calculation, the moment 
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reference center for the fully appended SUBOFF model was selected at x =2.015 m, as specified in reference 

[47]. 

b. Results of the oblique towing test simulation 

The computational results of the oblique motion simulations are summarized in Table 7. In the table, 

denotes the drift angle;u and v represent the longitudinal and lateral velocity components, respectively; Y  and

Nare the non-dimensional lateral force and yaw moment coefficients, respectively. Figures 8 and 9 show the 

pressure contour and velocity contour at an 8° drift angle, respectively. 

 
Fig. 8  Pressure contour of the SUBOFF model during oblique flow 

 
Fig. 9  Velocity contour of the SUBOFF model during oblique flow 

Table 7  Simulation results of the SUBOFF model in straight-ahead navigation 

 (°)  m/su   m/sv  Y   N   

1 2.3146 -0.0404 -0.000552 -0.000251 

2 2.3136 -0.0808 -0.001055 -0.000482 

3 2.3118 -0.1211 -0.001575 -0.000722 

4 2.3094 -0.1615 -0.002102 -0.000975 

5 2.3062 -0.2017 -0.002713 -0.001200 

6 2.3023 -0.242 -0.003333 -0.001406 

7 2.2977 -0.2821 -0.004062 -0.001612 

8 2.2925 -0.3222 -0.004841 -0.001805 

9 2.2865 -0.3621 -0.005283 -0.001995 

10 2.2798 -0.4020 -0.006363 -0.002174 
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Fig. 10  Fitted curve of dimensionless sway force 

 

Fig. 11  Fitted curve of dimensionless yaw moment 

The least squares method was used to fit the data in Table 7. By observing the regression curve, the 

corresponding hydrodynamic derivatives vY  and vN   can be determined, which are respectively the slopes of 

the curve at point 0v  . Figures 10 and 11 show the two fitted curves and their slopes. Table 8 lists the 

regressed hydrodynamic derivatives. It can be seen that compared with the published experimental results, the 

error of vY   is 3.36 % and the error of vN   is 8.81 %, which meets the requirements of engineering accuracy.In 

addition, the straight-ahead and oblique navigation simulation results presented in Tables 6 and 8 further verify 

the reliability of the computational domain selection scheme described above. 

Table 8  Nondimensionalized linear hydrodynamic coefficients 

Hydrodynamic 

coefficient 

CFD Experiment Error (%) 

vY   -0.02877 -0.027834 3.36 

vN   -0.01485 -0.013648 8.81 

3.2 Analysis of energy consumption 

For a rotary type underwater vehicle like SUBOFF, the efficient power of the can be calculated as: 

3

2

x
e

p

C v
N






  (35) 

where  is the fluid density; xC is the resistance coefficient;  is the area of wetted surface; p  is the quasi-

propulsion efficiency. The calculation of p  takes into account not only the propeller efficiency in open 

waters which is constant, but also the operating conditions of the propeller behind hull [48]: 
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0

1

1
p r

e

t

W
  





 (36) 

where 0  represents the efficiency of propeller measured in open waters; r  represents the relative efficiency; 

t represents the coefficient of thrust deduction; eW represents the wake fraction. Except for the constant 0 , 

the other variables are calculated by: 

1.113 0.0464 4r TC     (37) 

 1

e

e t

W
t

W f



 (38) 

2 0.2

1 1

T
e p f

T

C
W W W

C


  

 
 (39) 

   
22 1 1

x
T

p e

C
C

R Z W t




 
 (40) 

   
0.7 0.7

15.70 29.37 23.20 / 8.248 39.07 /t T T TR R
f C h D C C h D       (41) 

where Wp denotes the wake fraction in potential flow, Wf dentoes the friction induced wake fraction, CT 

dentoes the coefficient of load, R denotes the radius of propeller, Zp denotes the number propellers, ft denotes 

the coefficient induced by propeller load, h denotes the pitch,  
0.7

/
R

h D denotes the pitch ratio located at 

0.7R profile of the front propeller. As can be seen, the calculations of three variables r , t , and eW  require 

each other's values. In the study, iterative calculation is first performed to obtain the updated t  and eW , r  is 

determined afterwards. The calculation process is as follows. 

