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A B S T R A C T  

With the advancement of next generation information technologies, Maritime 

Autonomous Surface Ships (MASS) are progressively advancing. However, the 

dynamic uncertainties arising from multi-ship interactions in complex maritime traffic 

environments significantly constrain their capabilities for risk identification and 

adaptive switching between Mode(s) of Operation (MoO). To address this challenge, 

this study proposes a navigation energy field model for risk assessment that integrates 

multi-ship interaction features. First, maritime traffic complexity is quantified based 

on intrinsic ship attributes and the Potential Risk Ship Domain (PRSD) framework. 

Second, to address the inadequacy of conventional field theory in capturing dynamic 

coupling relationships between ships, a navigation energy field model is developed 

that incorporating multi-ship interaction characteristics, guided by quantified traffic 

complexity. Finally, applying the ALARP (As Low As Reasonably Practicable) 

principle, navigation scenarios are classified, providing a quantitative foundation to 

support adaptive MoO switching. The results demonstrate that the proposed method 

effectively reveals the risk evolutionary patterns of collective ship behaviors in multi-

ship convergence and high-density traffic environments, thereby enhancing the ability 

of MASS to identify risks. This research provides theoretical and practical support for 

risk assessment and adaptive MoO management in MASS, contributing to improved 

navigational safety under dynamic and complex navigation situations.

1. Introduction 

Driven by emerging technologies such as artificial intelligence, big data, and 5G networks, intelligent 

systems have been widely implemented in fields like maritime and road transportation. Among them, MASS 

has attracted growing attention within the shipping industry as an innovative solution aimed at reducing human 

errors [1]. 

As the International Maritime Organization (IMO) Maritime Safety Committee (MSC) continues to 

advance the MASS regulatory framework, the definition and operational requirements for MASS related 

terminology are gradually being standardized and institutionalized. Currently, the IMO has completed several 

landmark tasks in advancing the development of the MASS regulatory framework: (1) At the 98th MSC, the 
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issue of autonomous ships at sea was discussed for the first time, and it was agreed to establish a new 

deliverable titled “Review of the Regulatory Scope for MASS”; (2) At the 103rd MSC, the task of reviewing 

the compatibility of existing regulations with MASS was completed;(3) At the 104th MSC, the establishment 

of a goal based MASS instrument was approved; (4) At the 106th MSC, the MASS Code framework was 

preliminarily determined, and the roadmap for subsequent development was approved. In addition, with the 

release of guidance documents such as MSC.1/Circ.1638, important references and policy guidance have been 

provided for the non-mandatory MASS Code and its related implementation path, which are expected to be 

introduced in 2028. To standardize the development path of MASS, the 99th MSC classified the autonomous 

capabilities of MASS into four distinct levels of autonomy [2]. However, in actual operation, the levels of 

autonomy of MASS are not constant but are affected by external environmental factors, requiring MASS to 

switch in real-time during operation, which limits the application of the original static classification method 

in complex environments. 

To address this challenge, the 107th MSC further proposed replacing the conventional autonomy level 

classification with the concept of Mode(s) of Operation (MoO), to dynamically define the ship’s level of 

autonomy [3]. This definition reflects the current technical limitations of MASS, namely their inability to fully 

handle complex and rapidly changing maritime conditions. Consequently, MASS still rely on remote control 

and onboard crew as redundant safeguards to enhance their responsiveness and handling capability in diverse 

navigation scenarios. 

Against this backdrop, enhancing the dynamic risk perception capability of MASS with respect to 

navigational environment complexity has become a key prerequisite for achieving adaptive switching between 

MoO [4]. At present, the core focus of MASS development lies in advancing autonomous perception [5] and 

decision-making [6, 7], aiming to strengthen their autonomous operation in complex navigational 

environments. Network based methods such as Bayesian have been widely applied in modeling uncertain ship 

behavior and have played an important role in the MASS risk assessment framework [8]. Meanwhile, the 

International Regulations for Preventing Collisions at Sea (COLREGs) have been integrated into the path 

planning and collision avoidance decision-making processes of MASS, to ensure regulatory compliance and 

the safe operation of their navigation systems [9, 10]. However, these methods typically focus on rule 

consistency or probabilistic reasoning and remain inadequate in modeling the spatiotemporal evolution of 

potential risks in complex multi-ship interaction scenarios. There remains a significant gap in research 

concerning risk assessment of navigational scenarios. Specifically, since there is a lack of a quantitative 

evaluation model centered on MASS that can dynamically reflect the complexity of its current operating 

environment. This gap is particularly evident in a typical high complexity scenarios such as multi-ship 

encounters and high-density traffic flows, where traditional risk warning systems struggle to effectively 

capture the interactions between vessels and the spatiotemporal evolution of potential risk areas. These 

limitations not only hinder MASS’s understanding of environmental changes but also weaken its ability to 

achieve adaptive switching between different MoO. 

To address this issue, field-based methods have been widely applied in the domain of maritime 

navigation risk assessment in recent years [11]. These methods regard vessels as dynamic field sources, using 

navigation energy fields to describe their influence on the surrounding environment, thereby reflecting the 

distribution of potential risks and behavioral trends. Although existing navigation energy field models have 

improved, the visualization and quantification of navigational risk, most models still treat elements within the 

scenario as independent of each other, hence fail to adequately consider the interactions and potential coupling 

relationships between multiple vessels when constructing the navigation energy field. While such simplified 

modeling strategies are somewhat applicable in low density traffic environments, they struggle to accurately 

capture the dynamic characteristics and risk evolution trends in complex scenarios such as multi-ship 

encounters and high-density traffic. This limitation is particularly pronounced in applications targeting MASS, 

where the generalization and adaptability of these models require urgent enhancement. 

To sum up, although existing research has made positive progress in ship collision risk assessment and 

maritime traffic situation modeling, the following key gaps remain: (1) Most maritime traffic risk research is 

conducted from a regulatory perspective and lacks dynamic risk quantification methods that focus on 
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individual ships and reflect the characteristics of multi-ship interactions.(2) Although existing navigation 

energy field models have improved the visualization and quantification of navigation risks to a certain extent, 

they cannot effectively characterize the coupled effects of multi-ship interaction behavior on risk evolution. 

(3) Existing MASS navigation risk assessment methods overlook the basis for determining the risk levels 

required for switching between different MoO in complex dynamic scenarios. Therefore, there is an urgent 

need to develop a navigation scenario risk quantification model that integrates traffic flow evolution 

characteristics, interactions between ships, and potential conflict risks to provide reliable support for MASS 

autonomous cognition, risk assessment, and MoO adaptive switching, thereby enhancing its autonomous 

navigation capabilities and safety assurance in complex dynamic environments. 

To develop a risk assessment model suitable for MASS navigation characteristics, it is crucial to obtain 

comprehensive and reliable maritime traffic data. It is worth noting that, according to IMO regulations, since 

2015, all ships of 300 gross tonnage or more navigating in international waters and all passenger ships of any 

tonnage must be equipped with an Automatic Identification System (AIS). The widely deployed AIS has not 

only significantly improved maritime traffic safety but also provided critical data support for ship behavior 

modeling, multi-ship interaction feature analysis, and navigation risk assessment [12]. Therefore, this paper 

selects a portion of AIS data for ship navigation risk assessment in the model validation section to verify the 

applicability and effectiveness of the proposed navigation energy field model in actual complex maritime 

environments. 

In summary, this study aims to develop a navigation energy field model for risk assessment that 

incorporates multi-ship interaction characteristics. This research not only contributes to a deeper 

understanding of the risk evolution patterns in collective vessel behavior within complex traffic environments 

but also provides theoretical support and algorithmic foundations to support adaptive MoO switching, thereby 

advancing its practical applications in autonomous perception and risk assessment. The main contributions of 

this study are summarized as follows: 

1) A maritime traffic complexity measurement method tailored to multi-ship interaction scenarios is 

proposed based on the intrinsic attributes of vessels and the Potential Risk Ship Domain (PRSD) theory [13]. 

Inspired by ji et al. [14], this method quantifies potential collision risks from three dimensions—density 

complexity, proximity complexity, and mitigation complexity—with the objective of enhancing MASS's risk 

perception capability in complex navigational environments and laying the foundation for constructing the 

navigation energy field potential function. 

2) A coupled navigation energy field model has been developed that integrates maritime traffic 

complexity metrics into potential function calculations. Unlike traditional field-based approaches treating 

proximity and interaction density as independent factors, the proposed model embeds complexity values as 

parameters within Gaussian potential terms. This dynamically captures the interaction characteristics and risk 

evolution trends between vessels within the traffic environment, thereby significantly enhancing the 

expressive capability and applicability of risk assessment in complex navigation scenarios. 

3) A classification standard for navigational scenario risk levels is defined by leveraging the As Low As 

Reasonably Practicable (ALARP) principle [15], along with a quantitative foundation to support adaptive 

MoO switching. This contribution enhances its adaptability and safety assurance capabilities in complex and 

dynamic navigational environments. 

The rest of this paper is organized as follows: Section 1 reviews related work; Section 2 introduces the 

maritime traffic complexity measurement model, constructs the navigation energy field, and defines the 

classification principle for navigational scenario risk levels; Section 3 presents a case study to validate the 

effectiveness of the proposed model; Section 4 discusses the limitations of the model and outlines directions 

for future improvements; and finally Section 5 concludes the study with final remarks and conclusions. 

2. Literature review 

In actual maritime operations, one of the key challenges faced by ship operators or autonomous systems 

is the accurate assessment of potential collision risks among vessels [16]. Since MASS typically operate under 
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two distinct MoOs—“autonomous” and “remote operation”—their understanding of the external navigational 

environment and risk perception capabilities are directly linked to decision-making safety and the system’s 

ability to achieve adaptive MoO switching [17]. 

