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A B S T R A C T  

Hybrid propulsion systems increase ship energy efficiency by allowing the sharing of 

power between diesel engines and battery energy storage systems. However, the long-

term efficiency of these types of systems depends on accurately estimating the 

Remaining Useful Life (RUL) of lithium-ion batteries to allow effective charge 

scheduling, maintenance planning, and reliable navigation. This study uses nine data-

driven algorithms, including ensemble methods, recurrent neural networks, and linear 

models, to examine the RUL of a lithium-ion battery pack installed on a hybrid cargo 

ship. A 5-fold cross-validation structure was used to preprocess, normalize, and 

analyze actual operational data gathered during the vessel's service life. To improve 

the accuracy of predictions, hyperparameter optimization was performed out. Long 

Short-Term Memory (LSTM), which reduced MAE from 2.87 to 1.46 and RMSE  

from 12.57 to 6.34 after optimization while retaining a high coefficient of 

determination (R² = 0.9999), performed the best among the models that were evaluated. 

The results obtained indicate that condition-based maintenance and energy utilization 

methods on hybrid ships can be effectively supported by data-driven RUL estimation. 

In order to enhance generalization and assess integration with real-time propulsion 

control systems, future research will expand the analysis to multi-vessel datasets.

1. Introduction 

The maritime transportation sector is pivotal in the global economy, facilitating over 90 % of worldwide 

trade [1]. However, in recent years, emissions and global warming have increased dramatically due to ships' 

reliance on traditional power systems [2]. The objective of the Paris Agreement is to keep the rise in the global 

temperature to 1.5°C below pre-industrial levels, which underlines the necessity to reduce emissions of 

greenhouse gas (GHG) [3]. The International Maritime Organization (IMO) proposed activities to reduce 

pollution in the marine industry and try to address this issue. Several approaches that have been set in the 

scientific literature for promoting energy efficiency and reducing GHG emissions in the maritime sector have 

come forward in response to achieving the reduction goals set by the IMO and the Paris Agreement. These 

methods contain battery-powered propulsion, advanced combustion systems, cold-ironing, waste heat 

recovery, renewable energy sources, and hybrid propulsion. Among these methods, hybridizing vessels by 

integrating internal combustion engines and electric motors is a promising solution [4]. However, the 
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successful adoption of this transformative approach necessitates the development of an intelligent energy 

management system capable of optimizing performance while minimizing emissions, thereby advancing 

sustainability goals in maritime transportation. 

The electrification of ships is a substantial and dynamic research domain incorporating multiple focus 

areas. Researchers explore power systems [5], energy management [6], electric propulsion [7], power-sharing 

strategies [8], and battery performance [9], reflecting the diverse aspects of this field. In [7], the authors 

compared different energy sources and determined that batteries emerge as the most promising solution for 

electric propulsion systems in ships, attributed to their higher energy and power density than other alternative 

energy storage solutions. Three distinct types of electrified ships are recognized in the literature: plug-in, 

hybrid, and full-electric ships [1]. Plug-in hybrid and hybrid ships incorporate a traditional diesel engine [10] 

and a battery. In hybrid ships, the battery is charged using excess energy from the engine and is employed to 

absorb load fluctuations. In plug-in hybrid ships, the battery is charged via the electrical grid and is exclusively 

utilized for designated actions such as port maneuvering [11]. 

On the other hand, a full-electric ship relies solely on a battery as its primary power source, which is 

charged by connecting to the electrical grid. Electric propulsion finds suitability in various ship types [12], 

including ferries, icebreakers, cruise ships, and drill ships [13]. In [14], the authors examined a ferry with a 

power system comprising diesel engines [10] and a battery primarily utilized for power supply during 

emergency maneuvering. Their investigation revealed higher efficiency of auxiliary engines, leading to 

reduced maintenance costs and increased engine lifetime. In [15], the authors investigated an offshore 

supporting ship propelled by diesel engines and equipped with a battery, showcasing reduced local emissions 

from the battery's integration. The launching of the Norwegian MF Ampere in 2015, the world's first battery-

powered ferry, constituted a noteworthy milestone in advancing the electrification of maritime transport using 

power batteries [1]. 

Lithium-Ion Batteries (LIBs) have become the most popular type of batteries used in different electric 

energy storage systems due to their much higher energy density, higher power density, low self-discharge rate, 

and considerably greater lifecycles [16-17]. The main components of LIB include the cathode, anode, vent, 

electrolyte, separator, and terminals. The type of LIB is typically named after its cathode chemistry. For 

maritime applications, three prominent cathode chemistries are recognized: Lithium Nickel, Manganese 

Cobalt Oxide (NCM), Lithium Titanate Oxide, and Lithium Iron Phosphate (LFP). Among these, NCM is 

renowned for having the highest energy density. As a consequence, maritime companies that aim to achieve 

the most effective compromise in terms of efficiency and energy safety frequently select this approach. The 

capacity and power density of battery cells are the primary considerations when selecting one for short-sea 

transportation. This is a result of the fact that batteries must be able to manage the required acceleration during 

operations while sustaining sailing over comparably greater distances [7]. Battery material, the total amount 

of battery cycles, temperature during operation, charging and discharging C-rate, Depth of Discharge (DoD), 

and the number of charged/discharged cycles are some of the complicated variables influencing the 

performance degradation of LIB. Both the anode and cathode materials selected have an enormous impact on 

the way the battery operates and how fast it degrades based on operational conditions. As an example, batteries 

made from LFP have become prevalent in numerous types of vehicles because of their cost and durability, as 

well as thermal concerns. 

LIB cells degrade over time, specifically during long storage time and repeated charge-discharge cycles. 

