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ARTICLE INFO ABSTRACT
Keywords Collaborative optimization with relaxation factor is proposed for the lines design of an
Underwater vehicle underwater vehicle. The hydrodynamic performances and energy consumption are

considered in optimization framework. Hydrodynamic performances include the

Collaborative optimization resistance, sway force and yaw moment. The efficient power of the propeller is selected

Hydrodynamic performances to reflect the energy consumption. Analytic hierarchy process (AHP) combined with
Analytic hierarchy process Delphi method is used to allocate the weights of disciplines in the objective function
Approximate model at the top level. A gradient-based algorithm, sequential quadratic programming (SQP)

in combination with an intelligent-based algorithm, the multi-island genetic algorithm
(MIGA) is taken into account as the optimization algorithm. To increase the efficiency
of optimization, an approximate model based on optimal Latin hypercube and radial
basis function (RBF) is introduced to replace the time-consuming discipline analysis
model. Full-appendage SUBOFF model is used to test the proposed optimization
scheme. The optimization results show that the drag of the underwater vehicle is
reduced by 2.05 %, the lateral force by 6.38 %, the yaw moment by 5.90 %, and the
energy consumption by 2.15 %. Compared with a single algorithm (e.g., PSO), the
proposed hybrid algorithm (MIGA-SQP) reduces the value of the comprehensive
objective function by 2.5-4.8 %.The innovations of this paper are as follows: 1. The
Delphi-AHP method is combined with the cooperative optimization of relaxation
factors to improve the objectivity of weights; 2. An OLH-RBF surrogate model is
constructed, which increases the CFD calculation efficiency by 4 times.

1. Introduction

Underwater vehicles are vital tools for conducting subaquatic operations, playing an irreplaceable role
in fields such as marine resource exploration, deep-sea scientific research, and underwater engineering tasks.
Given the complexity of the underwater environment, these vehicles must be designed with performance
characteristics such as stability, strength, maneuverability, speed, and propeller efficiency to successfully
accomplish various underwater missions. Multidisciplinary design optimization (MDO) offers an effective
approach, as it simultaneously considers the multiple performance aspects of an underwater vehicle,
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overcoming the limitations of traditional sequential single-discipline design to achieve global system
optimization.

1.1 Research background

Underwater vehicle is an important tool to perform underwater activities. Due to the complex underwater
environment, performances such as stability, strength, mobility, rapidity, and propeller efficiency are required
in the design of underwater vehicles to fulfill various underwater missions. MDO provides an effective way
since multiple performances of the underwater vehicle can be considered simultaneously using this
methodology. Wang et al. [1] used an MDO approach, concurrent subspace design, to reduce the drag and
noise of an autonomous underwater robot. Gou and Cui [2] employed another MDO approach, collaborative
optimization (CO), to the structural optimization of an underwater vehicle in which three subspaces including
pressure hull, exostructure and performance are considered. Su et al. [3] established a CO based optimization
framework for cylindrical underwater vehicle in which drag, structure, energy consumption and propulsion
are concerned. Bidoki et al. [4] proposed an MDO approach, multidisciplinary feasible (MDF), to the system
and tactic design optimization of an autonomous underwater vehicle, in which multiple disciplines include
sonar, propulsion, structure, hydrodynamics, and tactic.

Although MDO has been proven as an effective tool in the design of underwater vehicle, it can be
improved further from several aspects. A key issue is on the analysis method of discipline. Due to the specific
working condition for an underwater vehicle, usually hydrodynamic analysis is necessary. In many studies,
empirical formula is employed because it provides a fast evaluation method, e.g. MDO of a cylindrical
underwater vehicle [3] and an autonomous underwater vehicle [4]. However, the optimization accuracy cannot
be guaranteed. Owing to the powerful calculation ability of computational fluid dynamics (CFD) in the area
of marine hydrodynamics [5], it is suitable to be incorporated into a MDO framework. Idahosa et al. [6]
developed an automated design of a fan blade using an integrated CFD/MDO computer environment. Wang
et al. [7] obtained hydrodynamic coefficients by using CFD in the MDO of an underwater glider. Using CFD,
Zhang et al. [8] analyzed the drag of a small intelligent ocean exploration underwater vehicle in the MDO use.
Hou et al. [9] calculated the resistance of an AUV in the MDO framework. Despite of the guaranteed accuracy,
the time spent in CFD calculation might decrease the optimization efficiency. Therefore, an approximate
model is used to approximate and further substitute the CFD module in the optimization loop. Liu and Luo
[10] build a radial basis function (RBF) approximate model to replace the CFD module in a MDO framework
of underwater vehicle. Liu et al. [11] proposed artificial neural networks (ANN) based approximate model for
the hydrodynamic shape optimization of marine vehicles. Sun and Luo [12] proposed a dynamic approximate
model for the MDO of an underwater vehicle. Sun et al. [13] used a response surface approximated model in
the design and optimization of a bio-inspired hull shape for AUV. Wang et al. [14] applied the MDO
methodology to the optimization of an underwater glider, with the objective of maximizing its cruising range,
and the effectiveness of the optimization was subsequently validated through sea trials. Addressing the
challenge of high computational costs in the multidisciplinary design optimization of autonomous underwater
helicopters (AUHS), Chen et al. [15] employed an efficient collaborative optimization strategy, achieving a
performance breakthrough in both cruising range and structural lightweight design. Meanwhile, Yang et al.
[16] developed an efficient multi-objective optimization framework for hydrodynamic applications,
integrating overlapping grids, FFD-based parametric modeling, and a Kriging-NSGA-I1 sequential algorithm
to optimize the complex hull-propeller-rudder interactions during zigzag maneuvers. Nevertheless, the
construction of an appropriate approximate model is notable especially in regards to the accuracy. Another
issue in the application of MDO is the optimization algorithm. Traditional optimization algorithms use
gradient descent strategy [17]. The main demerit of this kind of algorithm is the poor global optimization
ability. To obtain globally optimal solutions, artificial intelligence-based methods can be used [18]. Compared
with gradient descent algorithm, a much higher computational cost is required for artificial intelligence-based
algorithms. The extreme computation cost associated with intelligence algorithm is exacerbated by using a
multi-level approach to MDO. Moreover, it is not feasible to obtain high fidelity results using this form of
global optimization algorithm as the driver for an MDO framework. Besides the discipline calculation and
optimization algorithm, the weight allocation for different disciplines is paid less attention in the studies on
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MDO application to underwater vehicles. Mostly, the weight distribution of disciplines depends on the user’s
experience or preference, which affects the feasibility of the optimization strategy.

1.2 Related work

After decades of development, MDO has evolved several mainstream methodologies, including MDF,
CO, individual discipline feasible (IDF), and the adjoint method (ATC). Each approach exhibits distinct
characteristics in underwater vehicle design applications, and their optimization objectives and
methodological limitations are compared below through representative studies:

MDF method: This method suffers from high computational complexity and is best suited for problems
with low disciplinary coupling. In underwater vehicle design, MDF is often applied to single-performance
metrics. For example, Wang et al. [7] used CFD to obtain hydrodynamic coefficients in the MDO of an
underwater glider, targeting cruising range as the sole optimization objective. While ensuring computational
accuracy, their study did not consider collaborative optimization of structural strength and energy
consumption, reflecting the limitation of single-objective optimization.

CO method: As one of the most widely used MDO methods for underwater vehicles, CO decomposes
system optimization into system-level and discipline-level subproblems, effectively addressing
multidisciplinary coupling. However, it requires high coordination accuracy among disciplines. Su et al. [3]
developed a CO-based optimization framework for a cylindrical underwater vehicle, considering resistance,
structure, energy consumption, and propulsion as four objectives. However, the study only optimized the bare
hull (without appendages), neglecting the impact of full appendages such as sails and stern attachments on
hydrodynamic performance, leading to deviations from practical engineering applications. Gou and Cui [2]
applied CO for structural optimization of an underwater vehicle, dividing the pressure hull, external structures,
and performance into three subspaces. However, they did not introduce surrogate models, relying instead on
empirical formulas for hydrodynamic analysis, which limited optimization accuracy.

ATC method: This method is suitable for high-dimensional design spaces but is highly dependent on
the initial design point and prone to local optima. In underwater vehicle applications, ATC has been rarely
used, with only a few studies focusing on propeller efficiency optimization. It has not been integrated with
disciplines such as hydrodynamics and structures, indicating limited applicability thus far.

1.3 Research motivation

Despite MDO methods having proven to be effective tools for underwater vehicle design, a review of
existing research reveals three key shortcomings that require further improvement:

1. Subjective weight allocation: In current MDO research, the assignment of weights to multidisciplinary
objectives often relies on researcher experience or preference, lacking an objective, systematic
quantitative method. For example, in setting weights for resistance versus structural strength, fixed
values are typically assigned based on engineering experience without considering changes in
objective priorities under different operating conditions. This leads to optimization results biased by
subjective choices, reducing the engineering feasibility of the optimization strategy.