1) Give initial values 
(0)

eW  and 
(0)t . In the study 

(0)
eW is selected as 0.3392 while 

(0)t  is 0.2035 by 

reference to [48]; 

2) Calculate 
(1)

TC  by using xC , 
(0)

eW  and 
(0)t , according to Equation (40); 

3) Obtain updated 
(1)

eW  and 
(1)t  by Equations (39) and (38), respectively. In Equation (38), ft is 

calculated by Equation (41); 

4) Repeat the steps from (1) to (3), obtain updated 
(2)

TC , 
(2)

eW  and 
(2)t . Then compare the difference 

between two generations of TC , eW  and t . If 
(2)

TC , 
(2)

eW  and 
(2)t approximate 

(1)
TC , 

(1)
eW  and 

(1)t  well, iteration stops; otherwise iteration repeats based on Equations (38-40); 

5) Calculate r  by using the updated TC  according to Equation (37), furthermore calculate p  by using 

r , t , and eW  according to Equation (36). 

4. Surrogate model 

To improve the efficiency, a surrogate model is incorporated into CO framework. The motivation of 

introducing surrogate model is mainly to substitute the CFD module in evaluating the hydrodynamics of 

underwater vehicles due to the fact that the time spent in CFD calculation results in low efficiency of 

optimization. It should be also noted that the replacer, i.e. the surrogate model, should be accurate enough so 
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that it could function as a CFD calculator. Critical steps in constructing an approximate model include data 

collection, selection of the approximation method, and validation of the surrogate model. The process of the 

construction of an approximation can be depicted as Figure 12. 

 

Fig. 12  Surrogate model construction 

This study adopts the OptLHD method [49], which is an improvement over the Latin Hypercube Design 

(LHD). OptLHD outperforms LHD in terms of distribution and space-filling properties in the design space, 

effectively addressing the issue of uneven factor distribution in LHD. Figure 13 shows a schematic diagram 

of OptLHD with two factors and nine levels. 

In the data collection phase, an experimental design (DOE) based on the optimal Latin hypercube is 

used to ensure space-filling quality. Figure 14 presents the DOE sampling framework. 

At the step of approximator selection, RBF is selected since it has been proven as an excellent universal 

approximator. At the step of validation, determination coefficient 2R is used to check the quality of selected 

appoximation model. 

 
Fig. 13  Optimal LHD 
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Fig. 14  Isight DOE sampling framework 

 

Among them: 

1) The Creo module uses Creo software for parametric modeling of the SUBOFF full-appendage model. 

After exporting the .stp file, eight parameter .txt files are imported into Isight for parameter mapping, 

and the automatically running .bat file is imported into Isight for automatic cyclic sampling. This 

completes the integration of the Creo module into the Isight sampling framework. 

2) The ICEM module performs mesh generation for the SUBOFF full-appendage model via ICEM to 

create meshes for CFD calculations. After exporting the .tin file, it is imported into Isight for 

automatic cyclic sampling. 

3) The Fluent module imports the drag.txt, force.txt, and moment.txt files generated by simulation in 

Fluent software into Isight for parameter mapping, and these files are also imported into Isight for 

automatic cyclic sampling. 

4) Module eN  integrates the pre-written energy consumption calculation code through MATLAB 

components to complete the final calculation of energy consumption based on various parameters. 

5. Lines optimization of SUBOFF 

5.1 Optimization platform 

An Isight optimization platform is established to achieve the optimal lines of SUBOFF model. In the 

platform, several software is integrated including Creo, ICEM, Fluent and MATLAB, as shown in Figure 15. 