Various factors, such as operating temperature, the battery's State of Charge (SOC), and the charging or 

discharging current rate, significantly influence the rate of degradation. Higher temperatures and high charge-

discharge rates accelerate the aging process, reducing the battery's overall lifespan and performance [17]. In 

particular, extreme temperatures could accelerate the breakdown by triggering unexpected chemical reactions 

within the cells, and extreme discharge and charge rates may result in unsafe lithium deposits [18]. Monitoring 

the battery's process of degradation is challenging despite the fact that it includes complicated electrochemical 

reactions. To correctly determine how long a battery can endure, all these factors must be taken into account 

[19]. Understanding the connections among components, production methods, and usage habits, therefore, 

becomes essential to developing accurate models that estimate LIB life over time. Although battery Remaining 
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Useful Life (RUL) prediction has been extensively studied in grid-scale energy storage, electric vehicles, and 

aerospace systems, maritime batteries exhibit unique degradation patterns because of their hybrid propulsion 

operating modes, high thermal variability, and irregular load cycling. Hybrid vessels frequently experience 

peak power demands during operations, especially during maneuvering and port operations, and as a result, 

unlike conventional vessels, degradation behavior becomes nonlinear. Because sufficient datasets on this topic 

are either unavailable or difficult to access in the maritime industry, creating and improving existing models 

requires time [20]. 

While many factors influence the energy efficiency and cost-benefit ratio of LIBs, a significant research 

gap exists in predicting the RUL of LIBs in hybrid vessels. This gap explicitly relates to the application of 

data-driven algorithms for accurate RUL estimation, which is important for enhancing operational reliability 

and optimizing maintenance schedules in maritime applications. Developing robust predictive models could 

help bridge this gap, offering insights into battery health and lifecycle management under the unique 

conditions faced by hybrid vessels. Despite the existence of studies in literature that predict the RUL of LIBs 

and employ various approaches, this specific area remains underexplored.  

This study contributes to the literature by addressing the following aspects, which are different from 

previous works and add to the existing area of knowledge: 

• The RUL of LIBs, a crucial component in hybrid vessels, has been predicted using data-driven 

algorithms for a hybrid vessel. 

• By comparing several data-driven models with actual ship operating data, this study addresses the 

challenge of precisely predicting the RUL of LIB’s, in contrast to earlier research that has primarily 

focused on energy management or fuel savings in hybrid ships. 

• A comparative prediction process has been developed to thoroughly analyze the performance of 

data-driven algorithms in predicting the RUL of LIBs. A comparative analysis was also conducted 

with similar studies in literature. 

• In the prediction study, nine algorithms used in similar problems in the literature were selected to 

examine the performance of data-driven algorithms, especially for this problem, and the algorithm 

parameters were optimized for performance. 

The remaining sections of the study are structured as follows; the second section includes a 

comprehensive literature review of related studies in the field, and the third section covers materials and 

methodology. In the fourth section, the predictive analysis and comparative examination of algorithm scores 

are discussed, followed by the interpretation and discussion of the results obtained in the fifth and final 

sections. 

2. Related studies 

Due to the emission regulations that have come to the forefront in recent years, the issue of developing 

and using more efficient shipping systems has come to the front of the literature. In a study on this subject, 

the issue of LIBs on ship electrical networks and their types was discussed. In this research, a comparative 

analysis of a traditional drive system and a battery-driven system was carried out. As a result of the study, it 

was suggested that an approach carried out by ships with LIB is a more efficient and sustainable approach 

than the other approaches considered [1]. The study revealed that factors such as the propulsion system on the 

ship, voyage status, and fuel type directly affect the emissions generated during the voyage and the amount of 

fuel consumed. In this research, it has been suggested that in power-take-in mode, when the ship is close to 

the port, emissions can be significantly reduced thanks to the power obtained from auxiliary machines instead 

of the main engine. As a result of the study, it was determined that using LNG fuel with hybrid ships can 

reduce the amount of emissions from the ship and contribute significantly to energy efficiency [4, 21]. It has 

been stated that traditional ship propulsion systems no longer provide sufficient energy efficiency and that 

emission rates remain higher than in advanced ships in a study that examines how the climate brought on by 

environmental concerns in the maritime industry has accelerated the transition to hybrid ships and electric 

ships and that studies in this field have begun to come to the front in the literature. An energy management 

system was developed for research, and it was stated that this system may lower emissions [5]. A study that 
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examines the significant potential for emissions reductions from ships with hybrid propulsion and battery 

systems in ports has stated that hydrogen-based fuel supply and more easily accessible access to power in the 

port are beneficial developments. This study examined the construction of a passenger ship with a hybrid 

propulsion system and its reinforcement with battery systems. It was discovered that the dynamic 

programming methodology can identify sudden power changes on board the ship with high accuracy, owing 

to reinforcement learning [6]. According to a study, there may be negative environmental repercussions from 

increased maritime activity worldwide. As indicated, the IMO has established strict rules to prevent 

greenhouse gas emissions. Such regulations have increased energy efficiency practices on ships. Thanks to 

the applications made, alternative propulsion systems on ships have been addressed in various research and 

development processes. Ship propulsion systems with electric and hybrid propulsion provide an important 

opportunity for reducing pollution. The results of the study suggested that by including alternative powering 

technologies, alternative fuels, and rechargeable batteries, vessels using conventional power systems could 

substantially decrease their negative environmental impact [7]. As part of the research on the utilization of 

renewable energy systems on the ship, the main and auxiliary energy structures of a cruise vessel have been 

designed and assessed. The research determined the power demand of the vessel over multiple voyage 

conditions. Study utilizing simulation followed in connection with the predicted power demand. The study's 

findings have led to the determination of the potential power that can be generated by solar energy, fuel cells, 