When operating in autonomous mode, collision risk identification relies entirely on the onboard 

perception system’s real-time processing of information regarding surrounding dynamic entities (e.g., nearby 

vessels), including their positions, velocities, and movement trends. The system must comprehensively 

analyze the current traffic situation, identify potential risk areas, and formulate appropriate collision avoidance 

strategies. If the actual risk exceeds the system’s predefined handling capacity or if the scenario complexity 

surpasses its cognitive threshold, a control switching mechanism must be promptly activated to transfer control 

from the autonomous system to shore based operators or onboard crew, thereby ensuring navigational safety. 

In the field of maritime navigation risk assessment, various quantitative methods have been proposed, 

incorporating parameters such as the Distance to Closest Point of Approach (DCPA), Time to Closest Point 

of Approach (TCPA), and Collision Risk Index (CRI). Ship operators or autonomous systems can dynamically 

monitor navigational situations and identify risks by establishing corresponding risk thresholds based on these 

parameters, thereby facilitating collision avoidance warnings [18]. However, these methods generally rely on 

the assumption of “constant speed and heading,” implying that both the target ship and the own ship are 

presumed to maintain constant speed and course. While this assumption simplifies the collision risk 

calculation model, it overlooks the frequent changes in speed and course encountered in real-world navigation 

scenarios, which consequently affects the accuracy and timeliness of risk assessments [19]. 

The Ship Domain (SD), introduced by Fujii and Tanaka [20], offers a novel perspective for assessing 

collision risk between vessels. SD represents a generalized safe distance around a ship, defining a spatial zone 

within which other vessels should not intrude, thereby establishing the navigational safety boundary. 

Compared to conventional parameters such as DCPA, TCPA, and CRI, SD enables real-time and spatial 

visualization of potential collision risks. However, while SD provides valuable insight into relative vessel 

safety, it does not indicate the precise timing of a potential collision. Consequently, in complex maritime 

traffic environments, SD serves primarily as a reference tool and cannot be solely relied upon as a definitive 

basis for decision-making. 

In order to more effectively reflect the interactions between multiple ships in the maritime traffic 

environment, scholars have gradually introduced the perspective of complexity science, viewing maritime 

traffic systems as dynamically evolving complex networks, thereby expanding the theoretical understanding 

and modeling capabilities of risk generation mechanisms. Wen et al. [21] proposed and developed a 

complexity measurement model based on intrinsic vessel attributes, quantitatively evaluating maritime traffic 

complexity by integrating factors such as vessel density, speed, and relative distance. However, this model 

primarily focuses on pairwise vessel interactions and is less effective in capturing multi-vessel traffic 

dynamics across entire waterways. Sui et al. [22] applied a complex network approach to quantify maritime 

traffic dynamics, characterizing the system’s evolution through topological features such as degree, clustering 

coefficient, and structural entropy. Liu et al. [23] established a dynamic complexity model based on radial 

distribution functions of vessel speed, heading, and position, integrating these to derive an overall complexity 

indicator. This method emphasizes the relationship between spatial distribution patterns and microlevel state 

changes, demonstrating strong identification capabilities; however, its representation of multivessel dynamic 

interactions remains relatively simplified. Sui et al. [24] proposed a traffic complexity measurement method 

combining Voronoi diagrams with complex networks, effectively eliminating the need to predefine safety 

distances. Zhang et al. [25] introduced the Rule based Maritime Traffic System Complex Network (RMTSCN) 

model, which incorporates COLREGs rules and utilizes metrics such as node degree and vertex strength to 

capture the evolution of traffic system complexity, thus enhancing the digitalization of Vessel Traffic Services 

(VTS). Tong et al. [26] employed an improved WVoteRank algorithm to identify key vessels in multi-vessel 

encounter scenarios and conducted clustering based on spatial compactness and risk connectivity, improving 

the recognition of complex traffic zones. Ji et al. [14] developed a multi-vessel traffic complexity assessment 

model incorporating vessel density, proximity factor, and mitigation index, offering a more comprehensive 

reflection of potential risks in maritime traffic situations. Experimental results demonstrated its strong 
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capability in identifying potential collision risks. In recent years, with the gradual deepening of the application 

of complexity science in the field of shipping, particularly in the assessment of maritime traffic situations. By 

incorporating methodologies such as complex networks, social force models, and multilayer networks, 

researchers have enabled multi-scale and multi-dimensional dynamic analyses of vessel traffic conditions, 

offering valuable insights into the underlying patterns and potential risks within traffic systems. However, 

existing studies predominantly focus on overall waterway characteristics or general multi-vessel interaction 

patterns, while research concerning localized risk perception, dynamic situational changes, and decision-

making relevance for individual vessels operating in complex environments remains relatively limited. This 

gap hinders the ability to meet the increasing demand for fine grained risk identification, which is essential 

for the development of MASS. 

To address this research gap, field theory has recently been introduced as a novel modeling approach in 

the maritime traffic domain [27]. By leveraging the continuous spatial distribution characteristics of field 

theory, dynamic navigation environments can be abstracted as energy fields [28, 29], which describe the risk 

distribution around the own ship by comprehensively considering the motion states of target ships, traffic 

density, and the intrinsic properties of the own ship. Like Lazarowska, based on static and dynamic obstacles, 

a discrete potential field model was constructed for ship path optimization, and the feasibility of trajectories 

compliant with COLREGs was improved through path optimization algorithms [30]. Lyu et al. constructed an 

accurate potential field model coupling static and dynamic obstacles, significantly improving the feasibility 

of multi-ship collision avoidance in complex navigation environments [31]. Additionally, DiArchangel 

optimized potential field parameters using a genetic algorithm, enhancing the robustness of path planning in 

multiship intersection scenarios [32]. Compared to traditional methods, navigation energy field models offer 

enhanced spatiotemporal dynamic representation capabilities and better align with the local perception 

mechanisms relied upon by ship operators or autonomous systems during real-world operations. However, 

existing navigation energy field models still exhibit certain limitations. On one hand, their potential field 

functions of the navigation energy field typically adopt unified global parameters, lacking detailed 

quantification of individual vessel perception differences in complex scenarios. On the other hand, these 

models often focus on local interactions between the own ship and a single target ship, overlooking the holistic 

impact of multi-ship interaction behaviors within the overall traffic network on the navigation energy field 

distribution. 

In terms of MoO research progress in MASS, since the IMO first proposed the MoO concept at the 

107th MSC, related research has gradually focused on the state recognition and dynamic response capabilities 

of MASS in complex and variable maritime environments. The introduction of MoO aims to provide an 

adaptable operational framework for Autonomous Navigation Systems (ANS) so that the system can flexibly 

switch between different levels of autonomy based on environmental perception results. Zhang et al. proposed 

a MoO switching framework based on the Degree Two of MASS (MASS-DoA2) system, combining expert 

surveys to construct control mode option paths for MASS in different scenarios [33]. Rodseth et al. proposed 

a risk-driven MoO approval mechanism from the perspective of operational envelope [17]. Furthermore,  

Li et al. analyzed the risk evolution characteristics of MASS under different MoO states based on the System 

Theoretic Process Analysis- Hidden Markov Model (STPA-HMM) composite framework, clearly identifying 

“traffic complexity” and “traffic density” as the key factors triggering mode switching [34]. Tomohiro 

constructed a MASS risk analysis classification framework to provide theoretical support to the MoO 

switching mechanism [35]. However, existing research is mainly based on expert knowledge and rule-based 

judgment and lacks unified quantitative evaluation criteria. In particular, in scenarios with multiple ships and 

high-density interactions, a stable and effective dynamic switching evaluation system has not yet been 

developed. Therefore, it is necessary to develop MoO switching methods based on risk quantification and 

maritime traffic complexity modeling to enhance the mode adaptation ability and operational safety of MASS 

in dynamic environments. 

To further address the limitations of existing ship navigation risk assessment methods in complex traffic 

environments, this study proposes a navigation energy field model integrated with maritime traffic complexity. 

Grounded in the intrinsic attributes of vessels and the PRSD theory, the model incorporates density, proximity 
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factor, and mitigation index to develop a complexity measurement method suitable for multi-ship interaction 

scenarios. This enables the quantitative characterization of local situational complexity faced by individual 

vessels. Unlike conventional navigation field theory models that treat each vessel as an independent field 

source, this study innovatively integrates the coupling relationships among vessels—derived from maritime 

traffic complexity—into the navigation energy field construction process. By doing so, it establishes a 

dynamic risk quantification model based on individual vessel heterogeneity and interaction characteristics. 

This approach facilitates dynamic identification and quantification of risk evolution in high-density, multi-

ship interaction environments. Furthermore, based on the ALARP principle, the study defines a risk-level 

classification standard for navigation scenarios and provides recommended MoO for MASS under different 

risk levels. This offers quantitative guidance and theoretical support for adaptive switching of MoO in complex 

dynamic environments. The specific research framework is illustrated in Figure 1. 
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Fig. 1  Research roadmap 

3. Methodology 

The proposed methodology in this study comprises three main components: First, the calculation of 

maritime traffic complexity under multi-ship interactions to characterize the local risk features faced by 

vessels in complex navigation environments; Second, the construction of a potential function for the 

navigation energy field based on the developed complexity metrics and principles of field theory, enabling 

dynamic modeling of the navigation energy field; and finally, the classification of navigation scenario risk 

levels in accordance to the ALARP principle, providing a foundation for the dynamic switching of MoO. This 

structured approach ensures comprehensive risk assessment and adaptive operational adjustments in dynamic 

maritime environments. 