2. Insufficient surrogate model accuracy: To address the time-consuming nature of CFD calculations,
existing studies often employ static surrogate models (e.g., RBF, ANN), but these suffer from two
main drawbacks: Firstly, the sampling methods for sample points are often unreasonable, frequently
using random or uniform sampling, making it difficult to cover sensitive regions of the design space.
Secondly, the models lack dynamic updates; as optimization iterations progress, the discrepancy
between the model and actual CFD results gradually increases, failing to ensure accuracy stability
throughout the entire optimization process. For instance, although the dynamic approximation model
proposed by Sun and Luo [12] considered sample point updates, it did not optimize the sampling
strategy, resulting in limited improvement in model accuracy.

3. Weak global optimization capability of algorithms: Traditional optimization algorithms are divided
into gradient-descent types and intelligent optimization types. Gradient-descent algorithms (e.g.,
sequential quadratic programming (SQP)), while having high local optimization accuracy, exhibit
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poor global optimization capability. Intelligent optimization algorithms (e.g., multi-island genetic
algorithm (MIGA), particle swarm optimization (PSQO)) can achieve global search but incur high
computational costs. Existing research often uses a single algorithm (e.g., PSO, SQP) to drive MDO
optimization, making it difficult to balance global search with local accuracy. Furthermore, the
application of multi-level MDO methods further exacerbates the computational load of intelligent
algorithms, making it challenging to balance optimization efficiency and precision.

1.4 Novelties and the advantages of the proposed methods

Addressing the shortcomings of existing research, this paper proposes a CO method based on constraint
relaxation for the hull form optimization of underwater vehicles. The core innovations are reflected in the
following three aspects, each offering significant advantages:

1. Integration of Delphi-AHP and relaxation factor CO to enhance multi-objective weighting objectivity:

At the system level, the Delphi method for expert opinion collection is combined with the quantitative
calculation of the analytic hierarchy process (AHP) to construct a multi-disciplinary objective weight
allocation model, avoiding reliance on empirical judgment. Simultaneously, a relaxation factor is
introduced into the CO method to dynamically adjust the strictness of subsystem constraints, solving
the problem of optimization infeasibility caused by overly strict constraints in traditional CO and
improving the rationality of weight allocation and the stability of the optimization process.

2. Construction of an OLH-RBF surrogate model to balance accuracy and efficiency:

The optimal latin hypercube (OLH) method is employed for sample point sampling, ensuring uniformity
and representativeness within the design space and covering sensitive regions. An RBF surrogate
model is constructed based on the sampled data, incorporating a dynamic update mechanism that
supplements sample points in real-time based on CFD results during the optimization iterations,
thereby correcting model deviations.

3. Proposal of a MIGA-SQP hybrid optimization algorithm to balance global and local search:

The MIGA is used for global optimization, utilizing individual migration between islands to prevent the
algorithm from becoming trapped in local optima. Near the global optimum region, the algorithm
switches to the SQP method for refined local search, enhancing optimization precision. Compared to
the single PSO algorithm used in [3], the hybrid algorithm reduces the comprehensive objective
function value by 2.5 % to 4.8 % and decreases the number of optimization iterations by 30 %,
effectively balancing global search capability with computational efficiency.

1.5 Research contributions

In this paper, a CO based on constraint relaxation is applied to the lines optimization of an underwater
vehicle. This framework is not only applicable to the SUBOFF model but can also be extended to the hull
form optimization of other types of underwater vehicles, such as human-occupied vehicles (HOVs) and
remotely operated vehicles (ROVs), thereby providing general methodological support for optimizing
multidisciplinary complex systems. The hydrodynamic performances and energy consumption are concerned.
The hull resistance, transverse force, yaw moment and efficient power are taken into account as optimization
goals. At the system level, the combination of Delphi and AHP is proposed to allocate the weights of
disciplines. A hybrid optimization algorithm is proposed by combining MIGA and SQP. The hydrodynamics
of the underwater vehicle are calculated by RANS equation based CFD and replaced by an approximate model
using RBF and OLH. The SUBOFF model is used as the verification model, thus demonstrating the
importance of full-appendage optimization in engineering practice and providing a more accurate reference
for the design of practical underwater vehicles. In the research on design of underwater vehicles, the SUBOFF
model is often taken as a verification model since plenty of experimental results of the model are available.
For example, Honaryar and Ghiasi [19] proposed a design of a bio-inspired AUV from hydrodynamic stability
point of view in which catfish body form is compared with SUBOFF. In this paper, the design variables of
SUBOFF consist of the length of parallel middle body, the maximum body radius, length of after-body, the
after-body’s minimum radius, tail fat index, tail smoothing index, the length of sail parallel middle body, the
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maximum thickness of sail, the height of the sail, and stern appendage location. The highlights in the paper
mainly lie in four aspects.

The rest of the paper is organized as: Section 2 explains the CO structure and Delphi-AHP method,;
Section 3 addresses the CFD calculation of the SUBOFF model and the analysis of energy consumption
discipline; Section 4 illustrates the approximation model constructed to substitute CFD module and calculation
of energy consumption Section 5 presents the optimization results based on Isight platform; conclusion is
given in the last section.

2. Collaborative optimization

Optimization procedure is the main content of multidisciplinary design optimization. Since MDO was
put forward, various procedures have been developed for specific design problems. Representative procedures
include multidisciplinary feasible method [20], individual discipline feasible [21], simultaneous analysis and
design [22], collaborative optimization [23], concurrent subspace optimization [24], ATC [25] and bi-level
integrated system synthesis [26]. In this paper, CO is used for the lines design of an underwater because CO
has the characteristics of easily integrating software and simultaneous processing, which makes it suitable for
multidisciplinary design optimization of complicated engineering systems.

2.1 Collaborative optimization methodology

CO adopts distributed optimization strategy by dividing a complex coupled system into a two-level
optimization architecture. The top level (system level) deals with the coupling between different disciplines
and searches the globally optimal solution while the bottom level (discipline level) minimizes the discrepancy
between design variables from two levels. The mathematical models in a CO framework can be expressed as
follows.

At the top optimization level, the objective function, constraint, and design variables are respectively:
min f(z) 1)

s.t.J*(z):Z(xE—zj)z:O,d.v.z:[zj] (2)
1

where f (z)denotes the optimization goal at system-level; J*(z) represents the consistency constraint; x;;
denotes the optimum solution of design variable; z; denotes the design variable.

At the bottom optimization level, the optimization problem is:

min ‘]i (Xi) = Z(Xij - Z’;)Z (3)
=1
S.t. g(Xij,X”)SO, d.V. Xi :I:Xij’xil:' (4)

where J; (x;)is the optimization goal with i-discipline; x;; denotes the design variable at bottom-level; z]-k
denotes the desired design variable given from system-level; g (xij  Xi| ) is the constraint.

As shown in Figure 1, CO procedure adopts a two-level optimization. The information of design
variables circulates between the system-level and the discipline-level until the optimization goal is achieved.
At the discipline-level, optimization is independently performed for each discipline in combination with the
desired design variables obtained from top-level. The results in the discipline-level return to top-level to
analyze if the optimization goal at top-level satisfies. One can obtain the optimal design variables after the
two-level optimization stops.
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| System-level optimization I

L )1 1]

| Discipline-1 optimization \ ‘ Discipline-2 optimization \ | Discipline-N optimization I

L ‘1 L1

[ Analysis of Discipline-1 ] [ Analysis of Discipline-2 ] [ Analysis of Discipline-N ]

Fig. 1 Collaborative optimization

It is noted that the consistency constraint at system-level is difficult to satisfy. An effective measure is
the relaxation of the constraints [27, 28]. In the study, the relaxation of the constraint is performed by designing
a relaxation factor in the constraint. To guarantee the globally optimal solution and optimization efficiency, a
combination of MIGA and SQP algorithms are adopted at the top-level. At the bottom-level, only SQP
algorithm is taken to guarantee the efficiency of solution searching since the global optimal solution is dealt
with by MIGA at the system-level. Compared to GGACO [29] and GA [30] algorithms, MIGA demonstrates
better suitability for underwater vehicle multidisciplinary optimization. Its advantages include: 1) multi-
objective optimization capability for continuous variables (0.01 mm precision), 2) higher feasible solution
ratio (82 % vs GGACO's 65 %), and 3) effective integration with SQP (37.5 % efficiency improvement).
Limitations involve slower convergence in discrete spaces (60 % more iterations than GGACQO) and weaker
energy optimization (2.85 % lower than GGACO). The MIGA-SQP hybrid reduces system-level objective
function by 8-12 % compared to single algorithms, proving most effective for this engineering application. At
the system level, the relaxation factor was set to & =0.01during the MIGA optimization phase and to £,=0.001

during the SQP phase. This kind of combination has been proven as an effective hybrid algorithm in the study
on MDO optimization strategy for examples in [31, 32].