and the diesel generator set installed on the ship, as well as the potential emissions. In the future, employing 

solar energy and batteries on ships rather than fossil fuels can considerably lower emission rates [8]. Battery 

systems and electric propulsion have become indispensable and relevant, particularly in ships performing 

short-range excursions, according to a study that suggests incorporating battery systems into ships can prevent 

emissions. Batteries and electrically powered ships may have significant development potential in the 

maritime industry because of the battery management system developed in this study [9]. According to an 

investigation that declares integrating battery systems into vessels assists in reducing GHG emissions, battery 

systems, and electrical propulsion have become crucial and relevant, particularly for vessels performing short-

range voyages. Due to the battery control system developed during this study, the maritime industry may see 

enormous expansion of the use of batteries and electric-powered vessels. As a result of the study, dual-

objective optimization is much more functional than single-objective optimization studies and can potentially 

be used in the future [11]. It was demonstrated that hybrid designs are significantly more environmentally 

friendly than conventional methods in an investigation that discussed how hybrid design structure has recently 

developed into a vital development and research procedure for commercial vessel operations. The research 

investigation suggests that vessels using hybrid engine technologies may rapidly reduce fuel consumption by 

up to 20 %. Given its likelihood of becoming thoroughly used, implementing a hybrid technique in 

autonomous vessels has been assessed as a field with future potential [13]. A study analyzed the integration 

of the battery system for a conventional diesel-powered ship. This analysis study examined data obtained from 

a ship operating a short-range voyage in the Baltic Region. While analyzing the battery installation cost, it 

was evaluated that it would be more beneficial to first undergo an optimization process for the main engine 

and auxiliary machines on the ship. Additionally, it has been determined that the installation of the battery 

system has the potential to reduce the vessel's annual GHG emissions by approximately 250 tons [10]. The 

results of the research revealed that hybrid engines on vessels had a lot of potential as a technique for 

decreasing pollution [14]. Ships used to support offshore platforms have become essential in recent years as 

the oil industry turns to subsea resources. Due to critical safety measures and emission restrictions on such 

ships, hybrid ships and electric propulsion ships may be an alternative solution. A study conducted in this field 

determined that the combination of the classical internal combustion propulsion system and battery technology 

will become much more common in the coming years. The research presented the need for studies on the 

lifespan of batteries as an area that should be investigated in the coming years [15]. The electrically powered 

operation of vessel energy systems has become essential due to attempts to decrease pollution and implement 

maritime authority. Based on a study in this domain, battery storage technology plays an important part in 

improving vessel energy efficiency. The research additionally illustrates the potential of increasing ship 

efficiency in energy with alternate energy sources [7]. The demand for alternative energy sources has brought 

attention to the battery problem in recent years. The value of batteries has grown as electrical technologies 
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have replaced internal combustion engines in many applications. A study estimated the remaining lifetime of 

batteries. There has been a contention that machine learning techniques can be a viable substitute for artificial 

neural networks in prediction tasks due to their alleged inferior performance. The study used a 40-cycle 

dataset, and the average absolute error of the forecast was about 11 % [19]. An investigation which employed 

a digital twin methodology for modelling vessel cranes in the maritime sector studied the model in a number 

of scenarios and produced favorable results. It was stated, according to the findings of the research, that a 

digital twin methodology may be effectively applied to identify potential risks and assess optimal operating 

conditions for cranes [22]. The importance of data-driven studies has increased in the maritime sector in recent 

years. Chen et al. (2025) claimed that the SOH and RUL values of LIBs can be calculated using single cycle 

charging data [20]. Furthermore, in another study, Meng et al. (2025) designed an early warning system for 

dual-fuel ships, utilizing deep learning methodology [12]. While there have also been studies in explainable 

artificial intelligence on this topic, Hoang et al. (2025) proposed a methodology for estimating fuel 

consumption from operational data [10]. Using a fault detection methodology for ship components,  

Su et al. (2024) argued that ship health monitoring could contribute to energy efficiency and emissions 

reduction [21]. In addition to these studies, Liu et al. (2024), in a study using the digital twin approach to 

model cranes on ships, stated that the reliability of crane systems on ships could be increased through the 

digital twin method [22]. 

3. Materials and methods 

3.1 Ship power plant and battery dataset 

This study considers a cargo ship with a hybrid power plant used for commercial purposes for a North 

European shipping company. Various parameters of the ship are listed in Table 1. The vessel power plant 

architecture is given in Figure 1. As shown in Figure 1, the vessel has one main engine, three generators, one 

emergency generator, and a battery system. The features of the statistical summary of the ship's battery system 

dataset are given in Table 2 and the correlation matrix for the dataset is shown in Figure 2. The battery pack 

consists of series-parallel modules of lithium-ion cells with NCM chemistry. The initial nominal cell capacity 

was 100 Ah, and the rated capacity is 1 MWh. Prior to data collection, the system had been operating for about 

two years, with a typical DOD of about 80 %. When the pack's usable capacity fell below 70 % of its nominal 

value, it was retired. The dataset was collected during the hybrid vessel's regular operational trips, ensuring 

that the measurements accurately reflect loading and discharging conditions. Raw onboard measurement data 

were preprocessed to ensure reliability and remove noise-related artifacts before model training. Due to 

transmission problems, cycles with missing voltage or current values were eliminated. A Savitzky-Golay 

smoothing technique was used to filter high-frequency measurement noise to try to eliminate signal spikes 

and maintain electrochemically significant trends. Using z-score analysis, outliers resulting from anomalous 

operational events were found and eliminated when |z| > 3 for cycle duration, minimum voltage, or maximum 

discharge values. To make sure that charge and discharge intervals were consistent across samples, each cycle 

was divided using characteristic voltage transition points after filtering. The parameters were normalized using 

min-max scaling system to avoid feature supremacy and provide a trustworthy infrastructure for comparing 

algorithms. By using these preprocessing methods, battery degradation patterns during hybrid vessel 

operations were reliably and accurately represented in the processed dataset. 