3.1 Calculation of maritime traffic complexity 

3.1.1 Maritime traffic complexity calculation for pairwise ships 

Inspired by Ji et al. [14], the complexity between pairwise ships in a maritime traffic scenario can be 

analyzed from three perspectives: density complexity 𝑑𝑒𝑛𝑖𝑗(𝑡), proximity complexity 𝑝𝑣𝑖𝑗(𝑡) and mitigation 

complexity 𝑒𝑣𝑖𝑗(𝑡).  
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The metric 𝑑𝑒𝑛𝑖𝑗(𝑡) quantifies the complexity arising from ship density, with higher traffic density 

leading to larger values, as detailed in Equations (1) and (2): 

( )

( )

ij

ij

d t

R

ijden t e
−

=



 
(1) 

2 2( ) 2 arcsin( sin ( ) cos( )cos( )sin ( ))
2 2

j i j i

ij i j

lat lat lon lon
d t r lat lat

− −
= +


 (2) 

In the equations, 𝛼  is a calibration parameter dependent on the navigational environment; |𝑑𝑖𝑗(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| 

denotes the relative distance between ships i and j at time t; 𝑅𝑖𝑗 determined by ship type and environmental 

conditions. 𝑙𝑜𝑛𝑖 and 𝑙𝑎𝑡𝑖 represent the longitude and latitude of ship i, while 𝑙𝑜𝑛𝑗 and 𝑙𝑎𝑡𝑗 correspond to those 

of ship j. r is the radius of the Earth, taken as 3,440 nautical miles (nm). 

The calculation of 𝑑𝑒𝑛𝑖𝑗(𝑡) involves two key parameters, 𝛼 and 𝑅𝑖𝑗. To determine the validity of the 

value assigned to these parameters, a sensitivity analysis was conducted, with the results presented in  

Figure 2. 

  

(a) (b) 

Fig. 2  Sensitivity analysis of key parameters for 𝑑𝑒𝑛𝑖𝑗(𝑡) 

Figure 2(a) illustrates the effect of varying alfa values on 𝑑𝑒𝑛𝑖𝑗(𝑡) when 𝑅𝑖𝑗  is fixed at 30, whilst  

Figure 2(b) demonstrates the impact of different 𝑅𝑖𝑗 values when 𝛼 is fixed at 1.81. The results indicate that 

as 𝑅𝑖𝑗 decreases, 𝑑𝑒𝑛𝑖𝑗(𝑡) exhibits exponential growth. Different combinations of 𝛼 and 𝑅𝑖𝑗 can be used to fit 

distinct growth curves, providing a theoretical basis for parameter adjustment when considering the 

differential impact of varying vessel types and navigational environments on interaction intensity in future 

studies. To enhance the model's universality and comparability, vessels are uniformly treated as a “standard 

ship” – specifically a bulk carrier with a deadweight of 70,000 tonnes, length of 230 metres, and width of 32.3 

metres. This defines the fundamental scale for parameters related to traffic complexity modelling [36]. 

Building upon the research of Wen et al. [21], extensive numerical experiments validated the final parameter 

settings: 𝑅𝑖𝑗 set to 30, and 𝛼 at 1.81. This parameter combination not only ensures consistency with the value 

ranges of other complexity metrics but also effectively reflects the intensity of ship-to-ship interactions. 

The 𝑝𝑣𝑖𝑗(𝑡) quantifies the influence of the relative motion trend between two ships on maritime traffic 

complexity at time t. It incorporates four key parameters: the spatial convergence factor 𝑐𝑣𝑖𝑗(𝑡), the temporal 

convergence factor 𝑡𝑣𝑖𝑗(𝑡), the ship safety distance 𝑑𝑠𝑎𝑓𝑒𝑑𝑖𝑠, and the relative distance between ships |𝑑𝑖𝑗(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|. 

When 𝑐𝑣𝑖𝑗(𝑡) < 0, it indicates that the two ships are in a converging state, as defined in Equation (3): 

( ) ( )( ( )sin( ( )) ( )cos( ( ))) ( )( ( )sin( ( )) ( )cos( ( )))ij j x j y j i x i y icv t v t t t t t v t t t t t       = + − +  (3) 
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In the equation, 𝑣𝑖(𝑡) and 𝑣𝑗(𝑡)  represent the speeds of ships i and j at time t, respectively; 𝜃𝑖(𝑡) and 

𝜃𝑗(𝑡) denote the headings of ships i and j at time t; 𝛼𝑥(𝑡) =
𝑙𝑜𝑛𝑗(𝑡)−𝑙𝑜𝑛𝑖(𝑡)

|𝑑𝑖𝑗(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
 and 𝛼𝑦(𝑡) =

𝑙𝑎𝑡𝑗(𝑡)−𝑙𝑎𝑡𝑖(𝑡)

|𝑑𝑖𝑗(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
. 

The 𝑡𝑣𝑖𝑗(𝑡) describes the degree of approach between ships and the urgency of their convergence. When 

the convergence situation becomes more severe, its value decreases accordingly, as defined in Equation (4): 
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The 𝑑𝑠𝑎𝑓𝑒𝑑𝑖𝑠 is calculated based on the improved PRSD proposed by Zou et al. [37]. The SD is modeled 

as an eccentric ellipse, and its safety boundary is computed using Equation (5): 
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 (5) 

In the equation, D , frD  and afD  represent the whole, fore and aft boundaries of the SD, respectively; 

p  denotes the angle between point p and the ship’s heading; iL  is the length of the ship;   and   are the 

lateral and longitudinal influence parameters of the SD, respectively; and PCR  indicates the potential collision 

risk index. 

The SD calculated by Equation (5) is illustrated in Fig. 3. In this example, the ship has a speed of 11 

knots and a length of 200 meters. The green area in Fig. 3 represents the SD range adopted in this study. 

 

Fig. 3  Schematic diagram of the SD 

To sum up, the 𝑝𝑣𝑖𝑗(𝑡) between ships can be expressed by Equation (6): 
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In the equation, k and 𝜏 are adjustment parameters, which are set to 𝑘 = 10 and 𝜏 = 2, the basis for 

selecting parameter values and specific explanations can be found in the relevant methods and experimental 

results presented by Ji et al [14]. 

The 𝑒𝑣𝑖𝑗(𝑡) measures the operational difficulty of a single ship in response to the current traffic situation 

in its surrounding waters. This indicator comprehensively considers the relative motion relationship between 

ships, the own intrinsic properties of the own ship, and its interactions under specific traffic conditions, 

providing a quantitative description of the traffic decongestion difficulty for a single ship at time t. The detailed 

formulation is presented in Equation (7): 

( ) ( ) ( ) ( )
( ) ( ) , , ,

T

ij ij ij ij

ij ij

i j i j

cv t cv t cv t cv t
ev t cv t

v v  

    
=  =  

     


 (7) 

To sum up, the complexity between pairwise ships can be quantitatively described by 𝑑𝑒𝑛𝑖𝑗(𝑡), 𝑝𝑣𝑖𝑗(𝑡) 

and 𝑒𝑣𝑖𝑗(𝑡), as shown in Equations (8) and (9): 

1( ) ( ) ( ) ( )ij ij ij ija t den t pv t ev t −= + +  (8) 
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 (9) 

3.1.2 Maritime traffic complexity calculation for multi-ship 

Based on the complexity calculation method between pairwise ships presented in Section 2.1.1, this 

study further extends the approach to multi-ship interaction scenarios, constructing a maritime traffic 

complexity matrix 𝐴 among multiple ships, as detailed in Equation (10): 

11 1 1

1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j n

i ij in

n nj nn

a t a t a t

a t a t a tA

a t a t a t

 
 
 
 =
 
 
 
 











 (10) 

In the equation, 𝑛 represents the total number of ships present in the waterway at time 𝑡. 

The weight matrix of the maritime traffic complexity matrix 𝐴 is calculated using Shannon entropy, 

which is objective and stable in multi-indicator weight calculation. The calculation results depend solely on 

the distribution characteristics of the indicator data and are unaffected by subjective factors, as shown in 

Equation (11). Finally, the overall complexity of each ship within the traffic situation at time 𝑡 is obtained by 

performing the Hadamard product operation between the complexity matrix 𝐴 and the weight matrix, as 

detailed in Equation (12): 

( ) ( ) log ( )ij ij i jw t a t a t= −  (11) 

1

( ) ( ) ( )
n

omplex ij ij

j

c t a t w t
=

=   (12) 
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In summary, this study proposes a maritime traffic complexity measurement model for multi-ship 

interaction scenarios based on ship-to-ship interaction mechanisms. This approach not only enhances the 

quantitative perception of potential collision risks in complex maritime environments but also provides a solid 

theoretical foundation for the subsequent construction and dynamic evolution modeling of the navigation 

energy field. 

3.2 Navigation energy field model 

In spatial data modeling, each data point within a given data object is typically influenced by surrounding 

data points. This influence relationship can be mathematically formalized through the use of potential 

functions. The potential function characterizes the intensity of the effect exerted by other data points on the 

target point, allowing the overall density of the data space to be represented as the superposition of the potential 

functions of all objects, thereby forming a complete density function model. On this basis, by defining 

appropriate forms of potential functions, it becomes possible to construct navigation energy field models 

tailored to specific contexts. 

The navigation energy field is the core modeling framework proposed in this study. Its theoretical basis 

originates from the classic potential field theory, which was first widely applied in robot path planning and 

obstacle avoidance. In recent years, some Chinese scholars [11,29] have applied it to maritime traffic risk 

modeling. By treating ships as field sources, the researchers constructed a potential function model to describe 

the scope of risk influence, thereby enabling a spatial description of the navigation situation. Based on this, 

this study further develops the concept of navigation energy field, introducing maritime traffic complexity, 

multi-ship interaction relationships, and heterogeneous potential function overlay mechanisms, enabling the 

model to not only express the effect intensity brought about by relative distance, but also reflect the trend of 

traffic status on risk. Therefore, the navigation energy field not only possesses the spatial perception 

capabilities of traditional energy field models but also enhances the quantification and local response 

capabilities of risk identification, making it more suitable for navigation risk modeling and MoO switching 

decision-making in complex interactive scenarios. 