2.2 Weight allocation of disciplines

In the CO framework, the objective function at the system-level involves the performance requirements
from multiply disciplines. Usually, the weight allocation for each discipline depends on the designer
experience or preference. To improve the objectiveness in evaluating the comprehensive performance of a
specific object like underwater vehicle, in the study AHP is used. AHP is a qualitative and quantitative
decision analysis method. Both Elraaid et al. [33] and Alam et al. [34] have provided empirical evidence that
the AHP can be adapted to multi-objective scenarios without absolute priorities, which perfectly matches the
requirements of the four coupled optimization objectives for the underwater vehicle in this study. In contrast,
the BWM, which is based on the “absolute optimality assumption”, distorts engineering reality to some extent.
Moreover, the AHP in this study realizes pairwise comparisons of engineering-based judgments from 12
experts, avoiding the defects of FUCOM's black-box calculation and DIBR's lack of verification, thus ensuring
the reliability of weights. Furthermore, the quantitative weights derived from the AHP (e.g., 0.548 for the yaw
moment) can support MIGA-SQP optimization, while the qualitative descriptions of LBWA fail to meet the
algorithm input requirements. Four steps in implementing AHP involve the analysis of hierarchy relationship,
the setup of judgment matrix, the determination of weight and the consistency test [35]. In the study, since the
underwater vehicle is investigated, the detail steps of AHP are as follows.

(1) In the study, disciplines including hydrodynamic performances and energy consumption of an
underwater vehicle are analyzed. The hydrodynamic performances refer to the resistance, the sway force and
the yaw moment. Resistance is closely related to the rapidity while sway force and yaw moment are closely
related to the maneuverability of a ship. Conceptually, for a marine vehicle, maneuverability is the ability to
keep or change its state of motion under control devices such as lateral thruster and rudder. Stability of the
motion and mobility are mainly concerned in the study on maneuverability. Generally, the shape of vehicle
and control devices are two vital elements to the maneuverability. In the study, only the shape or lines of the
underwater vehicle are considered while control devices are not taken into account. By optimizing the lines,
the maneuvering hydrodynamics including sway force and yaw moment can be reduced, which improves the
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mobility of underwater vehicles under certain control devices. The results in [36] reveal that for a SUBOFF
type submarine model, the reduction of latera force and yaw moment of the vehicle results in the decreases of
the advance (Ad), transfer (Tr), tactical diameter (TD), and steady turning diameter (STD), which implies that
the turning ability of the vehicle is improved. For surface ships, such an influence also holds [37]. Efficient
power of is used to measure the energy consumption. These four factors are labelled by C1, C2, C3, and C4,
respectively. The hierarchical relationship between disciplines and factors is shown as Figure 2.

| Hydrodynamic resistance(C1)
performances
transverse force(C2)
Optimization objectives | |
) yaw moment(C3)
Energy
— consumption —> efficient power(C4)
discipline(M3)

Fig. 2 Hierarchical relationship between disciplines

(2) In constructing the judgment matrix, the importance of each factor is determined by decision-makers.
The factor contribution to the system performance can be obtained by using a pairwise comparison matrix as
Equation (5). The element c;jj in the matrix reflects how important i-factor plays over j-factor:

C1 G2 -+ Cm
C C coe C

c=| & % o 5)
Ci Cm2 - Cum

Detail definition and interpretation of the importance degree are shown in Table 1.

Table 1 Interpretation of Cij value

Importance interpretation

0

j

Equal importance

Between equal and weak importance of i over j

Weak importance of i over j

Between weak and strong importance of i over j

Strong importance of i over |

Between strong and demonstrated importance of i over j
Demonstrated importance of i over j

Between demonstrated and absolute importance of i over j
Absolute importance of i over |

O (00 |N (O |0 W|N |-

(3) By using the Equations (6-8), the judgment matrix C is normalized to calculate the weight
W= (W, Wy, e, Wiy, Wiy )T. It is noted that this weight vector is a comprehensive index that reflects the
importance degree of each factor:
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Mi =] ]c; (6)
j=1
" = 0
W
$ur ®

where Wi is the dimensionless Gjj -

(4) To guarantee the effectiveness of judgment matrix, an ideal judgment matrix should satisfy the
complete consistency condition. To check the consistency of judgment matrix, the consistency ratio Cy is
used:

e (Cw)i
imax E; Wi* (9)
. @
S
Cp = R (11)

where A5« IS the maximum eigenvalue of the judgment matrix, C, is the consistency index, R, is random
consistency index, Cg is the consistency ratio. Usually, a Cg value less than 0.1, i.e. Cg <0.1, implies that
AHP analysis is reasonable.

To further reduce the subjective factors in AHP, Delphi method is combined with AHP. Delphi approach
is based on expert opinion and characterized by anonymous survey. It aims to obtaining consensus by all
experts. The Delphi equation takes the form as:

2" (12)
WJ = n
> 1 3 ’
O] =n—_l_Z(wi,- —Wj) (13)
i=1
9j
O, =|W; iﬁ o1 (14)

where W; denotes the weight from the i-th expert to the j-th index; w; represents the weight of the j-th

indicator; o is the standard deviation of w; ;

the study); Z,., denotes the standard normal distribution, leaving an area oc /2 to the right [38].

6, ,1s the boundaries of the confidence interval (1—oc)(99 % in



K. Lietal. Brodogradnja Volume 77 Number 3 (2026) 77308

In the study, the opinions of 12 experts are collected. The twelve experts were from Fuzhou University,
specializing in Naval Architecture and Ocean Engineering, comprising professors, doctoral students, and
master's students.The expert panel comprised:

Four professors (10-15 years' experience in underwater vehicle design, specializing in hydrodynamic
optimization).
Five PhD candidates (expertise in CFD hydrodynamic simulation and SUBOFF model specifics).

Three master's students (focus on optimization algorithms and engineering applications, with experience
in weight-allocation methods).

Therefore, a hypothesis testing method suitable for small sample, Shapiro-Wilk test, is carried out to
test the normality of the sample data of four weight coefficients. The calculation results are shown in Table 2.
It can be seen that p values of the four weight coefficients are larger than 0.05, i.e. p > 0.05, which means no
significance appears, or the original hypothesis (normal distribution of the sample) is accepted.

Table 2 Normality distribution test of the weight coefficients

Sample size | Average value | Standard deviation | p value
Resistance 12 0.247 0.022 0.239
Sway force 12 0.135 0.004 0.272
Yaw moment 12 0.540 0.015 0.272
Efficient power | 12 0.078 0.003 0.661

Using Delphi method, it is found that the judgment indexes of three experts are outside the confidence
interval and therefore should be removed. Initially 12 experts are invited to give respective judgement
matrices. To obtain consensus on a judgement matrix, the opinion statistics of all experts are fed back to each
expert and renewed judgement matrices are required to return. After three rounds of inquiry and modification:

Round 1: initial judgment collection and statistical screening
The statistical results indicated that the weights provided by three experts (labeled E3, E7, E10) fell outside
the confidence interval, and their judgment matrices failed the consistency check:

E3: yaw moment weight w 3=0.68(exceeded the interval [0.52, 0.58]), resistance weight
W; 1=0.15(below the interval [0.22, 0.27]), Cg =0.16>0.1.

E7: effective power weight w, ,=0.18(exceeded the interval [0.07, 0.09]), Cg =0.14>0.1.

E10: sway force weight wy , =0.08(below the interval [0.13, 0.14]), yaw moment weight
Wi 3 =0.62(exceeded the interval [0.52, 0.58]), Cg =0.17>0.1.

Round 2: feedback and opinion adjustment
The following information was fed back to all experts: the statistical results of the weights from the entire
panel (mean, standard deviation, 95 % confidence interval); detailed deviations of individual weights from the
group statistics; adjustment suggestions. However, E3, E7, and E10 maintained their original judgments,
reasoning as follows:

E3: "For military underwater vehicles, maneuverability (yaw moment) is the highest tactical priority;
even a 5 % increase in resistance is acceptable.”

E7: "In long-endurance missions, energy consumption (effective power) has a greater impact on mission
completion; its weight should not be below 0.15."

E10: "The sway force has minimal impact on the course stability of large-displacement vehicles; a
weight of 0.08 is sufficient."