The LIB pack, installed on the ship studied in this study, was designed to support power sharing between 

the diesel generators in the ship's power scheme. It provides support such as auxiliary power during low-speed 

operations, temporary load smoothing during acceleration, and peak shaving during maneuvering. Therefore, 

the primary cause of battery degradation observed in the dataset is real voyage conditions rather than 

laboratory conditions. Therefore, the battery aging factor under various realistic, ship-specific power demand 

models is reflected in the estimated RUL in the study. 
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Table 1  Analyzed ship parameters 

Type of the ship General cargo 

Deadweight Tonnage (DWT) 5400 mt 

Length 90 m 

Breadth 16 m 

Draft 6.3 m 

Gross Tonnage (GT) 4150 

Net Tonnage (NT) 2200 

Built year 2023 

Main engine 1920 kW 

Battery pack 1 MWh 

Generator set 3x350 kW 

Emergency generator 1x350 kW 

 

Fig. 1  Outline of a ship power plant and its basic components. The system includes the main engine for propulsion, generators 

supplying electricity to onboard systems, and Battery Energy Storage System (BESS) for hybrid vessels 

Table 2  Statistical analysis of the battery dataset 

 
Cycle 

index 

Discharge 

time (s) 

Decrement 

3.6-3.4V (s) 

Max. voltage 

discharge(V) 

Min. 

voltage 

charge (V) 

Time at 

4.15V (s) 

Duration of 

constant 

current 

stage (s) 

Charging 

time (s) 
RUL 

Count 13761 13761 13761 13761 13761 13761 13761 13761 13761 

Mean 563.37 4515.7 1159.7 3.9 3.58 3717.68 5393.78 10031.72 546.8 

Std 319.77 33074.47 14529.19 0.0917 0.1235 8982.74 25177.11 26344.71 319.88 

Min 1 8.7 -397544.5 3.043 3.022 -113.58 5.98 5.98 0 

25 % 284 1164 317.2 3.843 3.493 1813.36 2528.38 7853.5 273 

50 % 569 1542.12 433.2891 3.903 3.577 2876.343 3752.34 8322.31 542 

75 % 837 1893.12 592 3.97 3.664 4033.191 4976.32 8756.34 826 

Max 1134 958320.3 406703.7 4.36 4.37 245111.12 880728.1 881008.2 1134 
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Fig. 2  Pearson correlation matrix of the dataset 

The dataset includes samples where the battery's functional capacity drops below 80 % as well as the 

battery's entire operational life. The typical knee-point behavior, in which degradation accelerates quickly and 

nonlinearly, is seen in these late-life cycles. For the purpose of assisting the models learn both gradual and 

accelerated degradation regimes and better represent real-world LIB aging in maritime applications, these 

cycles were kept rather than eliminated. Duration of constant current stage (s) is a column that indicates how 

long the battery runs under a constant-current discharge scenario. Since constant-current portions provide 

trustworthy electrochemical information that has a strong connection to the evolution of internal resistance 

and capacity decrease, this stage was extracted. 

3.2 Data-driven algorithms 

In this study, nine different data-driven approaches were used to estimate the RUL of the battery system 

of a commercial container ship equipped with a hybrid power plant. The relevant methods are explained in 

detail below. 

3.2.1 Multiple-linear regression 

The Multiple-linear regression method, a classic algorithm frequently used in statistical analysis and 

data science, searches to find the dependent variable using independent input variables [23]. In other words, 

this algorithm can produce realistic results in cases where a linear relationship can be established between the 

dependent variable and independent variables [24]: 

𝐴 = 𝐵0 + 𝐵1𝑋1 + 𝐵2𝑋2 + ⋯ + 𝐵𝑁𝑋𝑁 (1) 

In Equation (1) A is the dependent variable, ɛ is the error, X variables can be expressed as independent 

variables, and B values can be expressed as coefficient values [25]. In this equation, values B are calculated 

as: 
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𝐴𝑁 = argmin
(𝐵)

(∑ (∑ 𝐵𝑗𝑥𝑖𝑗)𝑁
𝑗=1

2
)𝑁

𝑖=1𝐴𝑖−𝐵0−
 (2) 

3.2.2 K-Nearest Neighbors (K-NN) 

The K-NN method has become popular for determining the nearest neighbors of a certain point [25]. In 

this algorithm, the k parameter varies according to the model created. Based on past data, the algorithm 

calculates which neighborhood the new point belongs to. Minkowski distance (LP) is one of the most critical 

parameters in the algorithm and is used to calculate the margin between a point (xq) and another point (xj) [26]: 

𝐿𝑃(𝑥𝑗 , 𝑥𝑞) = (∑|𝑥𝑗,𝑖 − 𝑥𝑞,𝑖|
𝑝

)

𝑖

1/𝑝

 (3) 

In Equation (3), when the p-value is accepted as 1, the Manhattan distance is obtained, and when the  

p-value is 2, the Euclidean distance value is obtained [27]. 