Definition: A navigation energy field refers to a spatial continuum function model based on potential 

field theory, which is used to describe the intensity of potential risks and effects on a ship in a specific time 

and space location in a multi-ship interaction environment. By constructing directional potential functions and 

integrating ship motion states and complexity attributes, this model achieves a spatial visualization of potential 

collision risks, providing quantitative support for risk perception and MoO switching for MASS. 

Existing studies predominantly use Gaussian functions or other radially symmetric functions as the basis 

for potential functions, typically generating navigation energy field models with circular shapes. While such 

models can capture the general trend of risk attenuation with increasing distance from the own ship, they fail 

to adequately account for the irregularity of the SD, particularly under multi-ship interactions or asymmetric 

traffic scenarios. Therefore, developing an asymmetric navigation energy field model that can 

comprehensively incorporate SD characteristics is of significant importance for improving the accuracy and 

adaptability of risk modeling. 

In summary, the construction of an adaptive potential function should take into account the following 

factors: 

1) The shape characteristics of the SD, and its spatial distribution effects on risk attenuation patterns. In 

particular, the risk should exhibit a sharp increase in the vicinity of the own ship’s central area. 

2) The crew’s attention mechanisms under dense traffic conditions. During decision-making, ships 

should prioritize attention to nearby target ships, with distant targets receiving secondary consideration; 

therefore, the potential function should reflect this layered attention mechanism. 

3) The interrelationships among multiple ships. In complex traffic scenarios, target ships are not 

independent of one another but form an interacting and mutually influencing system; thus, the potential 

function should be capable of capturing the spatial coupling effects among targets. 
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Based on this, the present study further develops a set of potential functions that meet the above 

requirements, with the design fully accounting for the interaction characteristics among ships. The model 

ensures perceptual capability for both nearby ships within 1.5 nm and more distant targets, thereby enabling 

dynamic capture of potential risks in both local and extended traffic environments, as detailed in Equation 

(13). 
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 (13) 

In the Equation, d represents the distance from the ship’s center, and complex denotes the maritime traffic 

complexity calculated from Equation (12), with a preset value of 3 in this context.  

The constructed functions incorporate basic forms such as exponential, logarithmic, and Gaussian 

functions, which are further modified through transformation processing. The plots of each function are shown 

in Figure 4. 

 

Fig. 4  Plots of the different potential functions 

As shown in Figure 4, 𝑦1, 𝑦4 and 𝑦5 exhibit steep growth within the danger zone but maintain relatively 

strong risk values even at long distances, making it difficult to effectively reflect the hierarchical nature of 

risk; the resulting risk region boundaries display unnaturally sharp features. Although 𝑦2  demonstrates a 

certain degree of attenuation, it lacks clear risk transitions at medium and long distances, making it difficult 

to establish distinct boundary demarcations. On the other hand, 𝑦3 exhibits overly rapid risk values decay 

across the entire range, which can result in insufficient responsiveness to near-field risks. In contrast, the 

Gaussian combination function corresponding to 𝑦6 demonstrates the desired characteristics of rapid rise at 

close range and rapid decay at long distances, effectively emphasizing the risk intensity near obstacles while 

minimizing interference from distant targets in real-time collision-avoidance decision-making. Moreover, the 

𝑦6 curve exhibits smooth variation, offering good numerical stability and flexible parameter tuning, making 

it well-suited for application across different complexity scenarios.  
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To validate the robustness and stability of the constructed potential function in high-density traffic 

scenarios, this study systematically analyses the influence mechanisms of the complex index and relative inter-

ship distance on risk values. The sensitivity analysis of these two parameters is illustrated in Figure 5. 

 

Fig. 5  Sensitivity analysis plot of the constructed potential function 

In Figure 5, as the vessel separation distance decreases and the complex parameter increases, the potential 

function captures the trend of non-linear growth in risk values. Moreover, the contribution of vessel separation 

distance to risk values is markedly greater than that of the complex parameter. This aligns with actual navigation 

risks, where distance remains one of the primary factors influencing the risk of ship collisions. More 

significantly, even under extreme conditions where the inter-ship distance reaches its limit value, the risk 

value, while exhibiting an increasing trend, remains within reasonable bounds without exhibiting explosive 

growth. This demonstrates that the constructed potential function possesses sound numerical stability. 

Therefore, the potential function ultimately adopted in this study is an improved Gaussian function. To 

additionally capture the influence of the number of ships within the scene on the navigation energy field, the 

final Gaussian function employed is defined as shown in Equation (14): 

2 20.5 2 1
2 ( )

1

d d

omplex

amma

D c e e
n g

− −= + 
+ 

 (14) 

In the Equation, D is the risk value of the navigation energy field, n is the number of ships detected in 

the navigation scenario. gamma is a tuning parameter to avoid excessive influence of ship number fluctuations 

on the D. 

The gamma parameter in Equation (14) primarily serves to moderate the excessive influence of large 

fluctuations in number of ships on risk values. To validate the appropriateness of the gamma parameter setting, 

this study conducts a comparative analysis of the trend in the potential function under different gamma parameter 

values, as illustrated in Figure 6. 

 

Fig.6  Sensitivity Analysis of the gamma Parameter 
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Analysis indicates that as the number of ships increases, the gamma parameter effectively suppresses the 

rate of growth in risk values without altering the overall trend in risk assessment, merely exerting a scaling 

effect. Notably, when number of ships exceed a certain threshold (7 vessels in Figure 6), the contribution of 

further increases to the risk value diminishes progressively. This phenomenon aligns with practical 

observations: mere numerical growth ceases to be the primary determinant of collision risk, with the 

complexity of the traffic situation becoming the more critical factor. Balancing sensitivity and stability in risk 

assessment, this study sets the gamma parameter at 0.1. This value effectively captures the influence of ship 

density on risk when number of ships are low, while preventing excessive risk estimates in high-density 

scenarios. 

It should be pointed out that although this study uses a modelling method similar to potential function 

overlay in the construction of the navigation energy field, its mathematical expression is similar to that of 

traditional Kernel Density Estimation (KDE), but the two are fundamentally different: KDE aims to estimate 

probability density functions in static space, typically considering only spatial position variables and 

overlooking motion states and entity attributes. In contrast, the navigation energy field model constructed in 

this study is primarily used for modelling and identifying potential risks in dynamic navigation environments, 

comprehensively considering multi-dimensional dynamic characteristics such as the ship's speed, heading, 

length, and complexity. Furthermore, the kernel functions used in KDE are mostly symmetrical and smooth 

standard kernels, while the potential function designed in this study is a non-symmetrical Gaussian 

combination function, which has been adapted based on the PRSD model to better reflect the actual physical 

boundaries of ship collision avoidance behavior. Additionally, the output of KDE is a probability density 

value, whereas the navigation energy field output in this study directly reflects the risk overlap effects on the 

ship, supporting quantitative switching and risk classification for MoO. Therefore, although the model in this 

study draws inspiration from some of the ideas of KDE in terms of technology, it shows fundamental 

differences in terms of variable dimensions and function construction. 

The navigation energy field generated using Equation (14) is illustrated in Figure 7, where the ship’s 

heading is 124.1 degrees, speed is 11.3 knots, length overall is 199 meters, and the complexity value is set to 

3. 

  

(a) (b) 

Fig. 7  Schematic illustration of the navigation energy field generated by the improved gaussian function 

In summary, this study incorporates maritime traffic complexity into the conventional potential field 

framework to construct a navigation energy field model that accounts for multi-ship interaction effects. The 

proposed model not only enhances the capability of the navigation energy field to characterize ship 

interactions and local risk evolution in high-density traffic areas but also improves its applicability and 

interpretability in complex navigation scenarios. By employing this method, MASS can actively perceive and 

dynamically respond to risk information, thereby providing a critical theoretical foundation and modeling 

basis for ensuring navigation safety in representative complex environments. 

3.3 ALARP-based MoO zone definition 

This study further introduces the ALARP principle to divide the navigation energy field into risk 

threshold regions, enhancing the adaptability and MoO switching capability of MASS under different risk 
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levels. The selection of confidence interval thresholds directly impacts the reliability and timeliness of MoO 

switching decisions. In Xin et al.'s research on modelling and assessing maritime traffic complexity, traffic 

complexity was categorized into four levels with corresponding thresholds of 51.76 %, 83.53 %, and 94.12 % 

[38]. These thresholds have been validated across multiple real-world waterways, demonstrating robust 

theoretical and practical foundations. Building upon Xin et al. findings, this study has made appropriate 

adjustments tailored to the specific requirements of operational mode switching. Consequently, risk values are 

categorized into four distinct zones: the Negligible Risk Zone (0–50 %), the ALARP Lower Risk Zone (50–

70 %), the ALARP Upper Risk Zone (70–90 %), and the Intolerable Risk Zone (90–100 %). This adjustment 

primarily considers that appropriately lowering the threshold for high-risk levels enhances a vessel's sensitivity 

to risk changes, ensuring timely triggering of MoO switching. Furthermore, maintaining appropriate intervals 

between the three thresholds facilitates clear differentiation between different risk levels. 