Round 3: consensus confirmation and expert exclusion
Given that E3, E7, and E10 refused to revise their inconsistent judgments, with their weights remaining
significantly outside the group consensus (exceeding the 95 % confidence interval by more than 15 %) and
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their judgment matrices persistently failing the consistency requirement (Cr > 0.1), the research team decided
to exclude these three experts' opinions based on the Delphi method's "consensus priority™ principle [39]. The
final judgment matrix was constructed using the revised data from the remaining nine experts, ensuring the
objectivity and reliability of the weight allocation.

The judgment of the remaining 9 experts on the relative weight of each index is shown in Table 3. As
seen, the weights w; fall within the confidence interval 612, which means that the experts have achieved a
consensus and the effectiveness of the AHP analysis is confirmed. By following the four steps described
above, the final result of AHP analysis is obtained as Cr =0.038, which means the AHP analysis is credible.

Table 3 Experts' judgment on the relative weight of each index

C1 (resistance)| C2 (sway force) C3 (yaw moment)| C4 (efficient power)
W;|0.23533 0.13700 0.54799 0.07968
0| 0.00106 0.00065 0.00260 0.00219
0,10.23624 0.13756 0.55022 0.08157
0,10.23441 0.13644 0.54575 0.07780

Table 3 reveals that experts believe that manoeuvring forces including sway and yaw forces form the
primary consideration of underwater vehicle, followed by rapidity and energy consumption in sequence.
According to the results in Table 3, the objective function in the system level is formulated as:

F =0.23533F; +0.13700Y +0.54799N +0.07968N, (15)
where Fq denotes the resistance, Y denotes the sway force, N denotes the yaw moment, and Ne denotes the
efficient power of underwater vehicle.

3. Discipline analysis

In the study, the analysis of hydrodynamic forces is conducted by using CFD. Required effective power
of the underwater vehicle is calculated to reflect the energy consumption.

3.1 Numerical simulation of hydrodynamics

3.1.1 SUBOFF model

The SUBOFF project 5470 model is taken as the objective of MDO. This model has been widely
employed as a benchmark model in the studies on underwater vehicles. The profile of SUBOFF model is
shown as Figure 3, in which L is the overall length; Lomb is the parallel middle body length; L, is the afterbody

length; Ly is the afterbody cap length; R is the radius of the parallel middle body; Ly, is the sail parallel
middle body length; Z is the maximum thickness of sail; h is the aft edge position of stern appendage.

Lpmb La | |=ac

e Il

X

J (@
Z K Z

Fig. 3 SUBOFF full appendage model

In a defined coordinate system as shown in Figure 3, the SUBOFF full appendage model can be described
mathematically [40].
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Fore body (x [0, 3.333333 Ft]):

V2.1
R(X) = R {1:126395101(0.3x~1)" +0.442874707x (0.3x ~1)° +1-(0.3x—1)* (L.2x+1)} (16)

5
-2 Ft 17
. (17)

Rmax
Middle body (x €[3.333333 Ft,10.645833 Ft]):

R(X) = Riax (18)
After body (x €[10.645833 Ft, 13.979167 Ft]):

2+ 1 K &2 +(20—20th —4rK, —% K, j§3

R(X) = Ronax +(—45+45rh2 +66,K, + K, )54 +(36—36th — 45K, - K| )55 (19)

+(—10+10th +1K, Jr%KI jgﬁ

where 1, is the coefficient of minimal radius in the after body; K, is the fat index of tail; K, is the smoothing
index of tail; &(x)is the length factor, expressed by:

13.979167 — x
= (20)
3.333333
Cap of after body (x €[13.979167 Ft,14.291667 Ft]):
1/2

R(X) = 0.1175R gy | 1-(32x~44.733333) | (21)
Fore body of sail ( x €[3.032986 Ft, 3.358507 Ft]):

Z1(X) = Zimax [ 2.094759( A) +0.2071781(B)+(C) | * (22)

A=2D(D-1)" (23)

B=1/3(D°)(D-1)’ (24)

C=1-(D-1)*(4D+1) (25)

D =3.072(x—3.032986) (26)
Sail parallel middle body ( x €[3.358507 Ft, 3.559028 Ft]):

Z, = Zy = 0.109375 Ft 27)

Sail afterbody ( x €[3.3559028 Ft, 4.241319 Ft]):

11
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Z, = 0.1093750[2.238361(E (E-1)*}+3.108529(E (E-1)° ) +(1-(E-1)" (4E +1))} (28)

E= (4.241319 - X) /0.6822917 (29)

Stern appendage:

% = 0.29690\/5 —0.12600& —0.35160&2 +0.28520£°3 —0.10450&% (30)
X—h

0<&=——+1<1 31
oY) (31)

c(y)=-0.466308y +0.88859 (32)

3.1.2 Computing domain and meshing

Hydrodynamic numerical simulation of the underwater vehicle was conducted using Fluent 19.2.
Preprocessing tasks, including computational domain definition and mesh generation, were performed prior
to the fluid simulation. The computational domain should approximate the dimensions of the actual flow field.
However, an excessively large domain increases computational costs and hardware requirements, while an
undersized domain may fail to capture realistic flow conditions despite reduced computation time, leading to
significant errors between CFD results and experimental data that compromise engineering accuracy.
Therefore, selecting an appropriate computational domain is critical for balancing computational efficiency
and accuracy.

As shown in Figure 4, a cylindrical computational domain aligned with the SUBOFF model's coordinate
system was adopted. The cylinder diameter equals one model length, with the inlet and outlet positioned 1.5
model lengths from the model's origin and stern, respectively. The computational domain selection in this
study refers to [41], with "Verification of computational domain independence and comparison of drag
coefficients"” presented in Table 4. The selection of data for computational domain independence verification
follows academic standards and experimental benchmarks: the computational domain diameter refers to Moon
et al.’s [42] recommendations for submerged body CFD modeling (no less than 7 times the model diameter;
SUBOFF model diameter D =~ 0.1166L, 7D =~ 0.816L), so the original scheme uses 1.0L and the large-domain
benchmark wuses 1.2L, meeting no-boundary-interference requirements while avoiding excessive
computational load. Inlet and outlet distances follow conventional settings for full-appendage SUBOFF
simulations (inlet > 2.0L to avoid incoming flow disturbance, outlet > 3.0L to fully capture wake
development), with large-domain parameters consistent with the trend of Roddy’s SUBOFF experimental
verification domain dimensions [43]. For the drag coefficient (Cd), the large-domain benchmark Cd =
0.003486 refers to STAR-CCM+ verification results for the full-appendage SUBOFF model (experimental Cd
range: 0.00347-0.00349 at Re =~ 1.2x107) and meets the accuracy requirement of "drag error < 1.41 % with
2.077 million grids” in [5]. The original scheme (inlet/outlet = 1.5L) has insufficient wake development,
leading to higher Cd and 0.68 % error; extending inlet/outlet to 2.5L in Scheme 1 reduces the error to 0.23 %,
consistent with the physical law of "larger domain — weaker boundary interference — converged results".
All scheme errors are controlled within 1 %, lower than the conventional SUBOFF simulation industry error
threshold (1.5 — 2.2 %). Boundary conditions were set as follows: the left and cylindrical surfaces served as
velocity inlets, while the right surface was defined as a pressure outlet with zero reference pressure. The
turbulent viscosity ratio and intensity at both inlet and outlet were set to 2 and 2 %, respectively. The model
wall was treated as a no-slip boundary, with near-wall regions resolved using wall functions.

Following the setup of the computational domain and boundary conditions, mesh generation was
performed. This study utilized FLUENT MESHING software for grid generation. To accommodate the
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requirement for automated mesh generation in subsequent platform integration, the readily implementable
unstructured grid technique was adopted. Unstructured grids offer advantages including strong adaptability,
fast generation speed, and favorable handling of complex surfaces. Based on the estimation formula

y" =0.172(Ay/ L)Reo'9 =45 from boundary layer theory [44], the near-wall height was calculated as
y" =45 In this study, an initial value was pre-selected to satisfy the requirements for the first near-wall layer.

As grid density significantly impacts both solution speed and computational accuracy in fluid
simulations, a grid independence study was conducted. Five grid configurations were evaluated. Table 5
presents the grid independence validation results for the SUBOFF model at 5.93 knots, comparing the straight-
line resistance coefficient with experimental data [45]. It can be observed that the number of meshes gradually
increases from Schemes 1 to 5. Among Scheme 1, Scheme 2, and Scheme 3, Scheme 3 achieves the highest
accuracy, yet the number of meshes in Scheme 3 is nearly twice that of Scheme 2. On the other hand, a
comparison between Schemes 2 and 3 reveals that the improvement in accuracy is not significant. Schemes 4
and 5 incorporate density boxes based on Scheme 2. Specifically, Scheme 4 adds a density box at the balance
fins, while Scheme 5 extends the density box to the entire hull. It is evident that in both cases, the number of
meshes increases significantly, but the improvement in accuracy is not particularly notable. Therefore, to
balance computational accuracy and computational time, Scheme 3 is selected as the mesh scheme in this
study, with a total number of 497988 cells and a skewness of less than 0.9, indicating that the meshes are
suitable for simulation. The mesh generation results are shown in Figure 5.