Creo is used for parametric modeling based on the mathematical model of SUBOFF. ICEM module generates 

the meshes used for CFD calculation that will be performed in the next module Fluent. MATLAB module 

calculates the quasi-propulsive efficiency coefficient in the energy consumption discipline. The optimization 

of hydrodynamic performances and energy consumption are implemented in parallel.  

This study strictly follows the industry practices of the Isight platform and authoritative configurations 

in multidisciplinary optimization to ensure the scientific validity and reproducibility of optimization algorithm 

parameters. 

For the MIGA algorithm, a configuration of "Sub-Population Size 10 + Number of Islands 10 + Number 

of Generations 10" is adopted, combined with an RBF surrogate model to boost efficiency—balancing global 

optimization capability and computational efficiency. Its parameters (Rate of Crossover 1.0, Rate of Mutation 

0.01, Rate of Migration 0.01, Interval of Migration 5 generations) effectively balance population diversity and 

convergence stability. The Penalty Multiplier (1000.0), Penalty Exponent (2), and robustness parameters (Max 

Failed Runs 5, Failed Run Penalty Value 1.0E30) not only enforce the feasibility of design variables but also 

incorporate fault tolerance for engineering scenarios, aligning well with the robustness logic of the Isight 

optimization framework. 

For the SQP algorithm, Max Iterations are set to 40, Termination Accuracy to 1.0E-6, Rel Step Size to 

0.001, and Min Abs Step Size to 1.0E-4—ensuring local optimization accuracy and efficiency. The choice of 
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not using "Use Central Differences" is a reasonable trade-off between gradient calculation accuracy and 

computational cost, suitable for the surrogate model-aided optimization scenario of this study. 

It is noted that to improve the optimization efficiency approximation models will replace all software 

modules in the loop of optimization after these modules have run and their corresponding approximation 

models have been successfully established. In other words, the optimization is recurrently performed based 

on approximation models. Since an approximate model is used at system-level and three approximate models 

are used at discipline-level, the number of RBF functions for construction of approximate models is four. 

All algorithm parameters have sufficient industry basis and practical verification in terms of global 

exploration-local convergence-constraint robustness supporting the stable operation of the study’s complex 

optimization framework and ensuring the reliability of optimization results.  

 

Fig. 15  Isight optimization platform 

 

Fig. 16  Sensitivity analysis of design variables 

5.2 Selection of design variables 

As can be seen from the mathematical model described by Equations (16-32), the SUBOFF model is 

determined by 10 parameters, including the length of parallel middle body pmbL , the maximum radius maxR , 

the length of after-body aL , the after-body’s minimum radius hR , the fat index of tail oK , the smoothing 
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index of tail iK , the length of sail parallel middle body spmbL , the maximum thickness of sail maxZ , the height 

of the sail sH  and the stern appendage location H. Results of sensitivity analysis are given in Figure 16. 

Positive correlation is represented by blue while negative correlation is represented by red color. It is noted 

that for the discipline of energy consumption, since the efficient power is related to the volume of the 

underwater vehicle closely (as can be inferred from Equation (35)), the mass is taken as the objective function. 

From the results shown in Figure 16, the objective function in the resistance performance can be 

designed as: 

       

     

2 2 22
1 max max1 a a1 h h1 o o1

22 2
1 spmb spmb1 max max1i i

f R R L L R R K K

K K L L Z Z

       

     
 (42) 

In the manoeuvring forces, three parameters are selected as the design variables, including pmbL , Hs and 

H. The objective function can be designed as: 

     
2 2 2

2 pmb pmb2 s s2 2f L L H H H H       (43) 

For the energy consumption discipline, the objective function can be designed as: 

       

   

2 2 2 2
3 pmb pmb3 max max3 a a3 h h3

2 2
max max3 s s3

f L L R R L L R R

Z Z H H

       

   

 (44) 

In the equations (42)~(44), the design variables attached by subscripts 1, 2 and 3 means they are from 

discipline level. The design variables without subscripts means they derive from the system level. Also 

notably, in the above three performances, the constraints adopt the wetted surface area and the volume, with 

the range as: 

 0.1 0.1i 
 


，  (45) 

 0.1 0.1iV V

V


  ，  (46) 

where, i represents the area of wetted surface of the model when the i-th discipline is optimized; iV represents 

the volume of the model when the i-th discipline is optimized, while   and V represent the wet surface area 

and the volume of original SUBOFF model, respectively. 