The Negligible Risk Zone corresponds to scenarios with low navigation safety risks, requiring no 

additional intervention, recommended MoO is Autonomous Mode (AM); the ALARP Zones emphasize 

reducing risk within reasonable and feasible limits, subdivided into lower and upper bounds to improve the 

precision of risk response, the recommended MoOs are Remote Mode (RM) and Onboard Crew Mode (OCM); 

the Intolerable Risk Zone represents high-risk scenarios that require immediate avoidance or emergency 

measures, recommended MoO is Emergency Mode (EM). This study has thoroughly verified the applicability 

and stability of this threshold division in preliminary experiments. The results show that under the current 

division conditions, the system can balance switching accuracy and frequency. Further narrowing or widening 

the threshold range will change the switching timing but will not significantly improve risk control 

effectiveness. Instead, it may introduce unnecessary frequent switching, weakening system stability. This 

classification provides a clear quantitative basis for MoO switching in complex environments, further 

enhancing the system's ability to identify and respond to risks in dynamic environments, as shown in  

Figure 8. 

 

Fig. 8  Risk threshold classification of the navigation energy field 

Considering that single-point risk values are highly susceptible to short-term fluctuations and often 

trigger frequent switching of MoO near risk level boundaries, this study introduces a risk assessment 

mechanism based on confidence intervals on the basis of the ALARP principle to improve the stability and 

robustness of system assessments. Specifically, the system uses a sliding window method to extract the most 

recent m risk value samples, as shown in Equation (15), and calculates the average risk value and sample 

standard deviation within the sliding window, as shown in Equations (16) and (17). The confidence interval 

at that point in time is then constructed based on the mean and standard deviation to measure the uncertainty 

of the risk situation, as shown in Equation (18): 

1 2{ , , , }t m t m tR D D D− + − +=   (15) 
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In the Equation, 𝐷𝑡 represents the risk value of the navigation energy field at time t calculated according 

to Equation (14); m is the number of risk value samples in the sliding window. According to the research by 

Liu et al. [39], the maritime traffic situation may significantly change approximately every 3 minutes. 

Therefore, this study sets m as 3 to ensure the timeliness and representativeness of the risk trend judgment; R 

is the current sliding window interval; 𝑅̅  is the average risk value within the window; s is the standard 

deviation of the samples; 𝑧𝛼 2⁄  is the confidence coefficient, set to 1.96 in this study, corresponding to a 95 % 

confidence level; CI is the confidence interval of the sliding window. 

To validate the appropriateness of selecting m and CI parameters during mode switching, this study 

conducted a sensitivity analysis. The analysis was based on data from overtaking scenarios, primarily because 

these scenarios exhibit prolonged duration and relatively stable risk value fluctuations, thereby fully reflecting 

the impact of parameter settings on switching behavior. Details are illustrated in Figure 9. 

  

(a) (b) 

Fig.9  Sensitivity analysis of parameters m and CI 

As illustrated in Figure 9(a), when m is set to 3, the system effectively captures the trend in risk values. 

While increasing the window size beyond this value maintains the same switching frequency, it leads to a 

widening of the confidence interval, introducing unnecessary uncertainty that may delay the response time of 

switching decisions. Therefore, setting m to 3 achieves a favorable balance between sensitivity and stability. 

As illustrated in Figure 9(b), the 95 % confidence level not only aligns with standard statistical conventions 

but also maintains a favorable equilibrium in terms of stability. While lower confidence levels may yield faster 

response times, they risk triggering excessive switching frequency. Conversely, higher confidence levels may 

delay critical switching opportunities, thereby increasing navigational safety hazards for vessels. 

Considering that the risk value of the navigation energy field usually varies continuously and there are 

no significant changes, this study does not consider MoO switching between levels and only focuses on 

switching between adjacent levels. To avoid frequent MoO switching due to risk value fluctuations, this study 

designs a multi-stage MoO switching strategy based on confidence interval risk judgement logic: When the 

confidence interval is completely within a certain ALARP risk level range, the system recommends the MoO 

recommended for that risk level range as the current recommended MoO. If the confidence interval spans two 

or more risk ranges, the system calculates the coverage ratio in each range and takes the MoO corresponding 

to the range with the largest ratio as the recommended MoO. If multiple intervals have the same coverage 

ratio, the MoO corresponding to the risk level with the higher risk level is selected to ensure the priority of 

the system's safety response. At the same time, to prevent the MoO from switching frequently near the risk 

level boundary, the system adopts a delay mechanism, which only triggers a switch when the recommended 
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MoO is inconsistent with the current MoO and the recommended MoO remains consistent for two consecutive 

times, avoiding mode switching caused by short-term risk fluctuations, as shown in Figure 10. 

 

Fig. 10  Multi-stage MoO switching strategy based on confidence interval risk judgement logic 

To sum up, this study provides a systematic discussion in Section 2 on the quantification of maritime 

traffic complexity, the construction of the navigation energy field, and the division of risk thresholds. By 

introducing multidimensional complexity indicators, the dynamic interaction relationships between ships are 

thoroughly considered, providing a solid data and structural foundation for navigation energy field. The design 

of the potential function effectively enhances the model's capability to capture the risk evolution trends in 

multi-ship encounter scenarios. Finally, by incorporating the ALARP principle, a classification of navigation 

risk levels is established, laying the theoretical foundation for the subsequent safe and efficient MoO switching 

of MASS in complex dynamic environments. 

4. Case study 

To validate the effectiveness and advanced features of the proposed model, this study designed two 

types of experimental scenarios: first, a simulation environment and second, a real navigation environment, to 

enhance the reliability of the research conclusions. In the simulation environment, three typical scenarios from 

COLREGs—overtaking, head-on, and crossing situations-were constructed to evaluate the model's 

adaptability. In the real environment experiment, a typical section of the Laotieshan Channel in the Bohai Sea 

was selected as the research object to further verify the model's applicability in actual complex navigation 

environments. 

The validation work was conducted in an efficient Python 3.10 environment, using custom scripts 

developed and executed within the PyCharm (Version 2022) integrated development environment. And the 

model was validated on a high-performance computer equipped with an Intel Core i5-12500H processor, an 

NVIDIA RTX 2050 GPU, and 16 GB of RAM. 
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4.1 Simulation environment experiment 

To systematically evaluate the applicability and performance of the proposed model in various typical 

navigation situations, this study first verifies the feasibility of the model in a constructed simulation 

environment. The simulation environment, with the advantages of strong controllability, adjustable variables, 

and repeatable results, is suitable for verifying and comparing the core mechanisms of the model. To 

comprehensively evaluate the performance and applicability of the proposed model, this study further 

introduces the maritime traffic complexity model proposed by Wen et al. [21] as a comparison. Comparative 

experiments are conducted under the same initial conditions and traffic scenarios to analyze the performance 

advantages of the proposed model in typical navigation scenarios. 

4.1.1 Overtaking situation 

The initial information of the two ships in the overtaking situation is shown in Table 1. Assuming that 

Ship A is the own ship and Ship B is the target ship, all evaluation indexes are calculated based on the influence 

of Ship B on Ship A. Figure 11(a) shows the risk values and their changes calculated by the model proposed 

in this study, marked in red and represented by curves, while the blue lines correspond to the calculation results 

of the comparison model. Figure 11(b) shows the changes in various indicators in the model proposed in this 

study. 

Table 1  Initial information of ships in overtaking 

 Initial Location (N, E) Course (°) Speed (knot) Length (m) 

Ship A (38240.00,120588.40) 0 10 240 

Ship B (38210.00,120588.40) 0 14 240 

As shown in Figure 11(a), Ship A is the overtaken ship and Ship B is the overtaking ship. As time 

proceeds, the relative distance between the two ships continues to decrease, and the influence of Ship B on 

Ship A gradually increases, causing the corresponding risk value to rise significantly. Both the proposed model 

and the comparison model effectively capture the trend of risk value changes for Ship A. However, the 

comparison model exhibits a more pronounced growth pattern throughout the risk value change process, with 

a wider range of risk values, and a significant increase only occurring in the later stages of the voyage, 

indicating a certain degree of response lag in the early stages of risk evolution; In contrast, the proposed model 

demonstrates higher risk sensitivity and discrimination during the vessel approach process, enabling earlier 

identification of potential conflict risks and facilitating timely decision-making. Based on the switching logic 

proposed herein, within the constructed overtaking situation, Ship B underwent two operational mode 

switches. The first occurred at time step 15, when the relative distance between the vessels gradually 

diminished and collision risk markedly increased. At this juncture, a switch from AM to RM is recommended. 

Subsequently, as the vessel risk continues to escalate beyond a higher threshold, a further transition to OCM 

is advised at time step 23 to ensure navigational safety. In contrast, the comparison model, due to its slower 

risk progression, fails to detect the critical threshold for a timely switch and consequently misses the required 

transition point. This demonstrates that the proposed approach exhibits superior sensitivity and early warning 

capabilities during periods of rapid risk evolution. 
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(a) 

 

(b) 

Fig. 11  Overtaking situation: ship trajectory and risk value variations 

Figure 11(b) further illustrates the temporal evolution of the navigation energy field risk value D and 

the complexity value complex of Ship A under overtaking situations in the model proposed (upper figure), as 

well as the trends of the three complex network index values 𝑑𝑒𝑛𝑖𝑗(𝑡), 𝑝𝑣𝑖𝑗(𝑡), and 𝑒𝑣𝑖𝑗(𝑡). As shown in the 

upper part of Figure 11(b), the D value is initially 0, indicating that the two ships have not yet established 

significant interaction relationships. It then rises rapidly after the 7th minute and tends toward its maximum 

value after the 10th minute. This abrupt change reflects the rapid increase in interaction intensity between the 

two ships during the overtaking situation, leading to a significant increase in risk perception. At the same time, 

the complex increases steadily over time, exhibiting good continuity and dynamic response characteristics. As 

can be further observed in the lower part of Figure 11(b), Among the three complex network index values, 

𝑝𝑣𝑖𝑗(𝑡)  dominates and shows a continuous increasing trend, indicating that the collision avoidance 

manoeuvring space of the ships is continuously shrinking and the potential collision is intensifying during the 

overtaking, while 𝑑𝑒𝑛𝑖𝑗(𝑡) and 𝑒𝑣𝑖𝑗(𝑡) show a slow upward trend, reflecting the gradual increase in the 

density of nearby ships and the difficulty of local traffic mitigation. 