3.2.3 Extreme Gradient Boosting (XGB) 

The XGB algorithm, which is a hybrid version of the Decision tree and Gradient boosting methods, uses 

the values obtained by summing the results obtained by the Decision tree method in the first stage [27]. This 

value is calculated as follows: 

ŷ𝑖 = ∑ 𝑓𝑘(𝑥𝑖)

𝑁

𝑘=1

 (4) 

The XGB algorithm, which applies a penalty in the case of complexity and thus aims to optimize the 

loss function, tries to converge to its target by improving the objective function [28]. In this structure, the loss 

function (LF) is shown in Equation 5, and the complexity penalty (CP) is shown in Equation 6: 

𝐿𝐹 = ∑ 𝑙(𝑦𝑖, ŷ𝑖)

𝑁

𝑖=1

 (5) 

𝐶𝑃 = ∑ 𝛺(𝑓𝑘)

𝑘

𝑘

 (6) 

3.2.4 Support Vector Machines (SVM) 

The SVM method was developed by Bell Labs and has been frequently used and widespread in data-

driven problems [29]. The support vector machine, a highly effective technique, gives consistent results in 

classification and regression problems. In the support vector machine method, the points between a certain 

number of support vectors and the predictions falling within this range are considered successful. In contrast, 

the region outside this range is considered unsuccessful. In classification problems, support vectors are 

structures that determine the boundaries between classes [30]. The equations related to support vectors are 

shown below: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑤0 (7) 

𝐻(𝑤, 𝑤0) = ∑(𝑦𝑖 −

𝑁

𝑖=1

𝑓(𝑥𝑖)) +
𝜆

2
‖𝑊‖2 (8) 

𝑉∈(𝑟) = {
0  𝑖𝑓  |𝑟| <∈

|𝑟|−∈   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

where x represents the independent variable, w is the normal vector. Also, λ is the alignment parameter, 𝑤0 is 

a constant number. V is the error function, Ɛ is the error margin, and r is the error value [31]. 
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3.2.5 Random forest 

Random forest, an ensemble learning method, is a classic algorithm that has successfully solved 

problems such as regression and classification for years [32]. In this method, while finding the result, unlike 

the decision tree method, the average of the trees from which the results are taken gives the obtained result. 

In this way, the random forest method overcomes the overfitting problem in the decision tree method. Another 

aspect of this method is that it is extremely robust against adding irrelevant features [33]. 

In this method, when X = x1, x2, ..., xn is given as input and training set and Y =  y1, y2, ..., yn is given as 

output values. 

If c=1,2,..., C, the number of examples (n) consisting of X and Y values are called Xc and Yc, and the 

regression tree (fc) is trained on Xc and Yc; the prediction process performed after training is calculated by 

taking the average of individual results found by each tree (x′) is below [34]: 

𝐹′ =
1

𝐶
∑ 𝑓𝑐(𝑥′)

𝐶

𝑐=1

 (10) 

The standard deviation value for the predictions from each individual tree at x' can be found with the 

following equation: 

𝑠𝑡𝑑 = √
∑ (𝑓𝑐(𝑥′) − 𝐹′)2𝐶

𝑐=1

𝐶 − 1
 (11) 

3.2.6 Ridge 

This algorithm is developed to perform coefficient estimation using the least squares method [35]. The 

following equation shows the coefficient (ax) calculation process: 

𝑎𝑥 = argmin
(𝑎)

(∑ ((𝑦𝑖−𝑎0−∑ 𝑎𝑗𝑥𝑖𝑗)𝐷
𝑗=1

2
+𝑟 ∑ 𝑎𝑗

2𝐷
𝑗=1 )𝑥

𝑖=1
 (12) 

If the equation above is examined, it means the regularization parameter, with the r value being greater 

than zero [36]. 

3.2.7 Lasso 

In this method, a variable selection process is performed using the least squares method. In the process 

of finding the coefficient (ax), the least squares method is used, and the equation developed for finding the 

coefficient is shown below [37]: 

𝑎𝑥 = argmin
(𝑎)

(
1
2

∑ ((𝑦𝑖−𝑎0−∑ 𝑎𝑗𝑥𝑖𝑗)𝐷
𝑗=1

2
+(𝑟 ∑ |𝑎𝑗|)𝐷

𝑗=1 )𝑥
𝑖=1

 (13) 

3.2.8 Elastic net 

In the Elastic net method, which uses the regularization parameters of Ridge and Lasso methods, the 

hyperparameters (a and rlratio) of the algorithm are found with the equations below [38]: 

𝑎 = 𝑟𝑅𝑖𝑑𝑔𝑒 + 𝑟𝐿𝑎𝑠𝑠𝑜 (14) 

𝑟𝑙𝑟𝑎𝑡𝑖𝑜 =
𝑟𝐿𝑎𝑠𝑠𝑜 

𝑎
 (15) 

3.2.9 Long Short Time Memory (LSTM) 

LSTM algorithm is a Recurrent Neural Network (RNN) that aims to alleviate the vanishing gradient 

problem encountered in classical RNNs. It provides a short-term memory for RNN containing many time 

steps, so it is called LSTM [39]. The LSTM structure generally consists of three gates and one cell. These 

gates are called the input gate, the output gate, and the forget gate. The cell structure is a subsystem that 
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remembers values at random intervals, and the gates are responsible for regulating the flow of information 

entering and exiting the cell. The input gate is responsible for selecting new pieces of information to store in 

the current cell state, while the forget gate determines which information to discard [40]. The LSTM algorithm 

was used in this study to compare and analyze the performance of classical algorithms with a more innovative 

and modern algorithm compared to other algorithms. 

3.3 Validation and evaluation 

Three different error metrics were used to quantify the values obtained in the estimation study carried 

out during the simulation process and compare the algorithms with each other in more detail. The K-fold 

cross-validation method was used to verify the study results [41]. To ensure reliability of the evaluation 

between models, a 5-fold cross-validation method was used. 60 % of the samples were used for training,  

20 % for validation, and 20 % for testing. Data leakage was prevented during the training and testing phases 

by processing the data so that they did not overlap. Although the dataset used in this study was taken from the 

same vessel, this method allowed the model performance to demonstrate its predictive ability on unseen 

operational variables. 