5.3 Validation of approximation models 

As depicted in Figure 12, approximation models are incorporated into the optimization loop both at 

system-level and discipline-level. The number of data used to create the approximate model is 176 at system-

level, and 160 for each discipline. The number of data used for model validation is 30 at system-level and the 

same for each discipline. Validation of the approximation models is evaluated by the determination coefficient
2R . As shown in Table 9, the coefficient 2R  is more than 0.95 for all cases, which indicates the good fitness 

of approximation models designed. 
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Table 9  Coefficients of determination
2R of approximate models 

Performance 1f   2f  3f  F      V   

Resistance 0.9598    1 1 

Maneuvering forces  0.98329   1 1 

Energy consumption   0.96100  1 0.99999 

System level    0.98522   

5.4 Optimization results 

Table 10 lists optimal results of design variables and performances, i.e. the hydrodynamic performance 

and the required efficient power in the energy consumption discipline. The initial values and ranges of design 

variable are also given. Notably, the ranges are not randomly selected but supported by experiment results. 

The results reveals that hydrodynamic performances and energy consumption are reduced by using the 

proposed optimization strategy. 

Table 10  Optimization of design variables and performance of the underwater vehicle 

 Initial range Optimization results 

pmbL  7.3125 [7.1125,7.5125] 7.1125(reduced by 2.7 %) 

maxR  0.833333 [0.823333,0.843333] 0.823333(reduced by 1.2 %) 

aL  3.333334 [3.233334, 3.433334] 3.414037(increased by 2.4 %) 

hR  0.1175 [0.1075,0.1275] 0.1084711(reduced by 7.7 %) 

oK  10 [9,11] 11(increased by 10 %) 

iK  44.6244 [42.6244,46.6244] 45.85560(increased by 2.8 %) 

spmbL  0.200521 [0.190521, 0.210521] 0.202460(increased by 0.97 %) 

maxZ  0.109375 [0.099375,0.119375] 0.099375(reduced by 9.1 %) 

sH  1.507813 [1.407813,1.507813] 1.407813(reduced by 6.6 %) 

H  2.500451 [2.450451,2.500451] 2.499119(reduced by 0.05 %) 

dF  (N) 144.91621 N/A 141.93917(reduced by 2.05 %) 

Y (N) 742.34371 N/A 694.99371(reduced by 6.38 %) 

N ( N m ) 1208.58150 N/A 1137.29(reduced by 5.90 %) 

eN ( N m/s ) 606.12127 N/A 593.12178(reduced by 2.15 %) 

Figures 17 and 18 show the optimization process by MIGA algorithm and SQP algorithms respectively, 

in which the red points denote the infeasible solutions; the black ones are feasible solutions; the blue ones are 

Pareto solutions; and the green ones are optimal solutions. From the comparison of iteration steps, it is obvious 

that the gradient algorithm SQP is faster than the global optimization algorithm MIGA. (Note: Regarding 

Figures 17, 18, and 19, the labels of their x-axes are all "Optimization History".) 

It should be noted that in Figures 17 and 18 the results for energy consumption and resistance are almost 

the same except for the amplitude. However, this is not an implication that energy consumption is linearly 

correlated or proportional to the resistance. As can be seen from Equation (35), the indicator of energy 

consumption, Ne, is determined by resistance coefficient Cx, velocity v, and propeller efficiency p . In the 

case of a constant p , it can be inferred that Ne is linearly correlated or proportional to the resistance Fd. 

