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ARTICLE INFO ABSTRACT
Keywords: Accurate prediction of vessel traffic flow is crucial for ensuring the safety of inland
AIS data river shipping and enhancing the efficiency of traffic operations. Inland vessel traffic

flow typically exhibits significant complexity and spatio-temporal dynamic
characteristics. To address these challenges, this paper proposes a Global-Local
Spatio-temporal features Spatiotemporal Transformer (GL-STFormer) deep learning model. The Complete
CEEMDAN Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
algorithm is utilized to decompose the original data into multi-feature inputs,
effectively mitigating data non-stationarity. The model integrates Gated Recurrent
Units (GRU) with a self-attention mechanism to extract temporal features of traffic
patterns. The multi-head attention and local masking mechanisms of the Transformer
model are employed to extract global and local spatial dependencies. Furthermore, the
Whale Optimization Algorithm (WOA) is applied to optimize the model’s
hyperparameters. This study employs real-world Automatic Identification System
(AIS) data from the Nantong waters of the Yangtze River for experimental validation.
The results show that the proposed method significantly outperforms various baseline
models in inland vessel traffic flow prediction. This study provides scientific support
for precise traffic prediction and offers novel insights for the intelligent development
of dynamic waterway traffic management.

Vessel traffic flow prediction

1. Introduction

Inland waterway transportation is a vital component of modern integrated transportation systems, which
can promote regional economic development and optimize global logistics networks [1-2]. With the
continuous growth of vessel transportation, high-density inland waterways face dual challenges in navigation
efficiency and safety management [3-6]. The Yangtze River, as a backbone channel of Chinese inland
transportation network, directly impacts material circulation in its economic belt. However, the highly uneven
spatial-temporal distribution of vessel traffic leads to significant congestion risks at key nodes. Dynamic
changes in hydrological environments and frequent emergencies further increase navigation risk [7-9]. Thus,
developing effective vessel traffic flow prediction models, which can enable intelligent waterway resource
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scheduling and enhance inland waterway system stability has practical values. Moreover, the widespread
application of Automatic Identification System (AIS) provides high-resolution, high-frequency traffic
information [10-11]. The AIS data records dynamic information of each vessel, including position, speed, and
heading [12-13], which can support vessel traffic flow modeling and prediction. And the patterns including
vessel movement periodicity, peak traffic trends, and abnormal flow fluctuations during specific time periods
can be further identified.

In recent years, vessel traffic flow prediction has emerged as a significant branch of traffic flow
prediction, which has gained widespread attention. As a time series prediction study, researchers have shifted
their focus from temporal features to spatio-temporal characteristics through various modeling methods. Early
research on vessel traffic flow prediction focused primarily on traditional statistical models. These models
were based on linear time series modeling. Examples include Autoregressive (AR) models, Autoregressive
Integrated Moving Average (ARIMA) models [14], and Kalman filtering [15]. These methods assume that
historical data patterns can be predicted through linear combinations, which show limitations in handling non-
linear dynamic patterns. In addition to traditional statistical models, machine learning and deep learning
methods are widely used [16]. Traditional machine learning methods such as Support Vector Machine (SVM)
[17], and Random Forest (RF) [18] were early applications. These methods have achieved certain effectiveness
in capturing temporal patterns of traffic variations. However, when facing high-dimensional data or long-term
prediction tasks, these methods demonstrate inherent limitations due to their restricted parameter space in
modeling complex network traffic [19]. Deep learning technology has shown significant advantages in
temporal feature analysis due to its powerful feature extraction capabilities. Recurrent Neural Networks
(RNN) and their variants are widely used. RNNs model temporal dependencies through recurrent structures
and hidden state updates. However, standard RNNs perform poorly in modeling long-term dependencies due
to the vanishing gradient problem [20]. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
networks were introduced to address this issue [21-23]. They use gating mechanisms to achieve dynamic
balance between long-term and short-term features. Several notable studies have been conducted in this field.
For instance, Zhang et al. [24] proposed a BP neural network based on particle swarm optimization algorithm
to predict vessel traffic flow in port areas. Dong et al. [25] developed a short-term vessel traffic flow prediction
model that combines LSTM network with Dung Beetle Optimizer (DBO) algorithm. Chang et al. [26]
proposed a combined CNN and Bi-GRU model for vessel traffic prediction in Qingdao Port’s main channel.

However, modeling methods based solely on temporal features have limitations, such as ignoring of
spatial distribution characteristics and potential interactions between different waterways. To capture the
spatial features, researchers have turned to Graph Neural Networks (GNN). GNNs model spatial information
through node-edge structures. They combine with time series prediction models to capture spatio-temporal
features. These methods typically use adjacency matrices to describe spatial relationships between regions
through physical waterway connections. Several researchers have made significant contributions in this area.
For instance, Man et al. [27] proposed a spatiotemporal vessel traffic flow prediction model that combines the
graph attention mechanism and bidirectional long short-term memory network to extract spatiotemporal
features of vessel traffic patterns. Liang et al. [28] developed a spatio-temporal multi-graph convolutional
network (STMGCN) that used distance graphs, interaction graphs, and correlation graphs to capture spatial
information in inland waterways, significantly improving prediction accuracy. Ma et al. [29] introduced a
Spatial-Temporal Attention Graph Convolution Network (STAGCN) model, which used an attention
mechanism to compute dynamic adjacency matrices combined with graph convolution networks to capture
Ship Time Headway (STH) patterns across different water areas. Lie et al. [30] proposed a semi-dynamic
spatio-temporal graph neural network (SDSTGNN) model, using pre-defined adjacency matrices and adaptive
matrices to construct semi-dynamic adjacency matrices, which enhanced the ability to capture spatial
information. In summary, existing research methods have effectively integrated both temporal and spatial
information, addressing to some extent the limitations associated with focusing solely on temporal features.
However, several critical challenges remain:

1. Traditional single-model methods can only consider either temporal or spatial features. This leads to
reduced prediction accuracy for spatio-temporal vessel traffic flow data.
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2. Fully extracting spatial information from inland waterway networks remains challenging. Existing
methods struggle to capture both global and local spatial information.