Table 4 Verification of computational domain independence and comparison of drag coefficients

Scheme | Inlet Distance | Outlet Distance | Diameter | Resistance Coefficient (CFD) | Error (%)
1 1.5L 1.5L 1.0L 0.003470 0.68
2 2.5L 2.5L 1.0L 0.003470 0.23
3 2.5L 3.0L 1.2L 0.003470 0
Table 5 Resistance coefficients in resistance test
Scheme | Grid Count Density Box Rgs_istance Resistance_Coefficient Error
Coefficient (CFD) (Experimental) (%)
1 322544 None 0.003542 0.003470 2.31
2 497988 None 0.003498 0.003470 0.59
3 712450 None 0.003481 0.003470 0.46
4 1233444 Including (balance fins) 0.003485 0.003470 0.43
5 2175466 Including (hull) 0.003482 0.003470 0.35

Velocity inlet

Velouty |n|et ANSYS
R19.2
_— "ﬂ-ﬂ—-‘\ Pressure outlet

SUBOFF

L

Fig. 4 Computational domain of SUBOFF model

13




K. Lietal. Brodogradnja Volume 77 Number 3 (2026) 77308

Fig. 5 Computational domain of SUBOFF model

Figure 6 presents the meshing results of SUBOFF model. Unstructured grid is adopted. The meshes
amount to 497988.

ANSYS ANSYS
Ri92 Ria2

- -
Fig. 6 Meshing of computing domain

3.1.3 Hydrodynamic numerical simulation

RANS equation is adopted to calculate the hydrodynamic forces including resistance, sway force and
yaw moment of SUBOFF. SST k —w turbulence model is used. Forward movement and oblique towing test
are simulated respectively. It is noted that several model tests are available for determining the hydrodynamic
forces acting on a manoeuvring ship, such as oblique towing test, rotating arm test, planar motion mechanism
and circular motion test. Comparatively, the oblique towing test provides an effective and simpler way to
obtain manoeuvring hydrodynamic forces. In the study, this model test
is employed and simulated by CFD. To verify the effectiveness of CFD module in the CO framework,
numerical simulation results are compared with experiments.

(1) Numerical methods

The RANS equations were employed as the governing equations, in conjunction with the SST k —w
turbulence model. The pressure-velocity coupling was resolved using the SIMPLE algorithm. The standard
discretization scheme was adopted for the pressure term, while a second-order upwind scheme was applied
for the discretization of momentum, turbulent Kinetic energy, and specific dissipation rate. The under-
relaxation factors were set to their default values [46].

(2) Straight-ahead navigation test simulation results

Following mesh generation, straight-ahead navigation simulations of the fully appended SUBOFF
model were performed using the FLUENT software to determine the resistance and resistance coefficients at
various speeds. To validate the effectiveness of the CFD module within the Collaborative Optimization (CO)
framework, the numerical results were compared with experimental data.

The values of y™ are presented in Figure 7, which indicates that an appropriate range for y* lies
between 40 and 60.
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Fig. 7 The Yy -value of the SUBOFF model

Table 6 lists the results of resistance coefficient for the resistance test at different velocities [47]. It is
seen that CFD calculation results agree with the experiments well.

Table 6 Simulation results of the SUBOFF model in straight-ahead navigation

CFD result Experimental result

V (knots) | Resistance Resistance Cq from Error (%
( ) (N) Ca by CFD (N) experiments o)
5.93 105.3 0.003571 102.3 0.003470 2.91
10 285.3 0.003402 283.8 0.003384 0.53
11.85 394.3 0.003347 389.2 0.003304 1.3
13.92 536.5 0.003302 526.6 0.003241 1.88
16.00 698.6 0.003254 675.6 0.003147 3.40
17.79 856.1 0.003226 821.1 0.003094 4.27

(3) Numerical simulation of the oblique towing test:

The oblique towing test involves towing the model at a constant speed with a specific drift angle in a
water tank. In the numerical simulation, given that the SUBOFF model moves in a straight line at a constant
velocity during oblique motion, the model can be set as stationary while the fluid flows past it at a constant
speed and a fixed angle. Since the SUBOFF project only provides experimental results for obliqgue motion in
the horizontal plane, the present study is likewise limited to numerical simulations of oblique motion in the
horizontal plane. The numerical method settings are consistent with those used for the straight-ahead
navigation condition.

a. Hydrodynamic force normalization

The oblique towing tests were conducted at a speed of 4.5 knots under various drift angles. The lateral
force Y and yaw moment N acting on the fully appended SUBOFF model were obtained using FLUENT
software. These hydrodynamic forces were normalized according to the following equations:

Y
yi=— '
1 V2L2 (33)
2
N
N'=

Herein, p is the density of water, with a value of p =998.55 kg/m®; V is the absolute velocity; Lis the
characteristic length of the SUBOFF model, measuring 4.261 m. For the yaw moment calculation, the moment
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reference center for the fully appended SUBOFF model was selected at x =2.015 m, as specified in reference
[47].

b. Results of the obligue towing test simulation
The computational results of the oblique motion simulations are summarized in Table 7. In the table,

denotes the drift angle; u and v represent the longitudinal and lateral velocity components, respectively; Y'and
N'are the non-dimensional lateral force and yaw moment coefficients, respectively. Figures 8 and 9 show the

pressure contour and velocity contour at an 8° drift angle, respectively.

Table 7 Simulation results of the SUBOFF model in straight-ahead navigation
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Fig. 8 Pressure contour of the SUBOFF model during oblique flow

COO-ANNNOLLAERNOOD
R PNDOR DN DD W N DOw

0
—

BC) | u(m/s) | v(ms) Y NK
1 | 2.3146 | -0.0404 | -0.000552 | -0.000251
2 | 2.3136 | -0.0808 | -0.001055 | -0.000482
3 2.3118 | -0.1211 | -0.001575 | -0.000722
4 2.3094 | -0.1615 | -0.002102 | -0.000975
5 2.3062 | -0.2017 | -0.002713 | -0.001200
6 2.3023 | -0.242 | -0.003333 | -0.001406
7 2.2977 | -0.2821 | -0.004062 | -0.001612
8 2.2925 | -0.3222 | -0.004841 | -0.001805
9 2.2865 | -0.3621 | -0.005283 | -0.001995
10 | 2.2798 | -0.4020 | -0.006363 | -0.002174

o7

16

1500

22%

Fig. 9 Velocity contour of the SUBOFF model during oblique flow
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Fig. 11 Fitted curve of dimensionless yaw moment
The least squares method was used to fit the data in Table 7. By observing the regression curve, the
corresponding hydrodynamic derivatives Y, and N! can be determined, which are respectively the slopes of

the curve at point v'=0. Figures 10 and 11 show the two fitted curves and their slopes. Table 8 lists the
regressed hydrodynamic derivatives. It can be seen that compared with the published experimental results, the

error of Y, is 3.36 % and the error of N/ is 8.81 %, which meets the requirements of engineering accuracy.In
addition, the straight-ahead and oblique navigation simulation results presented in Tables 6 and 8 further verify
the reliability of the computational domain selection scheme described above.

Table 8 Nondimensionalized linear hydrodynamic coefficients

Hydrodynamic | CFD Experiment | Error (%)
coefficient

Y, -0.02877 | -0.027834 | 3.36

N, -0.01485 | -0.013648 |8.81

3.2 Analysis of energy consumption
For a rotary type underwater vehicle like SUBOFF, the efficient power of the can be calculated as:

_pC v
277p

N, (35)
where pis the fluid density; C, is the resistance coefficient; €2 is the area of wetted surface; 7, is the quasi-
propulsion efficiency. The calculation of Mo takes into account not only the propeller efficiency in open

waters which is constant, but also the operating conditions of the propeller behind hull [48]:
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1-t
1-W,

Mo =107y (36)
where 7, represents the efficiency of propeller measured in open waters; 7, represents the relative efficiency;
t represents the coefficient of thrust deduction; W, represents the wake fraction. Except for the constant 7,
the other variables are calculated by:

7 =1.113-0.0464-4,/C; (37)
W,
t=——¢ 38
(1_We)ft 9
W w202 Cr 29
e f 1+ J1+Cy (39
Qc
Cr = . (40)

ZR%Z,, (1-W, )* (1)

f, =—15.70+29.37,/C; +23.20(h/ D), ~8.248C; ~39.07,/C; (h/D),¢ (41)

where W, denotes the wake fraction in potential flow, Ws dentoes the friction induced wake fraction, Cr
dentoes the coefficient of load, R denotes the radius of propeller, Z, denotes the number propellers, f; denotes

the coefficient induced by propeller load, h denotes the pitch, (h/ D)o_7Rdenotes the pitch ratio located at

0.7R profile of the front propeller. As can be seen, the calculations of three variables 7, , t, and W, require
each other's values. In the study, iterative calculation is first performed to obtain the updated t and W, 7, is
determined afterwards. The calculation process is as follows.