3.3.1 K-fold cross-validation 

 

Fig. 3  K-fold cross-validation process 

In data-driven methods, the K-fold cross-validation method is used at the end of the problem-solving 

process to determine whether the algorithms have an overfitting problem [42]. This study divided the dataset 

into five equal sample sets. One of these sets was separated for validation, the other one was separated as the 

test set, and the remaining three sets were used as training data to perform the cross-validation process [43]. 

The process continued until all the samples in the dataset were scanned. After all the samples in the dataset 

were scanned, the process was terminated, and the average of the obtained scores was taken as the validation 

score. The K-fold cross-validation score is given in the Equation (16). In this equation, Ɛ represents the error 

value for each iteration: 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = ∑ Ɛ𝑖

𝑛

𝑖=1

 (16) 

The K-fold cross-validation process is illustrated in Figure 3 [44]. 
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3.4 Error metrics 

3.4.1 Mean Absolute Error (MAE) 

In data-driven problems, the calculation of the average of the absolute values of the distance between 

the actual values in the dataset and the values predicted by the algorithms is found with the error metric called 

MAE. The calculation process of the MAE is given below [45]: 

𝑀𝐴𝐸 =
1

𝑛
∑ 𝑒𝑟𝑟𝑜𝑟𝑗

𝑛

𝑗=1

 (17) 

where, 𝑒𝑟𝑟𝑜𝑟𝑗 shows the absolute value of the distance between the dataset's actual values and the algorithms 

predicted values [46]. 

3.4.2 Root Mean Squared Error (RMSE) 

In data-driven problems, the distance of the predictions made by the algorithms to the real values in the 

dataset is determined by the error metric called RMSE. The calculation process of the RMSE is shown below 

[47]: 

𝑅𝑀𝑆𝐸 = √
∑ 𝑒𝑟𝑟𝑜𝑟𝑗

2𝑛
𝑗=1

𝑛
 (18) 

In this equation, the 𝑒𝑟𝑟𝑜𝑟𝑗 value is the difference between the actual value in the dataset and the 

predicted value. The value of n represents the amount of data [48]. 

3.4.3 Coefficient of Determination (R2) 

R2 can be explained as the predictable ratio of the variation in the dependent variable from the 

independent values in data-driven problems. It allows the model's success to be measured and quantified from 

the total variation of the results obtained by the algorithm. The equation for the calculation of R2 is given 

below [49]: 

𝑅2(𝑉𝑎, 𝑉𝑝) = 1 −
∑ (𝑉𝑎𝑗 − 𝑉𝑝𝑗)2𝑛

𝑗=1

∑ (𝑉𝑎𝑗 − 𝑘)2𝑛
𝑗=1

 (19) 

where, 𝑉𝑎 is actual value, 𝑉𝑝 represents the predicted value, and k represents the mean of the actual values [50]. 

4. Simulation results and discussion 

The simulation study was developed using the 3.7.7 version of the Python programming language using 

the Tensorflow environment, and the relevant studies were carried out using the Spyder 4.0 interface [51]. 

When the simulation was run with the default algorithm parameters, it was determined that some methods did 

not give the desired results and were inefficient in the battery's RUL prediction process. When the relevant 

parameters were optimized, and the simulation was rerun, it was observed that the efficiency of the algorithms 

increased. Simulation results with the default parameters of algorithms and their optimized versions are shown 

in Table 3. The results of the K-fold cross-validation process are shown in Table 4. The updated parameter 

values of the algorithms after the optimization process are shown in Table 5. Simulation results for the 

prediction of the battery RUL for the hybrid ship are shown in Figures 4-21. For all simulation figures  

(Figures 4-21), the horizontal axis represents the cycle index, corresponding to the sequential numbering of 

battery operating cycles over time. The vertical axis represents the RUL expressed in cycles. The true 

degradation trajectory obtained from operational data is denoted by "Actual RUL" in each plot, whereas the 

other curves show model predictions both before and after hyperparameter optimization. These explanations 

are given here to prevent duplication because all figures use the same axis definitions and labeling 

conventions. 
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Fig. 4  Simulation results of the Elastic net algorithm before hyperparameter optimization 

 

Fig. 5  Simulation results of the Elastic net algorithm after hyperparameter optimization 

 

Fig. 6  Simulation results of the SVR algorithm before hyperparameter optimization 
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Fig. 7  Simulation results of the SVR algorithm after hyperparameter optimization 

 

Fig. 8  Simulation results of the Lasso algorithm before hyperparameter optimization 

 

Fig. 9  Simulation results of the Lasso algorithm after hyperparameter optimization 
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Fig. 10  Simulation results of the Ridge algorithm before hyperparameter optimization 

 

Fig. 11  Simulation results of the Ridge algorithm after hyperparameter optimization 

 

Fig. 12  Simulation results of the Random forest algorithm before hyperparameter optimization 
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Fig. 13  Simulation results of the Random forest algorithm after hyperparameter optimization 

 

Fig. 14  Simulation results of the XGB algorithm before hyperparameter optimization 

 

Fig. 15  Simulation results of the XGB algorithm after hyperparameter optimization 
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Fig. 16  Simulation results of the K-NN algorithm before hyperparameter optimization 

 

Fig. 17  Simulation results of the K-NN algorithm after hyperparameter optimization 

 

Fig. 18  Simulation results of the Multiple-linear regression algorithm before hyperparameter optimization 
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Fig. 19  Simulation results of the Multiple-linear regression algorithm after hyperparameter optimization 

 

Fig. 20  Simulation results of the LSTM algorithm before hyperparameter optimization 

 

Fig. 21  Simulation results of the LSTM algorithm after hyperparameter optimization 