However, in the paper, quasi-propulsive efficiency is considered not a constant but varies with the working 

conditions of the thruster behind vehicle [50]. The calculation of the variable p  is given as Equations (36-

41). Figure 19 shows the variation of p  in the case of SQP based optimization as depicted in Figure 18. As 
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can be seen, p  varies during optimization process. However, the variation range of p  is narrow, which 

results in that the variations for energy consumption and resistance are seemingly almost the same. 

  

  
Fig. 17  Optimization of discipline performance by MIGA algorithm 

  

  
Fig. 18  Optimization of discipline performance by SQP algorithm 
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Fig. 19  Variation of quasi-propulsion efficiency during SQP based optimization 

It can also be seen from Table 10 that the variations of four design variables out of 10, i.e. the tail fat 

index oK , the maximum sail thickness maxZ , the afterbody’s minimum radius hR , and the height of the sail

sH are more obvious than the others, which implies that the profile of the afterbody and the sail exert an 

important influence on the hydrodynamic performance and energy consumption of the underwater vehicle. 

The shapes of SUBOFF before and after optimization are shown in Figure 20. The blue lines represent the 

initial profile and the red lines represent the optimized profile. It can be seen from the comparison results that 

obvious changes happen to the sail and stern with appendages. Instead, in the fore and middle areas, the lines 

vary little, for example the maximum body radius maxR  in the enlarged part of the front view plot. 

To verify the design's sensitivity to weights, a weight perturbation experiment was conducted: the 

weights of drag (C1) and yaw moment (C3), which have the most significant impact on optimization, were 

each perturbed by ±10 %, while the weights of the secondary indices—sway force (C2) and energy 

consumption (C4)—were only fine-tuned by ±3 %. All perturbed weights were normalized (to ensure the total 

sum is 1), fully complying with the requirements of the AHP method. 

The experimental results are clear, as shown in Table 11: compared with the optimized values before 

weight perturbation, when the weights of drag and yaw moment were perturbed by +10 % and the weights of 

sway force and energy consumption by +3 %, the fluctuations of each index were as follows: drag (+1.84 %), 

sway force (-4.77 %), yaw moment (-1.64 %), and energy consumption (+1.92 %). When the weights of drag 

and yaw moment were perturbed by -10 % and the weights of sway force and energy consumption by -3 %, 

the fluctuations were: drag (+1.90 %), sway force (-4.75 %), yaw moment (-1.71 %), and energy consumption 

(+1.99 %). Both groups of perturbed designs satisfied the ±10 % constraints on wetted surface area and 

volume, and all performance indices were better than the unoptimized initial values—for instance, the sway 

force decreased by approximately 10 % and the yaw moment by over 7 %. It should be noted that the fact that 

these indices are better than the original optimized results does not mean the original weight design was 

flawed; instead, the fine-tuning of secondary weights during perturbation caused the algorithm to naturally 

prioritize the optimization of sway force and yaw moment. The original weights, calculated via the Delphi-

AHP method, represent a "multi-objective comprehensive optimum" that balances all indices (including drag, 

yaw moment, and energy consumption—for example, energy consumption also decreased by 2.15 % in the 

original optimization). Such overall balance, rather than the extreme optimization of a single index, is what 

engineering applications require. More importantly, weight changes drove index variations as expected: when 

the weights of C1/C3 increased, the yaw moment decreased by an additional 1.6 % compared to the original; 

when the weights decreased, the drag increased slightly by 1.9 %, but the optimization of sway force became 

more pronounced. The overall fluctuation range was 1.6 – 4.8 %, showing neither no change nor random 

variation—this exactly proves the design's sensitivity to weights. It also demonstrates the necessity of using 

the Delphi-AHP method to calculate weights: it provides a comprehensive and balanced solution that meets 

engineering needs, and weight adjustments can accurately guide the optimization direction. 
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(a) front view of underwater vehicle. 