4.1.2 Head-on situation 

The initial information of the two ships in the head-on situation is shown in Table 2. Assuming that Ship 

A is the own ship and Ship B is the target ship, all evaluation indexes are calculated based on the influence of 

Ship B on Ship A. Figure 12(a) shows the risk values and their changes calculated by the model proposed in 

this study, marked in red and represented by curves, while the blue lines correspond to the calculation results 

of the comparison model. Figure 12(b) shows the changes in various indicators in the model proposed in this 

study. 

  



Z. Ji et al. Brodogradnja Volume 77 Number 3 (2026) 77312 

 

19 

 

Table 2  Initial information of ships in head-on situation 

 Initial Location (N, E) Course (°) Speed (knot) Length (m) 

Ship A (38210.00,120588.40) 180 10 240 

Ship B (3860.00,120588.40) 0 14 240 

 

(a) 

 

(b) 

Fig. 12  Head-on situation: ship trajectory and risk value variations 

Figure 12(a) shows the trajectories of two ships in a head-on situation and the changes in their risk 

values. As can be seen from the comparison in the figure, although both models can capture the upward trend 

in risk values, they exhibit different response characteristics. The comparison model exhibits a certain degree 

of continuity in risk value changes but with significant fluctuations, reaching a risk peak toward the end. In 

contrast, the model proposed in this paper responds earlier to risk changes, showing a noticeable increase in 

risk values during the initial phase, followed by a stabilization of risk values, indicating a more sensitive 

perception of potential risks. Owing to the more pronounced fluctuations in vessel-to-vessel risks within the 

Head-on situation, the proposed model detected only one mode switch at time step 36, whereas the 

comparative model still failed to identify the transition point. 

As can be seen from the upper part of Figure 12(b), the risk value changes more rapidly in a head-on 

situation than in an overtaking situation. During the initial 30 minutes, the two ships did not form a significant 

interaction relationship. In this stage, the D value of Ship A, as calculated by the model proposed in this paper, 

remained basically at 0. However, starting from the 30th minute, under the influence of Ship B, the D value 

rapidly increased, reflecting a rapid increase in the collision risk between the two ships. At the same time, 

complex also showed a steady increasing trend. Although the change was relatively moderate, it still effectively 

responded to the changes in the risk situation. Further analysis of Figure 12(b) below reveals that the three 

complexity index values 𝑑𝑒𝑛𝑖𝑗(𝑡), 𝑝𝑣𝑖𝑗(𝑡), and 𝑒𝑣𝑖𝑗(𝑡) show distinct trends, with 𝑝𝑣𝑖𝑗(𝑡) exhibiting the most 
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significant changes, indicating that the proximity between the two ships underwent drastic changes during this 

time period. 

4.1.3 Crossing situation 

The initial information of the two ships in the crossing situation is shown in Table 3. Assuming that Ship 

A is the own ship and Ship B is the target ship, all evaluation indexes are calculated based on the influence of 

Ship B on Ship A. Figure 13(a) shows the risk values and their changes calculated by the model proposed in 

this study, marked in red and represented by curves, while the blue lines correspond to the calculation results 

of the comparison model. Figure 13(b) shows the changes in various indicators in the model proposed in this 

study. 

Table 3  Initial information of ships in crossing situation 

 Initial Location (N, E) Course (°) Speed (knot) Length (m) 

Ship A (38210.00,1205324.00) 0 10 240 

Ship B (38240.00,120588.40) 270 14 240 

 

(a) 

 

(b) 

Fig. 13  Crossing situation: ship trajectory and risk value variations 

Figure 13(a) shows the trajectories of two ships during their crossing and the changes in their risk values. 

Both the proposed model and the comparison model accurately reflect the overall trend of risk value changes, 

i.e., the risk value exhibits the typical characteristic of first increasing and then decreasing during the ship 

encounter. However, the two models show significant differences in their detailed performance. The 

comparison model exhibits significant fluctuations in risk value changes, with peaks occurring rapidly but 

lasting for a short duration, indicating greater sensitivity to instantaneous changes. In contrast, the proposed 

model not only captures the main trend of risk values but also maintains a prolonged duration at risk peaks, 
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demonstrating strong risk capture capabilities. In the crossing situation, this study similarly detected the 

necessity for two operational mode switches. The first transition was recommended at time step 23 to switch 

to RM. Due to the rapid evolution of risk, a further transition to OCM was advised at time step 27. In contrast, 

the comparison model failed to trigger any operational mode switches as it did not capture the sustained high-

risk state. 

As can be seen from the upper part of Figure 13(b), under the influence of ship B, the D value of ship A 

first increases and then decreases, reflecting the typical risk evolution characteristics of the two ships during 

the approach and separation processes. The complex also shows a similar trend, indicating that this index 

effectively captures the dynamic changes in interaction risk. Further analysis of the lower panel of Figure 

13(b) shows that all three complexity index values peaked around the 20th minute and then gradually 

decreased, indicating that the two ships were at their closest relative distance and had the strongest interaction 

at that time, marking the high-risk period of the crossing situation. 

Analysis of the three typical situations above demonstrates that the model proposed in this study exhibits 

certain advantages in risk monitoring and mode switching. It can promptly capture trends in risk changes 

between vessels, enabling early warning and thereby enhancing the safety of vessel navigation. 

4.2 Real environment experiment 

This study also selected a typical navigation segment of the Laotiushan Channel in the Bohai Sea as a 

real-world environmental research subject. Given the relatively fixed shipping routes in the Bohai Sea and the 

limited variation in ship tracks within the study area, this region is highly representative. To support model 

validation, AIS trajectory data from all vessels equipped with AIS devices in the Bohai Sea on June 1, 2023, 

were collected and analyzed, thereby defining the scope of the study area, as shown in Figure 14. 

 

Fig. 14  Ship trajectories in the Bohai Sea on June 1, 2023 

As shown in Figure 14, there are several areas where ship trajectories intersect in the Bohai Sea, with 

the Laotiushan Channel Traffic Separation Scheme (TSS) Precautionary Area, highlighted by the red box, 

being particularly prominent. This area is located at a key node on an important shipping route in the Bohai 

Sea, where ships frequently enter and exit, resulting in high traffic flow. Moreover, a significant number of 

vessels navigate in opposite directions, creating potential for traffic conflicts and collision risks. Given its high 

research value and representativeness [40], this area is selected as the research case for validating and applying 

the proposed traffic complexity measurement method and navigation energy field model. 

As this study primarily relies on AIS data, issues such as irregular transmission intervals, signal 

interference, and packet loss necessitate data pre-processing prior to analysis. This ensures data accuracy and 

stability. The pre-processing workflow encompasses data cleansing to eliminate duplicate records, position 

discontinuities, and invalid coordinates. Subsequently, cubic spline interpolation is applied to resample all 

vessel tracks to a consistent time interval, addressing irregular sampling while preserving trajectory 

smoothness. Thereafter, a moving average filter is employed to mitigate positional noise and heading jitter. 

The complete pre-processing workflow is illustrated in Figure 15. 
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Fig.15  AIS data pre-processing flowchart 

4.2.1 Data selection 

This study selected the AIS data of ships at 18:20 on June 1, 2023, as the case validation data for the 

maritime traffic complexity and navigation energy field model. The AIS information and distribution map of 

the ships at this time are shown in Table 4 and Figure 16, respectively. 

Table 4  AIS Data of Ships in the Laotieshan Precautionary Area (18:20, June 1, 2023). 

 Latitude (degree) Longitude (degree) Heading (degree) Speed (knot) Length (m) 

Ship 1 38.53354 120.96937 124.1 11.3 199 

Ship 2 38.5783 120.9017 145.6 11.9 161 

Ship 3 38.58863 120.86549 139.8 12.6 185 

Ship 4 38.53128 120.91338 114 11.2 172 

Ship 5 38.5005 121.00227 123.2 11.7 85 

Ship 6 38.5663 120.91932 130.8 12 150 

Ship 7 38.63302 120.90712 299.9 9.4 157 

Ship 8 38.60594 120.84565 134.2 10.3 199 

Ship 9 38.72795 120.93141 338.2 7.9 126 
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Fig. 16  Ship Distribution in the Laotieshan Precautionary Area (18:20, June 1, 2023) 

Figure 16 shows the ship distribution in the Laotieshan Precautionary Area at 18:20 on June 1, 2023. 

The different colored ellipses represent the PRSDs (calculated using Equation (5)), and the black arrows 

indicate the heading and speed of the ships. As can be seen from Figure 16, ship distribution in this area is 

relatively dense, with localized crossing risks. In particular, the interactions between Ship2, Ship6, Ship4, and 

their nearby vessels appear more urgent and critical. 

4.2.2 Maritime traffic complexity calculation 

Using the maritime traffic complexity measurement model developed in Section 2.1, the complexity 

levels of each ship within the study area were quantitatively calculated, and the results are shown in  

Figure 17. 

As observed from the figure, Ship4 and Ship7 exhibit the highest complexity values, at 4.12 and 4.03 

respectively, indicating that these two ships are currently situated in the most complex traffic situations. 

Further analysis based on the ship distribution in Figure 17 reveals that Ship4 is involved in crossing 

encounters with Ship6 and Ship2, while simultaneously converging with multiple other ships, thus forming a 

local multi-directional interference zone that significantly increases its complexity. Although Ship7 does not 

display clear head-on or overtaking interactions with surrounding vessels, its heading differs markedly from 

nearby ships, creating a relatively high potential collision risk and thus a high complexity level. 