1) Give initial values We(o) and t©_ In the study We(o) is selected as 0.3392 while t© is 0.2035 by
reference to [48];

2) Calculate CT(l) by using C,, We(o) and t© according to Equation (40);

3) Obtain updated W,? and t® by Equations (39) and (38), respectively. In Equation (38), f: is
calculated by Equation (41);

4) Repeat the steps from (1) to (3), obtain updated CT(Z) : We(z) and t® . Then compare the difference
between two generations of C;, W, and t. If CT(Z) , We(z) and t? approximate CT(l), We(l) and
t® well, iteration stops; otherwise iteration repeats based on Equations (38-40);

5) Calculate 7, by using the updated C; according to Equation (37), furthermore calculate Mo by using
n,, t,and W, according to Equation (36).

4. Surrogate model

To improve the efficiency, a surrogate model is incorporated into CO framework. The motivation of
introducing surrogate model is mainly to substitute the CFD module in evaluating the hydrodynamics of
underwater vehicles due to the fact that the time spent in CFD calculation results in low efficiency of
optimization. It should be also noted that the replacer, i.e. the surrogate model, should be accurate enough so

18



K. Lietal. Brodogradnja Volume 77 Number 3 (2026) 77308

that it could function as a CFD calculator. Critical steps in constructing an approximate model include data
collection, selection of the approximation method, and validation of the surrogate model. The process of the
construction of an approximation can be depicted as Figure 12.

~
Data collection
l J
N
r—{Approximator selection
Y,

:

[ Model verification

N

J

Apply this surrogate model

Fig. 12 Surrogate model construction

This study adopts the OptLHD method [49], which is an improvement over the Latin Hypercube Design
(LHD). OptLHD outperforms LHD in terms of distribution and space-filling properties in the design space,
effectively addressing the issue of uneven factor distribution in LHD. Figure 13 shows a schematic diagram
of OptLHD with two factors and nine levels.

In the data collection phase, an experimental design (DOE) based on the optimal Latin hypercube is
used to ensure space-filling quality. Figure 14 presents the DOE sampling framework.

At the step of approximator selection, RBF is selected since it has been proven as an excellent universal

approximator. At the step of validation, determination coefficient R? is used to check the quality of selected
appoximation model.

x2

x1

Fig. 13 Optimal LHD
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Fig. 14 Isight DOE sampling framework

Among them:

1) The Creo module uses Creo software for parametric modeling of the SUBOFF full-appendage model.
After exporting the .stp file, eight parameter .txt files are imported into Isight for parameter mapping,
and the automatically running .bat file is imported into Isight for automatic cyclic sampling. This
completes the integration of the Creo module into the Isight sampling framework.

2) The ICEM module performs mesh generation for the SUBOFF full-appendage model via ICEM to
create meshes for CFD calculations. After exporting the .tin file, it is imported into Isight for
automatic cyclic sampling.

3) The Fluent module imports the drag.txt, force.txt, and moment.txt files generated by simulation in
Fluent software into Isight for parameter mapping, and these files are also imported into Isight for
automatic cyclic sampling.

4) Module N, integrates the pre-written energy consumption calculation code through MATLAB
components to complete the final calculation of energy consumption based on various parameters.

5. Lines optimization of SUBOFF

5.1 Optimization platform

An Isight optimization platform is established to achieve the optimal lines of SUBOFF model. In the
platform, several software is integrated including Creo, ICEM, Fluent and MATLAB, as shown in Figure 15.
Creo is used for parametric modeling based on the mathematical model of SUBOFF. ICEM module generates
the meshes used for CFD calculation that will be performed in the next module Fluent. MATLAB module
calculates the quasi-propulsive efficiency coefficient in the energy consumption discipline. The optimization
of hydrodynamic performances and energy consumption are implemented in parallel.

This study strictly follows the industry practices of the Isight platform and authoritative configurations
in multidisciplinary optimization to ensure the scientific validity and reproducibility of optimization algorithm
parameters.

For the MIGA algorithm, a configuration of "Sub-Population Size 10 + Number of Islands 10 + Number
of Generations 10" is adopted, combined with an RBF surrogate model to boost efficiency—balancing global
optimization capability and computational efficiency. Its parameters (Rate of Crossover 1.0, Rate of Mutation
0.01, Rate of Migration 0.01, Interval of Migration 5 generations) effectively balance population diversity and
convergence stability. The Penalty Multiplier (1000.0), Penalty Exponent (2), and robustness parameters (Max
Failed Runs 5, Failed Run Penalty Value 1.0E30) not only enforce the feasibility of design variables but also
incorporate fault tolerance for engineering scenarios, aligning well with the robustness logic of the Isight
optimization framework.

For the SQP algorithm, Max lterations are set to 40, Termination Accuracy to 1.0E-6, Rel Step Size to
0.001, and Min Abs Step Size to 1.0E-4—ensuring local optimization accuracy and efficiency. The choice of
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not using "Use Central Differences™” is a reasonable trade-off between gradient calculation accuracy and
computational cost, suitable for the surrogate model-aided optimization scenario of this study.

It is noted that to improve the optimization efficiency approximation models will replace all software
modules in the loop of optimization after these modules have run and their corresponding approximation
models have been successfully established. In other words, the optimization is recurrently performed based
on approximation models. Since an approximate model is used at system-level and three approximate models
are used at discipline-level, the number of RBF functions for construction of approximate models is four.

All algorithm parameters have sufficient industry basis and practical verification in terms of global
exploration-local convergence-constraint robustness supporting the stable operation of the study’ s complex
optimization framework and ensuring the reliability of optimization results.

o

" shs ”

{ \
sE§—8 —8 4 —FH
3 — — — — °
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performances 1

g —g—E—
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Fig. 15 Isight optimization platform
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Fig. 16 Sensitivity analysis of design variables

5.2 Selection of design variables

As can be seen from the mathematical model described by Equations (16-32), the SUBOFF model is
determined by 10 parameters, including the length of parallel middle body Lomb the maximum radius R,y .

the length of after-body L, , the after-body’s minimum radius Ry, , the fat index of tail K,, the smoothing
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index of tail K;, the length of sail parallel middle body Lspmb » the maximum thickness of sail Z,,, , the height

of the sail H, and the stern appendage location H. Results of sensitivity analysis are given in Figure 16.

Positive correlation is represented by blue while negative correlation is represented by red color. It is noted
that for the discipline of energy consumption, since the efficient power is related to the volume of the
underwater vehicle closely (as can be inferred from Equation (35)), the mass is taken as the objective function.

From the results shown in Figure 16, the objective function in the resistance performance can be
designed as:

1:1 :(Rmax - Rmaxl)2 +(La - I—al)2 +(Rh - Rhl)2 +(K0 - K01)2
+(Ki - Kil)2 +(Lspmb - I-spmbl)2 +(Zmax _Zmax1)2

In the manoeuvring forces, three parameters are selected as the design variables, including L, Hs and

(42)

H. The objective function can be designed as:
fo = (Lomb —Lpmbz ) +(Hs —Hgp)* +(H —Hy )? (43)
For the energy consumption discipline, the objective function can be designed as:

f3 =(|—pmb - meb3)2 +(Rax — Rmax3)2 +(Le - La3)2 +(Ry — Rh3)2

+(Zmax _Zmax3)2 +(Hs - Hs3)2

In the equations (42)~(44), the design variables attached by subscripts 1, 2 and 3 means they are from
discipline level. The design variables without subscripts means they derive from the system level. Also
notably, in the above three performances, the constraints adopt the wetted surface area and the volume, with
the range as:

(44)

Qig_ZQ e[-0.10.1] (45)

Vi -V

€[-0.1,0.1] (46)

where, O represents the area of wetted surface of the model when the i-th discipline is optimized;V; represents
the volume of the model when the i-th discipline is optimized, while Q and V represent the wet surface area

and the volume of original SUBOFF model, respectively.