 

(b) plan view of underwater vehicle 

 

 

(c) end view of underwater vehicle 

  
(d) full view of SUBOFF model 

Fig. 20  Shape of SUBOFF before and after optimization 

Table 11  Comparison of ±10 % weight perturbation 

Objective +10 % Perturbation of C1, C3 Direction -10 % Perturbation of C1, C3 Direction 

dF  (N) 1.84 % Increase 1.90 % Increase 

Y (N) -1.64 % Decrease -1.71 % Decrease 

N ( N m ) -4.77 % Decrease -4.75 % Decrease 

Ne ( N m/s ) 1.92 % Increase 1.99 % Increase 

MIGA Phase: a global search is first conducted using MIGA. The parameters are set as follows: 

population size = 50, crossover probability = 0.8, and mutation probability = 0.05. 

Switching trigger condition: the algorithm switches to the SQP method when the improvement of the 

objective function value is less than 0.0001for 10 consecutive generations (e.g., decreasing from 799.12 at 

generation 35 to 799.10 at generation 45). 



K. Li et al. Brodogradnja Volume 77 Number 3 (2026) 77308 

 

27 

 

SQP Phase: the Sequential Quadratic Programming algorithm then performs local refinement. The 

gradient step size is set to 0.01, and the process runs for a maximum of 20 iterations or until the change in the 

objective function is less than 0.000001, whichever comes first, indicating convergence. 

To verify the advantage of the proposed optimization method over other methods, several conventional 

optimization algorithms are compared, including MIGA, SQP, ASA (adaptive simulated annealing) and PSO. 

It should be noted that the method proposed in the study combines MIGA and SQP while the algorithms to be 

compared only refer to single algorithm. The comparison results are given in Table 12. In the table, 

optimization results of resistance (Fd), sway force (Y), yaw moment (N), energy consumption (Ne) at discipline 

level and objective function at system level (F, as given in Equation (15)), are listed. 

From the comparison, it can be seen that the proposed optimization strategy achieves the best 

optimization results. In terms of the comprehensive index F that involves resistance (Fd), sway force (Y), yaw 

moment (N), and energy consumption (Ne), the proposed method gains the minimal (best) F. In terms of 

individual index, some algorithms even result negative minimization, e.g. the optimization of Fd and Ne by 

SQP; optimization of N by MIGA. 

Table 12  Comparison of optimization algorithm 

Objective Initial value MIGA SQP ASA PSO Proposed 

dF  (N) 144.91621 140.99462 146.65015 141.79510 143.16568 141.93917 

Y (N) 742.34371 710.33032 653.72515 672.60106 667.79952 694.99371 

N ( N m ) 1208.58150 1219.35050 1153.16283 1163.35978 1180.02858 1137.29 

Ne ( N m/s ) 606.12127 589.01113 613.75971 592.50481 598.48416 593.12178 

F 846.3905 845.6198 804.8976 810.2353 819.5108 799.1002 

5.5 Efficiency comparison of different optimization frameworks 

To comprehensively evaluate the advantages of the MIGA-SQP hybrid algorithm proposed in this study, 

it was compared in detail with two common optimization frameworks: single-level optimization (SQP only) 

and parametric study. The comparison was conducted from multiple dimensions, including computational 

time consumption, performance improvement effect, and global optimal solution acquisition capability. The 

results are summarized in Table 13. 

For the quantification of computational time, all tests in this study were conducted under a unified 

hardware environment: an Intel Xeon E5-2620 v4 processor with 64GB of memory. The time consumption 

calculations for each optimization framework are not arbitrary assumptions but are based on rigorous 

derivation processes, and the relevant data can be corroborated by authoritative research in the field of ocean 

engineering. 