 

Fig. 17  Calculation results of maritime traffic complexity in the Laotieshan Precautionary Area (18:20, June 1, 2023) 

In contrast, Ship5 and Ship9 have the lowest complexity values, at 2.09 and 1.98 respectively, indicating 

that these ships face minimal interference in the current traffic environment. Their surrounding vessel density 

is low, and the heading relationships are relatively stable, resulting in a clearer and safer traffic situation. 
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This case study validates the effectiveness of the complexity model in identifying key vessels and high-

risk zones, providing a solid foundation for the subsequent construction of the navigation energy field and 

navigation risk assessment. 

4.2.3 Navigation energy field calculation 

After calculating the maritime traffic complexity values of each ship, a ship-based potential source 

navigation energy field model is constructed based on the principles of field theory. The spatial modeling of 

the study area is achieved through the potential function, and the three-dimensional and two-dimensional ship 

navigation energy field maps are generated, as shown in Figures 18 and 19. 

From the figures, it is evident that there is a distinct spatial correlation between ship distribution and the 

navigation energy field. For instance, the concentration of ships such as Ship2, Ship3, Ship4, Ship6, and Ship8 

leads to a significant overlap of their surrounding energy fields, creating multiple high-risk peak regions. 

These areas are prominently shown as "uplifts" in Figure 18 and appear as red high-value regions in  

Figure 19, reflecting the potential collision and conflict risks in the complex traffic environment. In contrast, 

ships located in the peripheral regions, such as Ship1, Ship5, and Ship9, are relatively isolated, with no dense 

interference from other ships. Consequently, their navigation energy field distributions are independent, 

although the field strengths vary due to the differing navigation states of each ship. 

Further analysis, incorporating the ship distribution and heading information from Figure 16, reveals 

that in addition to position concentration, the relative motion relationships between ships also play a crucial 

role in navigation energy field overlap. For example, Ship3 and Ship8 exhibit a clear crossing tendency, which 

significantly enhances the overlapping region of their navigation energy fields. This spatial coupling effect of 

risk is reflected in the steeper variations in field values in the three-dimensional plot. Additionally, Figure 19 

provides a two-dimensional view of the energy diffusion and overlap distribution of each ship, which 

facilitates the rapid identification of potential high-risk areas by MASS. 

 

Fig. 18  The three-dimensional navigation energy field in the Laotieshan Precautionary Area (18:20, June 1, 2023) 

 

Fig. 19  The two-dimensional navigation energy field in the Laotieshan Precautionary Area (18:20, June 1, 2023) 

Due to the rare occurrence of highly urgent situations in maritime traffic environments, this study 

simulates a trajectory based on the results calculated from Figures 18 and 19, specifically in the traffic scenario 
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shown in Figure 19, to evaluate the risk level of the trajectory within the current navigation energy field, as 

shown in Figure 20. The trajectory passes through multiple navigation energy field overlap areas, with a 

noticeable increase in risk values, especially when passing through the high-risk zone between Ship6 and 

Ship2. The maximum risk value reaches 9.87, indicating that this area has a high potential for collision risks. 

In contrast, when the trajectory passes through edge areas such as near Ship1 and Ship3, the risk values remain 

relatively low, and the overall field strength changes smoothly. This experiment validates the ability of the 

constructed potential field function to respond to navigation risks in complex traffic situations and 

demonstrates that the method presented in this study can effectively depict the risk evolution process of 

dynamic trajectories within specific maritime environments. 

 

Fig. 20  Navigation energy field of simulated trajectory in specific situation 

By introducing the ALARP principle, the navigation risk values of simulated trajectory are categorized 

into four levels to more intuitively reflect the distribution of the trajectory across different risk zones. 

Specifically, the computed risk values are classified into four intervals: 0–50 %, 50–70 %, 70–90 %, and 90–

100 %, corresponding to the Negligible Risk Zone (Zone Four), the ALARP Lower Risk Zone (Zone Three), 

the ALARP Upper Risk Zone (Zone Two), and the Intolerable Risk Zone (Zone One), respectively. As 

illustrated in Figure 21, the trajectory predominantly resides within the low-risk segments (Zone Four and 

Zone Three); however, when traversing the high-risk area between Ship6 and Ship2, portions of the trajectory 

enter the orange and red zones, indicating elevated safety risks. 

 

Fig. 21  Simulated trajectory navigation energy field risk values based on ALARP 

4.2.4 Validation with real navigation case study 

To validate the applicability and engineering feasibility of the proposed navigation energy field model 

incorporating multi-ship interaction characteristics in real navigation environments, this section selects the 
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historical AIS track of a target ship A in the Bohai Sea as the research subject. The ship departed from the 

port, passed through the Precautionary Area of the Laotieshan Channel, and entered open waters, covering 

typical navigation scenarios such as port entry/exit, narrow waterways, and open seas. The historical track of 

this vessel is shown in Figure 22. 

 

Fig. 22  Track chart of target ship A in the Bohai Sea from 2 to 3 June 2023 

The study focuses on the track of target ship A in the Bohai Sea. Due to limitations in the availability of 

AIS data, the entire port entry and exit process could not be covered, and only the navigation data of the ship 

from port exit through the Laotie Shan Precautionary Area to open waters was obtained. If the AIS data 

extraction radius is too small, there will be insufficient information available; if it is too large, it will introduce 

information redundancy and increase the computational burden. This paper comprehensively considers 

information integrity and computational efficiency, draws on the idea of collision avoidance stage division, 

selects the dynamic information of all surrounding ships within a 12 nm radius of the target ship, and 

dynamically calculates the risk level of the target ship A's situation at each moment at 5 second intervals. 

Subsequently, based on the ALARP principle, the risk levels of each scenario at each time point are classified 

into four different risk zones, as shown in Figure 23. 

 

Fig. 23  ALARP-based target ship A risk value change chart 

As can be seen from Figure 23, target ship A experienced a total of 12 MoO switches during this voyage, 

indicating that the risk level during this voyage showed significant time-varying characteristics. Overall, the 

ship's risk values remained at relatively low levels for most of the voyage, indicating that it was in a relatively 

safe state during the entire operation. However, during certain specific time periods, the fluctuations in risk 

values increased significantly, with multiple high-risk peaks occurring, accompanied by multiple mode 

switches. For example, between 5:02:51 and 6:38:21, the ship's risk value rose to Zone One, entering a high-



Z. Ji et al. Brodogradnja Volume 77 Number 3 (2026) 77312 

 

27 

 

risk area, and triggered multiple MoO mode switches. It is worth noting that although the risk value declined 

after reaching extremely high levels during this period, the switching conditions were set to require two 

consecutive determinations within the confidence interval, and the switching trigger conditions were not met 

in the short term, thus no new MoO switching was triggered, enhancing the system's robustness; Another 

critical time period occurred around 9:18:46, when the ship again experienced multiple MoO switches. 

Although the risk value briefly reached the switching threshold during this period, it fluctuated for a short 

time and quickly fell back. However, the proposed model was still able to effectively capture the necessity of 

the MoO switch, demonstrating its sensitivity in responding to rapidly changing risks. In addition, at around 

11:42:01, although the risk value of the ship fluctuated to a certain extent again, due to the strict confidence 

interval constraints set by the system, the risk value did not reach the criteria for mode switching and the 

original mode was maintained. This shows that the current mode switching strategy can still effectively avoid 

unnecessary mode switching in the face of certain risk fluctuations, further improving the overall reliability 

of the system. 

To further validate the applicability and superiority of the proposed model at a more microscopic level, 

this study selects another target ship B operating in the Bohai Sea as the research subject, using one of its 

voyages in 2023 as the analysis scenario to investigate the dynamic changes in risk values under real-world 

navigation situations. The study area is defined as a circular region with a radius of 5 nm, centered on the 

Precautionary Area of the Laotieshan Channel. The research period spans the entire duration from the target 

ship B’s entry into the study area to its exit (from 11:00:17 to 11:47:47 on June 2, 2023). The navigation 

trajectory of the target ship B during this period is shown in Figure 24. 

 

Fig. 24  Target ship B entering and departing the Laotieshan Precautionary Area trajectory 

 

Fig. 25  Visualization of target ship B risk values based on ALARP 

Starting from the moment the target ship B entered the designated area, AIS data for all vessels within 

a 5 nm radius were collected. The risk level of the target ship was dynamically calculated at 5s intervals for 
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each time point within the scene. The ALARP principle was similarly applied to categorize the scene risk at 

each time point into four graded zones. The specific results are shown in Figure 25. Since no substantial risk 

correlation had formed around the target ship during its initial entry into the Precautionary Area (from 11:00 

to 11:17), the AIS data from 11:17:30 to 11:47:25 on June 2, 2023, were selected as the representative period 

for detailed analysis. 

Figure 25 illustrates the dynamic variation trend of the target ship B’s risk value throughout the entire 

navigation process, where the horizontal axis represents each navigational scenario divided by time, and the 

vertical axis denotes the corresponding risk values. The background color band divides the risk into four 

intervals, each corresponding to a different recommended MoO. The blue curve represents the risk value, and 

its trend intuitively reflects the dynamic changes in the risk level. The blue semi-transparent area represents 

the 95 % confidence interval of the risk value, which reflects the reliability and uncertainty of the risk 

assessment results. The red asterisk marks the MoO switching point. 

As can be seen from Figure 25, during the initial phase of the target ship B's entry into the study area, 

its risk value was low and remained in Zone Four, indicating that there were few surrounding ships during this 

period and the navigation environment was relatively safe. At the same time, due to the small fluctuations in 

the risk value and the narrow confidence interval, the risk assessment results were highly stable. However, 

starting at 11:27:15, the target ship's risk value gradually increased, and the confidence interval began to show 

trailing shadows, indicating increased risk uncertainty. At 11:33:35, after two confidence interval assessments, 

it was recommended to switch MoO to RM, reflecting that the surrounding traffic situation was becoming 

more complex at this stage, with the possibility of high-risk interactions such as ship encounters, convergence, 

or overtaking. Subsequently, at 11:34:45, based on the MoO switching logic, it was further recommended to 

switch to OCM; by 11:35:45, the risk value continued to rise and stabilized in Zone One, prompting the system 

to recommend switching to EM, indicating that this phase had entered a high-risk state and requiring special 

attention. 