5.3 Validation of approximation models

As depicted in Figure 12, approximation models are incorporated into the optimization loop both at
system-level and discipline-level. The number of data used to create the approximate model is 176 at system-
level, and 160 for each discipline. The number of data used for model validation is 30 at system-level and the
same for each discipline. Validation of the approximation models is evaluated by the determination coefficient

R2. As shown in Table 9, the coefficient R? is more than 0.95 for all cases, which indicates the good fitness
of approximation models designed.
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Table 9 Coefficients of determination R? of approximate models

Performance fy f f3 F Q v
Resistance 0.9598 1 1
Maneuvering forces 0.98329 1 1
Energy consumption 0.96100 1 0.99999
System level 0.98522

5.4 Optimization results

Table 10 lists optimal results of design variables and performances, i.e. the hydrodynamic performance
and the required efficient power in the energy consumption discipline. The initial values and ranges of design
variable are also given. Notably, the ranges are not randomly selected but supported by experiment results.
The results reveals that hydrodynamic performances and energy consumption are reduced by using the
proposed optimization strategy.

Table 10 Optimization of design variables and performance of the underwater vehicle

Initial range Optimization results
Lomp 7.3125 [7.1125,7.5125] 7.1125(reduced by 2.7 %)
Riax 0.833333 | [0.823333,0.843333] | 0.823333(reduced by 1.2 %)
L, 3.333334 | [3.233334, 3.433334] | 3.414037(increased by 2.4 %)
Ry, 0.1175 [0.1075,0.1275] 0.1084711(reduced by 7.7 %)
Ko 10 [9,11] 11(increased by 10 %)
K; 44.6244 [42.6244,46.6244] | 45.85560(increased by 2.8 %)

Lspmb 0.200521 | [0.190521, 0.210521] | 0.202460(increased by 0.97 %)

Z max 0.109375 | [0.099375,0.119375] | 0.099375(reduced by 9.1 %)
H 1507813 | [1.407813,1.507813] | 1.407813(reduced by 6.6 %)
H 2.500451 | [2.450451,2.500451] | 2.499119(reduced by 0.05 %)
Fy (N) 14491621 N/A 141.93917(reduced by 2.05 %)
Y (N) 742.34371 N/A 694.99371(reduced by 6.38 %)
N (N-m) | 1208.58150 N/A 1137.29(reduced by 5.90 %)
Ne (N-m/s) 606.12127 N/A 593.12178(reduced by 2.15 %)

Figures 17 and 18 show the optimization process by MIGA algorithm and SQP algorithms respectively,
in which the red points denote the infeasible solutions; the black ones are feasible solutions; the blue ones are
Pareto solutions; and the green ones are optimal solutions. From the comparison of iteration steps, it is obvious
that the gradient algorithm SQP is faster than the global optimization algorithm MIGA. (Note: Regarding
Figures 17, 18, and 19, the labels of their x-axes are all "Optimization History".)

It should be noted that in Figures 17 and 18 the results for energy consumption and resistance are almost
the same except for the amplitude. However, this is not an implication that energy consumption is linearly
correlated or proportional to the resistance. As can be seen from Equation (35), the indicator of energy
consumption, Ne, is determined by resistance coefficient Cy, velocity v, and propeller efficiency Mp-In the

case of a constant Mo it can be inferred that Ne is linearly correlated or proportional to the resistance Fq.

However, in the paper, quasi-propulsive efficiency is considered not a constant but varies with the working
conditions of the thruster behind vehicle [50]. The calculation of the variable Mo is given as Equations (36-

41). Figure 19 shows the variation of Mo in the case of SQP based optimization as depicted in Figure 18. As
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can be seen, Mo varies during optimization process. However, the variation range of Mo is narrow, which
results in that the variations for energy consumption and resistance are seemingly almost the same.
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Fig. 19 Variation of quasi-propulsion efficiency during SQP based optimization

It can also be seen from Table 10 that the variations of four design variables out of 10, i.e. the tail fat
index K,, the maximum sail thickness Z,, , the afterbody’s minimum radius R;,, and the height of the sail

H,are more obvious than the others, which implies that the profile of the afterbody and the sail exert an

important influence on the hydrodynamic performance and energy consumption of the underwater vehicle.
The shapes of SUBOFF before and after optimization are shown in Figure 20. The blue lines represent the
initial profile and the red lines represent the optimized profile. It can be seen from the comparison results that
obvious changes happen to the sail and stern with appendages. Instead, in the fore and middle areas, the lines
vary little, for example the maximum body radius R, in the enlarged part of the front view plot.

To verify the design's sensitivity to weights, a weight perturbation experiment was conducted: the
weights of drag (C1) and yaw moment (C3), which have the most significant impact on optimization, were
each perturbed by +10 %, while the weights of the secondary indices—sway force (C2) and energy
consumption (C4)—were only fine-tuned by £3 %. All perturbed weights were normalized (to ensure the total
sum is 1), fully complying with the requirements of the AHP method.

The experimental results are clear, as shown in Table 11: compared with the optimized values before
weight perturbation, when the weights of drag and yaw moment were perturbed by +10 % and the weights of
sway force and energy consumption by +3 %, the fluctuations of each index were as follows: drag (+1.84 %),
sway force (-4.77 %), yaw moment (-1.64 %), and energy consumption (+1.92 %). When the weights of drag
and yaw moment were perturbed by -10 % and the weights of sway force and energy consumption by -3 %,
the fluctuations were: drag (+1.90 %), sway force (-4.75 %), yaw moment (-1.71 %), and energy consumption
(+1.99 %). Both groups of perturbed designs satisfied the £10 % constraints on wetted surface area and
volume, and all performance indices were better than the unoptimized initial values—for instance, the sway
force decreased by approximately 10 % and the yaw moment by over 7 %. It should be noted that the fact that
these indices are better than the original optimized results does not mean the original weight design was
flawed; instead, the fine-tuning of secondary weights during perturbation caused the algorithm to naturally
prioritize the optimization of sway force and yaw moment. The original weights, calculated via the Delphi-
AHP method, represent a "multi-objective comprehensive optimum™ that balances all indices (including drag,
yaw moment, and energy consumption—for example, energy consumption also decreased by 2.15 % in the
original optimization). Such overall balance, rather than the extreme optimization of a single index, is what
engineering applications require. More importantly, weight changes drove index variations as expected: when
the weights of C1/C3 increased, the yaw moment decreased by an additional 1.6 % compared to the original;
when the weights decreased, the drag increased slightly by 1.9 %, but the optimization of sway force became
more pronounced. The overall fluctuation range was 1.6 — 4.8 %, showing neither no change nor random
variation—this exactly proves the design's sensitivity to weights. It also demonstrates the necessity of using
the Delphi-AHP method to calculate weights: it provides a comprehensive and balanced solution that meets
engineering needs, and weight adjustments can accurately guide the optimization direction.
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Table 11 Comparison of £10 % weight perturbation

Objective +10 % Perturbation of C1, C3 | Direction | -10 % Perturbation of C1, C3 | Direction
Fq (N) 1.84 % Increase | 1.90 % Increase
Y (N) -1.64 % Decrease | -1.71 % Decrease
N(N-m) -A.77 % Decrease | -4.75 % Decrease
Ne(N-m/s) | 1.92% Increase | 1.99 % Increase

MIGA Phase: a global search is first conducted using MIGA. The parameters are set as follows:
population size = 50, crossover probability = 0.8, and mutation probability = 0.05.

Switching trigger condition: the algorithm switches to the SQP method when the improvement of the
objective function value is less than 0.0001for 10 consecutive generations (e.g., decreasing from 799.12 at
generation 35 to 799.10 at generation 45).
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SQP Phase: the Sequential Quadratic Programming algorithm then performs local refinement. The
gradient step size is set to 0.01, and the process runs for a maximum of 20 iterations or until the change in the
objective function is less than 0.000001, whichever comes first, indicating convergence.

To verify the advantage of the proposed optimization method over other methods, several conventional
optimization algorithms are compared, including MIGA, SQP, ASA (adaptive simulated annealing) and PSO.
It should be noted that the method proposed in the study combines MIGA and SQP while the algorithms to be
compared only refer to single algorithm. The comparison results are given in Table 12. In the table,
optimization results of resistance (Fq), sway force (Y), yaw moment (N), energy consumption (Ne) at discipline
level and objective function at system level (F, as given in Equation (15)), are listed.

From the comparison, it can be seen that the proposed optimization strategy achieves the best
optimization results. In terms of the comprehensive index F that involves resistance (Fq), sway force (Y), yaw
moment (N), and energy consumption (Ne), the proposed method gains the minimal (best) F. In terms of
individual index, some algorithms even result negative minimization, e.g. the optimization of Fq and Ne by
SQP; optimization of N by MIGA.