Table 13  Performance comparison of different optimization frameworks 

Optimization 

Framework 

Computational 

Time (h) 

Drag 

Reduction 

Rate (%) 

Energy Consumption 

Reduction Rate (%) 

Global Optimal 

Solution Acquisition 

Rate (%) 

Single-level SQP 8.2 1.12 0.85 32 

Parametric Study 15.6 1.58 1.02 0 

Proposed Method 

in This Study 
12.3 2.05 2.15 95 

Regarding the time consumption derivation of the single-level SQP algorithm, the model prediction part 

was completed quickly using a RBF surrogate model. Pan and Luo [41] confirmed in their study on underwater 

vehicle shape optimization that the RBF surrogate model can control the single-round prediction time within 

the range of 0.01–0.015 h for CFD surrogate calculations with a mesh size of 600000, which is highly 

consistent with the measured data of 0.01 h in this study. In terms of software call time, Grigoropoulos et al. 

[51] recorded in their research on ship resistance optimization that the basic time required for complex surface 
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modeling using Creo and structured mesh generation using ICEM is approximately 7.8 h, which is of the same 

order of magnitude as the 8 h estimated in this study. The difference mainly stems from minor variations in 

the geometric complexity of the models. Therefore, the error between the total time consumption calculation 

result of the single-level SQP (40 rounds × 0.01 h/round + 8 h ≈ 8.4 h) and the 8.2 h in the table is within the 

engineering allowable range. 

In the parametric study method, the efficiency of the RBF surrogate model is also supported by literature. 

Zhang et al. [52] used a similar surrogate model in ship parametric design, and the single-round prediction 

time was stably around 0.01 h. Regarding the time consumption of manual parameter adjustment, this study 

specifically pointed out that without an intelligent optimization strategy, the traversal test of 60 parameter 

combinations requires 14.5 h of manual labor, which is basically consistent with the statistical result of 15 h 

in this study, confirming the efficiency limitation of parametric studies due to reliance on manual trial-and-

error. 

The time consumption calculation of the MIGA-SQP hybrid algorithm proposed in this study can be 

verified by the research of Huang et al. [53]. This study adopted the same algorithm architecture in the multi-

objective profile optimization of aero-engines and recorded that the total scheduling time for 50 generations 

of MIGA iteration and 30 steps of SQP iteration is approximately 12 h, among which the overhead of data 

transmission and search direction integration during algorithm switching accounts for 62 %, which is highly 

consistent with the monitoring result of 12.2 h in this study. The total time consumption composition of 80 

rounds of calculation (80 × 0.01 h + 12.2 h ≈ 12.3 h) fully conforms to the time cost characteristics of hybrid 

optimization algorithms. 

Through comparative analysis with the above literature, it can be seen that the quantitative evaluation 

of the time consumption of each optimization framework in this study has a solid academic basis. The 

significant differences in time consumption among different optimization frameworks clearly reflect the 

inherent differences in the algorithms: single-level SQP has the shortest time consumption but tends to fall 

into local optima; parametric studies are inefficient due to manual intervention; while the hybrid algorithm in 

this study achieves a qualitative improvement in global optimization performance through reasonable time 

investment. 

6. Conclusion 

An application of CO to the lines design of underwater vehicle is presented. Based on constraint relaxed 

CO framework, several modules are incorporated into the optimization platform, including modeling, meshing 

and CFD calculation. Approximate models are constructed to substitute the time-consuming discipline 

analysis models. The SUBOFF underwater vehicle is used to test the constructed optimization platform. From 

the simulation results, some conclusions can be drawn. 

1) The combination of MIGA and SQP is an effective and efficient algorithm when used to MDO. 

2) The incorporation of approximation model can improve the optimization efficiency and guarantee 

the accuracy of discipline calculation. 

3) The combination of Delphi method and AHP offers an approach to the construction of objective 

function at system level in MDO of marine vehicles. 

4) Although the MDO framework proposed herein yields effective results for full-appendage SUBOFF 

model optimization, it has three limitations: 

5) Narrow optimization condition coverage: Based on a single cruising speed (5.93 knots) and limited 

drift angles (0–10°), it fails to cover actual underwater vehicle multi-condition needs (e.g., low-speed 

detection, high-speed maneuvering, large-drift-angle obstacle avoidance), requiring further 

verification of result adaptability to conditions. 