When Figures 4 and 5 are compared, it is seen that there is a significant increase in the algorithm 

estimation performance after the parameter optimization process for the Elastic net algorithm. The mean 

absolute error can be significantly reduced. When Figures 6 and 7, which include the performance graphs for 

the support vector regression algorithm, are examined, it can be observed that the algorithm performance has 
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increased significantly after the optimization process. While the mean absolute error value was in a wide 

range, it was squeezed into a narrow range after the optimization process. When Figures 8 and 9, which include 

the graphs for the Lasso algorithm, are examined, the increase in the algorithm performance can be understood 

from the decrease in the mean absolute error value. It is observed from Figures 10 and 11, where the Ridge 

algorithm is considered, that there is no visible increase in the algorithm performance. When the simulation 

results of the Random forest algorithm are examined, it is seen that the algorithm performance does not 

increase significantly before (Figure 12) and after (Figure 13) the optimization process. When Figures 14  

and 15, which include the XGB algorithm, are examined, it can be said that the algorithm performance has 

increased, especially over the mean absolute error value. When Figures 16 and 17, where the K-NN algorithm 

is discussed, are examined, it is observed that the prediction success can be improved after the optimization 

process. When Figures 18 and 19 are examined, it can be observed that the prediction success of the Multiple-

linear regression algorithm increases with the optimization process. The LSTM algorithm's predictive 

performance both before and after parameter optimization is shown in Figures 20 and 21. The outcomes 

unequivocally show a significant improvement after optimization. A considerable drop in both RMSE and 

MAE values suggests a higher degree of predictive accuracy. 

Table 3  Error metrics comparison for nine implemented algorithms, showcasing performance before and after hyperparameter 

optimization. 

Algorithm RMSE MAE R2 

 Before After Before After Before After 

Elastic net 8829.33 50.61 74.221 4.5165 0.9149 0.9995 

SVR 3315.67 519.60 21.701 4.4823 0.968 0.9949 

Lasso 51.6022 50.6153 4.5337 4.52 0.9994 0.9995 

Ridge 60.6298 50.6321 4.5294 4.5184 0.9994 0.9995 

Random forest 15.3548 15.1739 2.2283 2.2053 0.9998 0.9998 

XGB 18.6706 9.9068 2.9223 1.7308 0.9998 0.9999 

K-NN 390.03 190.371 4.2968 2.9759 0.9962 0.9981 

Multiple-linear r. 55.9837 50.6301 4.5205 3.4814 0.9994 0.9995 

LSTM 12.573  6.337 2.8702  1.4591 0.9998 0.9999 

Table 4  K-fold cross-validation results 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Result 

 Before After Before After Before After Before After Before After Before After 

Elastic 

net 
70.5792 2.4992 70.3001 10.6332 69.2681 5.2150 86.2663 2.9477 76.3290 2.9477 74.5485 4.7988 

SVR 19.7176 3.6592 24.3966 10.8283 21.6295 4.1346 19.9570 2.2665 20.3332 4.2116 21.2068 5.0201 

Lasso 2.3955 2.4902 10.5890 10.6133 5.1987 5.2067 3.0145 2.9481 2.7848 2.7058 4.7965 4.7928 

Ridge 2.5291 2.5390 10.6419 10.6382 5.2129 5.2115 2.9478 2.9461 2.7064 2.7058 4.8081 4.8076 

R. forest 3.3229 3.2759 10.5260 10.5251 6.5360 6.5640 4.6941 4.7026 4.3656 4.2783 5.8889 5.8692 

XGB 5.0407 4.6591 10.6883 10.4490 7.6841 5.8932 4.3668 3.3539 5.4936 4.1413 6.6547 5.6993 

K-NN 12.8536 10.8481 14.2207 14.1217 10.8396 10.2660 9.7772 7.6078 16.3165 17.3383 12.8015 12.0364 

Multiple-

l. r. 
2.5488 1.7936 10.6346 10.3611 5.2100 1.8346 2.9444 0.0086 2.7052 3.5381 4.8086 3.7052 

LSTM 2.5421 1.6025 3.1978 1.3816 2.7643 1.4937 3.0564 1.4168 2.7903 1.4009 2.8702 1.4591 

When the error metric values, as illustrated in Table 3, and K-fold cross-validation results, as shown in 

Table 4, are examined on an algorithm basis, it can be said that the parameter optimization process positively 

affects the prediction performance of the algorithms in general. When the algorithms are evaluated 

individually, it can be said that the success of the Elastic net, SVR, XGB, and K-NN algorithms has increased 

significantly with the optimization process. When Table 4 is examined, it can be observed that there is no 

over-fitting situation among the algorithms. Model hyperparameters were adjusted using a grid search method 

in conjunction with 5-fold cross-validation to improve predictive performance. A predetermined search space 

was created for each algorithm using preliminary exploratory runs and suggested parameter ranges from the 

literature. Performance consistency was achieved by using RMSE, MAE, and R² scores to determine the 
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optimal hyperparameters of the algorithms. In the 5-fold cross-validation process, all folds were run, and the 

dataset was fully analyzed. The optimal values for algorithm parameters were determined in these folds. Due 

to the large number of parameters in the LSTM algorithm, the grid search application process took longer, but 

this was overcome through Bayesian optimization. The parameter values obtained after the optimization are 

presented in Table 5. Figure 22 depicts algorithm performances before and after the optimization process. 