To further investigate the specific dynamics of the target ship B’s risk during this critical period, the 

continuous scenarios from 11:32:00 to 11:37:00 were extracted and analyzed in detail. The corresponding 

results are presented in Figure 26, where the red-marked SD in the ship distribution diagram denotes the target 

ship B. 

As shown in Figure 26, between 11:32:00 and 11:37:00, the target ship B gradually entered the SD of 

the other ship and formed a clear convergence pattern. As the relative distance continued to decrease, the 

potential collision risk increased significantly. 

From the evolution of the navigation energy field risk value, by around 11:34:00, the target ship B's risk 

value had risen to 50 % of the scene set threshold, indicating that it had entered the ‘higher risk’ phase. As 

shown in Figure 25, around 11:34:45, after two consecutive confidence interval assessments, the system 

recommended switching the target ship's operating mode to OCM to enhance situational awareness and 

improve emergency response efficiency, thereby ensuring navigational safety. 

By approximately 11:35:00, the minimum distance between the target ship B and other vessels further 

decreased, and the risk value rose to 90 % of the set threshold, entering the ‘high risk’ zone. Subsequently, 

the system again made consecutive determinations through the confidence interval mechanism and 

recommended that the target ship B's operating mode be further switched to EM in order to promptly initiate 

the preset emergency response procedures or avoidance strategies and minimize the potential collision risk. 

The above process demonstrates that the MoO dynamic adaptation mechanism based on traffic situation 

awareness and risk quantification can effectively enhance the navigational safety of ships in complex 

interaction scenarios, verifying the applicability and practical value of the maritime traffic complexity 

assessment and navigation energy field modelling methods proposed in this paper in actual navigational 

environments. 
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Fig. 26  Schematic diagram of the target ship B's navigation scenario during critical periods 

5. Discussion 

The proposed navigation energy field model, based on multi-ship interaction characteristics, 

demonstrated strong risk identification capabilities during case validation. Taking the maritime traffic 

situation depicted in Figure 26 as an example, the model accurately identified the progressive intrusion of the 

target ship B into the SD of other vessels and dynamically reflected the evolving trend of potential collision 

risk. 
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According to the definition of the MoO concept established by the IMO at the 107th session of the MSC, 

MASS must dynamically assess the need to switch MoO in response to changes in the external environment 

to ensure navigational safety. Addressing this requirement, the navigation energy field model constructed in 

this study integrates maritime traffic complexity quantification results, dynamically computing local energy 

distributions by coupling multi-ship interaction relationships. This allows real-time identification of risk levels 

in high-density traffic environments. The model not only reflects variations in local traffic risk levels but also 

provides decision support for adaptive MoO switching. When the risk level of a MASS continues to rise or 

when abnormal navigation energy field agglomeration is detected, the system can recommend triggering a 

downgrade from the AM to RM, OCM, or EM, thereby enhancing system robustness and navigational safety 

under complex conditions. 

It should be pointed out that although the navigation energy field risk modelling framework proposed 

in this paper shows good adaptability and recognition effects in multi-ship interaction scenarios, its calculation 

process relies on data from conventional ship-borne perception sources such as AIS and radar, has low 

calculation complexity, and has certain real-time assessment potential. Therefore, it can be used as a 

supplement to the risk assistance judgement module in the Electronic Chart Display and Information System 

(ECDIS), displaying the navigation energy field distribution results through layer superposition to enhance 

the driver's intuitive perception of complex situations. Follow-up research can further explore the integration 

of this model in actual ship systems and optimize its computational performance to achieve more efficient 

online risk assessment capabilities. 

This study has several limitations that warrant further exploration and refinement in subsequent research. 

The current model assumes that ship movement information is complete and accurate and does not consider 

the potential impact of incomplete information, such as positioning errors, on the risk calculation results. At 

the same time, the modelling process simplifies external environmental disturbance factors, which may 

significantly affect ship navigation behavior and interaction patterns in complex sea conditions. The current 

model assumes that ships are ideal standard ships and does not fully reflect the differences in avoidance 

intentions and risk sensitivity among different types of ships. The modelling process does not systematically 

consider the constraints of collision avoidance rules on the navigation energy field. Based on the above issues, 

future research can be carried out in the following areas: Introduce multi-source sensor information fusion and 

data repair mechanisms to improve robustness and stability in scenarios with incomplete or delayed data. 

Combine environmental perception models with marine meteorological disturbance modelling to achieve 

more realistic navigation environment simulation; establish behavioral difference models for multiple types 

of ships and introduce data-driven parameter adaptation mechanisms to improve versatility; consider the 

collaborative modelling of avoidance rules and energy propagation mechanisms to construct a ‘rule-guided 

risk assessment model’, which could integrates COLREGs rule-based reasoning with an energy field model, 

achieved through adaptive risk coefficients based on encounter types and vessel responsibilities, rule-driven 

threshold adjustment mechanisms, and coordination between risk perception and collision avoidance 

maneuver planning. In addition, follow-up research can combine actual ship trials to verify and calibrate the 

model to further enhance its practicality and engineering promotion value. 

6. Conclusion 

This study focuses on the multi-ship interaction characteristics within complex maritime traffic 

environments and proposes a dynamic quantitative model based on the navigation energy field theory. The 

core contribution is the direct integration of maritime traffic complexity into the potential function, 

establishing a coupled risk model that reflects both geometric proximity and interaction dynamics within a 

unified mathematical framework. Case validation using real AIS data was conducted to assess the model’s 

effectiveness. The results demonstrate that the constructed navigation energy field model effectively captures 

the dynamic behaviors between vessels and accurately identifies potential collision risks, exhibiting high 

sensitivity to risk perception and strong adaptability to diverse traffic scenarios. In particular, under high-

density traffic conditions, the model dynamically analyzes the risk evolution process by real-time computation 

of multi-ship encounter characteristics, thereby laying the foundation for adaptive MoO switching. 
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Specifically, the proposed navigation energy field model not only quantifies the risk distribution 

characteristics within the local navigation environment but also provides technical support for the adaptive 

MoO switching mechanism of MASS. When the local risk level exceeds the system-defined threshold, the 

real-time analysis results derived from the navigation energy field can serve as a trigger condition for MoO 

switching, by employing specific switching logistics, guiding MASS to smoothly transition from AM to RM, 

OCM, or EM, thereby enhancing navigational safety in complex traffic situations. 

In summary, this study develops a comprehensive framework for navigation risk assessment and MoO 

switching, encompassing theoretical modeling, algorithm design, and case validation, all centered on the 

construction and application of the navigation energy field model. The research outcomes not only offer a 

solid theoretical basis for adaptive MoO switching but also lay an important foundation for achieving safe and 

efficient navigation of MASS in real-world maritime environments. 
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APPENDIX 

List of symbols 

𝑎𝑖𝑗(𝑡) 
the contribution of ship 𝑗 to the complexity 

by ship 𝑖 at time 𝑡 
𝑛 the number of ships 

𝐴 the traffic complexity measurement matrix 𝑝𝑣𝑖𝑗(𝑡) 
the complexity caused by the traffic 

situation at time 𝑡 , also named as 

proximity factor  

𝑐𝑣𝑖𝑗(𝑡) the spatial convergence factor at time 𝑡 r the earth radius 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥 the ship traffic complexity of ship 𝑖 R  the current sliding window interval 

CI  the confidence interval of the sliding window 𝑅𝑖𝑗 
a value contingent upon the type of 

ships and the navigational area 

d the distance from the ship center s the sample standard deviation 

𝑑𝑒𝑛𝑖𝑗(𝑡) 
the complexity caused by the ship density at 

time 𝑡, also named as ship density  
𝑡𝑣𝑖𝑗(𝑡) 

the temporal convergence factor at 

time 𝑡 

𝑑𝑠𝑎𝑓𝑒𝑑𝑖𝑠 the safe distance between two ships 𝑣𝑖𝑗(𝑡) 
the relative velocity between ship 𝑖 and 

𝑗 at time 𝑡 

D  the whole boundary of the ship domain 𝑤𝑖𝑗(𝑡) 
the weight of ship 𝑗 to the complexity 

by ship 𝑖 at time 𝑡 

afD  the after boundary of the ship domain /2z  the confidence coefficient 

frD  the forward boundary of the ship domain p  the angle between point P and the bow 

direction of the ship 

𝐷𝑡 
the calculated risk value of the navigation 

energy field at time 𝑡 
  

the lateral influence parameters of the 

ship domain 

𝑒𝑣𝑖𝑗(𝑡) 
the complexity caused by the difficulty of 

traffic mitigation at time 𝑡 , also named as 

mitigation index 

𝜃(𝑡) the courses of ship at time 𝑡 

ammag  a tuning parameter that determines the risk 

value of the navigation energy field 
𝜏 

a tuning factor that emphasizes the 

degree of influence exerted by distance 
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𝑘 
a tuning parameter that determines the 

curvature of the function 
𝛼 

a correction parameter dependent on 

the navigational environment of the 

ships 

𝑙𝑜𝑛 the longitude of ship 𝑑𝑖𝑗(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
the relative distance vector between 

ship 𝑖 and 𝑗 at time 𝑡 

𝑙𝑎𝑡 the latitude of ship R  
the average risk value within the 

sliding window 

iL  the length of the ship   
the longitudinal influence parameters 

of the ship domain 

m 
the number of risk value samples in the 

sliding window 
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