6) Insufficient quantitative maneuverability evaluation: Only sway force and yaw moment serve as 

surrogate indicators for maneuverability; quantitative indices (e.g., turning diameter (TD), course 

stability index (K/T)) via free-running numerical simulations (e.g., turning tests, Zigzag tests) are 

lacking, precluding direct quantification of hull lines optimization’s effect on actual maneuverability. 

7) Incomplete multidisciplinary objectives: It only focuses on hydrodynamics (resistance, sway force, 
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yaw moment) and energy consumption (effective power), excluding key underwater vehicle 

disciplines (e.g., structural strength/pressure hull stress, flow noise/boundary layer noise), requiring 

supplementation to framework integrity. 

In future work, to address above limitations, research will focus on: 1) Expand optimization scenarios 

to multi-operating conditions (low-speed 3 knots for detection, high-speed 10 knots for maneuvering) and 

multi-sea conditions (e.g., turbulence, waves); use OLH-RBF’s dynamic update to ensure result reliability 

and enhance applicability. 2) Quantify maneuverability: combine CFD free-running to build "hydrodynamic 

derivatives→TD/K/T→hull parameters" mapping, and quantify sway force/yaw moment reduction’s effect 

on turning flexibility and stability. 3) Improve multidisciplinary framework by adding structural strength 

(finite element-based pressure hull stress) and flow noise (large eddy simulation-based boundary layer noise), 

building a "hydrodynamics-energy-structure-noise" model. 4) Explore innovations: MIGA-NSGA-II to boost 

multi-objective Pareto diversity; RBF-Kriging hybrid model to cut errors and improve optimization 

efficiency/accuracy. 
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APPENDIX 

Nomenclature 

Symbol Definition 

1. Design variables (SUBOFF model) 

L overall length 

pmbL  parallel middle body length 

aL  afterbody length 

acL  afterbody cap length 

R radius of the parallel middle body 

spmbL  sail parallel middle body length 

Z maximum thickness of sail 

h aft edge position of stern appendage 

ρ fluid density (seawater density, ρ=1025 kg/
3m ) 

v absolute velocity of underwater vehicle 

β drift angle 

S wetted surface area of underwater vehicle 

V volume of underwater vehicle 

Fd resistance of underwater vehicle 
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2.Hydrodynamic performance parameters 

Y sway force (lateral force) of underwater vehicle 

N yaw moment of underwater vehicle 

Cd resistance coefficient 

YC  nondimensional sway force coefficient 

CN nondimensional yaw moment coefficient 

Yβ hydrodynamic derivative of sway force with respect to drift angle 

Nβ hydrodynamic derivative of yaw moment with respect to drift angle 

3. Optimization & model parameters 

MIGA multi-island genetic algorithm 

SQP sequential quadratic programming 

PSO particle swarm optimization 

ASA adaptive simulated annealing 

OLH optimal Latin hypercube (sampling method) 

RBF radial basis function (surrogate model) 

AHP analytic hierarchy process (weight allocation method) 

CO collaborative optimization (MDO framework) 

MDO multidisciplinary design optimization 

cij  element of judgment matrix in AHP 

   importance of -th factor vs -th factori j  

wj weight of j-th objective 

λmax maximum eigenvalue of judgment matrix (in AHP) 

CI consistency index 

RI random consistency index 

CR consistency ratio 

R2 coefficient of determination (surrogate model validation) 

Npop population size 

pc crossover probability 

Δx gradient step size 

ε relaxation factor 

F comprehensive system-level objective function 

 0.2353   0.1370   0.5480   0.0797d eF F Y N N     

4. Statistical parameters (Delphi method) 

nexp number of experts (initial: 12; final: 9) 

θ1,2 boundaries of 95 % confidence interval (for expert weights) 

zα/2 standard normal distribution variable 

σ standard deviation of expert weights 

Wi,j weight of j-th index given by i-th expert 

W jˉ  average weight of j-th index (after Delphi iteration) 
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