Table 5  Hyperparameters of algorithms 

Algorithm Hyperparameter 

Elastic net 'alpha': 0.01, 'l1_ratio': 0.99 

SVR 'kernel': [ 'rbf'], 'C': [100], 'epsilon': [0.1] 

Lasso 'alpha': 0.1 

Ridge 'alpha': 1 

R. forest 
'max_depth': None, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 

'n_estimators': 500 

XGB 
'colsample_bytree': 1.0, 'learning_rate': 0.1, 'max_depth': 10, 'n_estimators': 500, 

'subsample': 0.9 

K-NN 'n_neighbors': 3, 'p': 1, 'weights': 'distance' 

Multiple-l. r. 'alpha': 1 

LSTM 
'units': 64, 'activation': 'tanh', 'dropout': 0.2, 'optimizer': 'adam', 'learning_rate': 0.001, 

'batch_size': 32, 'epochs': 100 

 

Fig. 22  Comparison of algorithm performances before and after parameter optimization process 

5. Conclusions and recommendations 

In hybrid ships, battery systems have an essential function in decreasing fuel consumption and 

increasing energy efficiency. By employing energy from batteries, the vessel may decrease its fuel 

consumption and move closer to its carbon reduction targets. Therefore, this study aims to estimate the RUL 

of the battery system in hybrid commercial vessels. By developing an approach to accurately predict the RUL, 

the study works toward enhancing the efficient utilization of the battery system and optimizing its 

performance. Simulation studies show that the RUL of the battery system on ships can be estimated with a 

high degree of accuracy via data-driven approaches. This level of precision provides operators with confidence 

in the information about various maintenance and handling activities and ensures the ship's power plant is 

made more robust against electrical faults in case of a possible battery system problem. Additionally, the 
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findings of this work will ensure timely interventions and prolong the operational lifetime of the batteries 

aboard the vessel. 

As a result of the study, the RUL of the battery in hybrid ships has been successfully estimated by data-

driven algorithms. The following information can be accessed in light of the study results: To increase 

operational and maintenance sustainability in hybrid ships, estimating the RUL of the battery with high success 

is essential in predictive maintenance-attention studies. The case study analysis revealed that the LSTM 

algorithm shows sufficient success in the estimation process when the parameter optimization was performed 

in the first stage. However, after the optimization process, its success increased. It became the most successful 

algorithm among the algorithms explicitly considered for the problem of estimating the RUL in hybrid ships. 

The case study analysis shows that the success of the XGB, Elastic Net, SVR, and K-NN algorithms also 

increased significantly after the optimization process. It can also be concluded from the simulation results that 

the performance of the Lasso, Ridge, Random forest, and Multiple-linear regression algorithms did not 

increase as much as the other algorithms considered after the optimization process. The practical value of the 

RUL estimation strategy proposed in the study lies in its predictive performance, as well as its suitability for 

integration into the hybrid ship Energy Management System (EMS). A high predicted RUL value will allow 

the EMS to better adjust the discharge depth to reduce onboard fuel consumption. If RUL is low or approaches 

critical thresholds, the opposite will occur. High C-rates can be limited, shifting the drive load to generators 

and increasing fuel consumption. Furthermore, scenarios where temperature is limited can be implemented to 

slow down deterioration. All these factors demonstrate that RUL estimation and management is not a 

standalone task but a methodology that can incorporate situational and analytical strategies.  The ability of 

LSTM to capture nonlinear temporal dynamics associated with knee-point degradation, which rule-based and 

tree-based models frequently fail to adequately represent, is responsible for its superior performance, 

especially in the late-life region. It is naturally expected that the LSTM algorithm discussed in this study will 

outperform other algorithms thanks to its ability to capture temporal dependencies in battery degradation. 

However, when linear regression and tree-based models are treated as independent observations, it can be 

predicted that their predictive accuracy will be limited. The fact that each charge-discharge cycle affects the 

battery's aging status has limited the predictive power of such algorithms. However, the LSTM algorithm's 

performance in preserving the degradation model and modeling nonlinear behavior has also affected the 

prediction results. These features of LSTM make it stand out among other algorithms for modeling situations 

such as the irregular load regimes encountered in hybrid ship operations, the varying temperatures encountered 

onboard ships, and frequent peak power demands. It should be noted that a single hybrid electric vessel is the 

source of the dataset for this work. As a result, intra-vessel generalization rather than cross-fleet applicability 

is the main focus of the current evaluation. Multi-vessel or multi-route datasets will be used in future research 

to confirm that the suggested model can be applied in a variety of operational and environmental scenarios. 

Based on the findings, it can be observed that the RUL estimation strategy provides practical value for hybrid 

ship operations. If the predicted RUL value can be integrated into the onboard EMS, it will enable the dynamic 

behavior of the onboard load-sharing strategy, reduce fuel consumption, and develop various battery 

protection strategies. Achieving these will increase operational efficiency and sustainability onboard. 

In addition, the study acknowledges several limitations and suggestions for future research. One 

significant challenge is the limited availability of datasets from hybrid vessels, as the technology is still 

relatively new and not yet extensive. However, with increased investments in hybrid vessels and the growing 

adoption of such ships in the coming years, gaining access to data from these vessels will become more viable. 

Furthermore, as the quality and size of the data sets increase, more accurate and robust results can be achieved, 

leading to better analytical models and maintenance strategies. While the study's results are quite promising, 

they are limited by the size and scope of the dataset due to the difficulty of obtaining data from hybrid vessels 

and the fact that this process is not expected to accelerate significantly in the near future. With the use of much 

larger and more comprehensive datasets in future studies, digital twin processes will take their place in 

literature as a much more promising approach for determining the RUL of ships' batteries. Despite the study's 

important findings, it should be noted that it also has limitations. The process of obtaining data from 

commercial vessels is challenging, and because the data was collected from a single hybrid ship, the results 
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cannot be generalized. Furthermore, the data was collected as historical data rather than real-time monitoring. 

Future studies can obtain much more robust data by diversifying and strengthening IoT and sensor systems. 
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