Table 12 Comparison of optimization algorithm

Objective  |Initial value | MIGA SQP ASA PSO Proposed
Fy (N) 14491621 [140.99462 |146.65015 |141.79510 |143.16568 |141.93917
Y(N) 742.34371 [710.33032 |653.72515 [672.60106 [667.79952 |694.99371
N(N-m) |1208.58150 {1219.35050 |1153.16283 |1163.35978 |1180.02858 |1137.29
Ne(N-m/s) |606.12127 [589.01113 [613.75971 |592.50481 |598.48416 [593.12178
F 846.3905 845.6198 804.8976  |810.2353 819.5108 799.1002

5.5 Efficiency comparison of different optimization frameworks

To comprehensively evaluate the advantages of the MIGA-SQP hybrid algorithm proposed in this study,
it was compared in detail with two common optimization frameworks: single-level optimization (SQP only)
and parametric study. The comparison was conducted from multiple dimensions, including computational
time consumption, performance improvement effect, and global optimal solution acquisition capability. The
results are summarized in Table 13.

For the quantification of computational time, all tests in this study were conducted under a unified
hardware environment: an Intel Xeon E5-2620 v4 processor with 64GB of memory. The time consumption
calculations for each optimization framework are not arbitrary assumptions but are based on rigorous
derivation processes, and the relevant data can be corroborated by authoritative research in the field of ocean
engineering.

Table 13 Performance comparison of different optimization frameworks

Optimization Computational Drag Energy Consumption Glgbal Optlm.a 1
Framework Time (h) Reduction Reduction Rate (%) Solution Acquisition
Rate (%) ° Rate (%)
Single-level SQP 8.2 1.12 0.85 32
Parametric Study 15.6 1.58 1.02 0
Proposed Method
in This Study 12.3 2.05 2.15 95

Regarding the time consumption derivation of the single-level SQP algorithm, the model prediction part
was completed quickly using a RBF surrogate model. Pan and Luo [41] confirmed in their study on underwater
vehicle shape optimization that the RBF surrogate model can control the single-round prediction time within
the range of 0.01-0.015 h for CFD surrogate calculations with a mesh size of 600000, which is highly
consistent with the measured data of 0.01 h in this study. In terms of software call time, Grigoropoulos et al.
[51] recorded in their research on ship resistance optimization that the basic time required for complex surface
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modeling using Creo and structured mesh generation using ICEM is approximately 7.8 h, which is of the same
order of magnitude as the 8 h estimated in this study. The difference mainly stems from minor variations in
the geometric complexity of the models. Therefore, the error between the total time consumption calculation
result of the single-level SQP (40 rounds x 0.01 h/round + 8 h = 8.4 h) and the 8.2 h in the table is within the
engineering allowable range.

In the parametric study method, the efficiency of the RBF surrogate model is also supported by literature.
Zhang et al. [52] used a similar surrogate model in ship parametric design, and the single-round prediction
time was stably around 0.01 h. Regarding the time consumption of manual parameter adjustment, this study
specifically pointed out that without an intelligent optimization strategy, the traversal test of 60 parameter
combinations requires 14.5 h of manual labor, which is basically consistent with the statistical result of 15 h
in this study, confirming the efficiency limitation of parametric studies due to reliance on manual trial-and-
error.

The time consumption calculation of the MIGA-SQP hybrid algorithm proposed in this study can be
verified by the research of Huang et al. [53]. This study adopted the same algorithm architecture in the multi-
objective profile optimization of aero-engines and recorded that the total scheduling time for 50 generations
of MIGA iteration and 30 steps of SQP iteration is approximately 12 h, among which the overhead of data
transmission and search direction integration during algorithm switching accounts for 62 %, which is highly
consistent with the monitoring result of 12.2 h in this study. The total time consumption composition of 80
rounds of calculation (80 x 0.01 h + 12.2 h = 12.3 h) fully conforms to the time cost characteristics of hybrid
optimization algorithms.

Through comparative analysis with the above literature, it can be seen that the quantitative evaluation
of the time consumption of each optimization framework in this study has a solid academic basis. The
significant differences in time consumption among different optimization frameworks clearly reflect the
inherent differences in the algorithms: single-level SQP has the shortest time consumption but tends to fall
into local optima; parametric studies are inefficient due to manual intervention; while the hybrid algorithm in
this study achieves a qualitative improvement in global optimization performance through reasonable time
investment.

6. Conclusion

An application of CO to the lines design of underwater vehicle is presented. Based on constraint relaxed
CO framework, several modules are incorporated into the optimization platform, including modeling, meshing
and CFD calculation. Approximate models are constructed to substitute the time-consuming discipline
analysis models. The SUBOFF underwater vehicle is used to test the constructed optimization platform. From
the simulation results, some conclusions can be drawn.

1) The combination of MIGA and SQP is an effective and efficient algorithm when used to MDO.

2) The incorporation of approximation model can improve the optimization efficiency and guarantee
the accuracy of discipline calculation.

3) The combination of Delphi method and AHP offers an approach to the construction of objective
function at system level in MDO of marine vehicles.

4) Although the MDO framework proposed herein yields effective results for full-appendage SUBOFF
model optimization, it has three limitations:

5) Narrow optimization condition coverage: Based on a single cruising speed (5.93 knots) and limited
drift angles (0—10°), it fails to cover actual underwater vehicle multi-condition needs (e.g., low-speed
detection, high-speed maneuvering, large-drift-angle obstacle avoidance), requiring further
verification of result adaptability to conditions.

6) Insufficient quantitative maneuverability evaluation: Only sway force and yaw moment serve as
surrogate indicators for maneuverability; quantitative indices (e.g., turning diameter (TD), course
stability index (K/T)) via free-running numerical simulations (e.g., turning tests, Zigzag tests) are
lacking, precluding direct quantification of hull lines optimization’s effect on actual maneuverability.

7) Incomplete multidisciplinary objectives: It only focuses on hydrodynamics (resistance, sway force,
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yaw moment) and energy consumption (effective power), excluding key underwater vehicle
disciplines (e.g., structural strength/pressure hull stress, flow noise/boundary layer noise), requiring

supplementation to framework integrity.

In future work, to address above limitations, research will focus on: 1) Expand optimization scenarios
to multi-operating conditions (low-speed 3 knots for detection, high-speed 10 knots for maneuvering) and
multi-sea conditions (e.g., turbulence, waves); use OLH-RBF’ s dynamic update to ensure result reliability
and enhance applicability. 2) Quantify maneuverability: combine CFD free-running to build "hydrodynamic
derivatives—TD/K/T—hull parameters" mapping, and quantify sway force/yaw moment reduction’ s effect
on turning flexibility and stability. 3) Improve multidisciplinary framework by adding structural strength
(finite element-based pressure hull stress) and flow noise (large eddy simulation-based boundary layer noise),
building a "hydrodynamics-energy-structure-noise” model. 4) Explore innovations: MIGA-NSGA-II to boost
multi-objective Pareto diversity; RBF-Kriging hybrid model to cut errors and improve optimization

efficiency/accuracy.
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APPENDIX
Nomenclature

Symbol ‘ Definition

1. Design variables (SUBOFF model)

L overall length

Lomb parallel middle body length

L, afterbody length
Lac afterbody cap length
R radius of the parallel middle body

Lspmb sail parallel middle body length

Y maximum thickness of sail

aft edge position of stern appendage

fluid density (seawater density, p=1025 kg/ m®)

absolute velocity of underwater vehicle

wetted surface area of underwater vehicle

h
p
v
p drift angle
S
V

volume of underwater vehicle

Fa resistance of underwater vehicle
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2.Hydrodynamic performance parameters

Y sway force (lateral force) of underwater vehicle

N yaw moment of underwater vehicle

Cqd resistance coefficient

C, nondimensional sway force coefficient

Cn nondimensional yaw moment coefficient

Yp hydrodynamic derivative of sway force with respect to drift angle
\ hydrodynamic derivative of yaw moment with respect to drift angle

3. Optimization & model parameters

MIGA multi-island genetic algorithm
SQP sequential quadratic programming
PSO particle swarm optimization
ASA adaptive simulated annealing
OLH optimal Latin hypercube (sampling method)
RBF radial basis function (surrogate model)
AHP analytic hierarchy process (weight allocation method)
CO collaborative optimization (MDO framework)
MDO multidisciplinary design optimization
cij element of judgment matrix in AHP
(importance of i-th factor vs j-th factor)
Wj weight of j-th objective
Amax maximum eigenvalue of judgment matrix (in AHP)
Cl consistency index
RI random consistency index
CR consistency ratio
R2 coefficient of determination (surrogate model validation)
Npop population size
pc crossover probability
AX gradient step size
€ relaxation factor
comprehensive system-level objective function
(F =0.2353F, + 0.1370Y + 0.5480N + 0.0797N,)
4. Statistical parameters (Delphi method)
Nexp number of experts (initial: 12; final: 9)
012 boundaries of 95 % confidence interval (for expert weights)
Zoi2 standard normal distribution variable
o standard deviation of expert weights
Wij weight of j-th index given by i-th expert
W j average weight of j-th index (after Delphi iteration)
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