3. The complex characteristics of multi-waterway vessel flow data are often difficult to analyze
effectively.

To address these issues, this paper proposes the Global-Local Spatiotemporal Transformer (GL-
STFormer) model. It integrates three core modules: The Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) for signal decomposition, GRU and Self-Attention for temporal feature
extraction, and Transformer for spatial feature extraction. Considering the inherent non-stationarity and non-
linearity of vessel traffic flow, the CEEMDAN algorithm serves as the initial component [31]. Compared with
EMD [32] and EEMD [33], CEEMDAN effectively mitigates mode mixing and reduces reconstruction errors
through adaptive noise strategies. It decomposes complex raw signals into simplified components, providing
high-quality inputs for the deep learning network. For spatial modeling, the Transformer architecture is
utilized. While the Transformer model has become a research hotspot in time series prediction due to its
outstanding performance in Natural Language Processing (NLP) tasks [34], its self-attention mechanism is
also inherently suitable for capturing spatial dependencies. Specifically, the weight matrix of the multi-head
attention mechanism functions as a dynamic adjacency matrix to extract influence weights for each node. By
integrating temporal and spatial features, the GL-STFormer model constructs a comprehensive short-term
vessel traffic flow prediction framework. It can accurately simulate dynamic changes in traffic flow and
significantly improve prediction accuracy, which may promote the efficiency of decision-making processes.

The main contributions of this paper are:

1. Use the Transformer model to capture both global and local spatial features of inland vessel traffic
flow.

2. Propose a GL-STFormer deep learning model to explore the complex dynamic patterns of vessel
traffic flow in both temporal and spatial dimensions.

3. Compared with baseline models, the GL-STFormer shows better performance.
The structure of this paper is as follows: Section 2 describes the vessel traffic data collection process.

Section 3 explains the model framework in detail. Section 4 discusses experimental data settings and result
analysis. Section 5 summarizes the research findings and looks at future research directions.

2. Problem analysis and data processing

2.1 Problem description

Vessel traffic flow prediction is an important part of intelligent transportation systems. In waterway
transportation, the inland traffic network can be represented as an undirected graph G = (V,E, A), where V =
(V,V,,...,Vy) is the set of N nodes, E is the set of M edges, and A € RN*V is the adjacency matrix of the
graph. The historical vessel traffic data at each node can be represented as X = (X;_p41, Xe—pszr---,X¢) €
RM*N 'where M is the number of historical time steps of vessel traffic data. The predicted future vessel traffic
data is represented as X = (X411, X¢42, .-, Xerp) € RPN where P represents the number of future time steps.
X, represents the vessel traffic data at time t for the N nodes. Therefore, the vessel traffic flow prediction
problem can be expressed as the following equation:

Xev1 Xevzr -0 Xewp) = FXemmrr, Xe-mr2, - Xt) (1)

where f is the prediction model used in this study. Figure 1 illustrates the overall process from training to
final prediction of the model.
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Time series data

Ship traffic flow for 10 cross-sections from
15 September 2021 to 31 December 2021

Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise
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Deep learning
architecture
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Fig. 1 Training, validation, and testing process for vessel traffic flow prediction using deep learning

2.2 Cross-sectional vessel traffic data collection

This section examines all vessels passing through cross-sections to mitigate missing values during
periods of low vessel traffic in the channel. The cross-section is established with two endpoints denoted as

and B. The mathematical representation of the cross-section is Virsection™ = (lon}, long, lat}, latf),

where N denotes the finite set of cross-sections. A vessel’s passage through the cross-section is validated by
the intersection of its sub-trajectory with the cross-section. The sub-trajectory comprises two consecutive
trajectory points that are nearest to the cross-section. The methodology involves initially organizing the data
according to vessel MMSI and temporal sequence, followed by an analysis of all trajectory points for each
vessel. In the case where a vessel traverses from the left to the right side of a cross-section, its position at the
previous time step is denoted as P}, £ With coordinates (lon}, o lat]), £t)» While its subsequent position is

represented as P}y.; ght With coordinates (lon; ghts latf\”rig nt)- The variable i denotes the i-th trajectory point.

In two-dimensional plane geometry, the sign of the vector cross product indicates the relative directional
relationship between two vectors. This mathematical property enables the determination of relative positions
between points and line segments. As illustrated in Figure 2, vector cross products are employed to determine
whether vessel trajectory points lie on opposite sides of the virtual cross-section and whether cross-section
control points are situated on opposite sides of the vessel trajectory. The mathematical formulation is
expressed as follows:

§ = af = (lon}} — lon},lat) — latl) 2)
v, = Wleﬂ) = (lonesr — lony, latl, ¢, — laty) 3)
v, = aPl e = (lonfigne — long, latl e — latd) 4)
T = Pll,\{eftpll,\:‘lght = (lon?,,right - lon?,,left' lat{Yright - latff’zeft) ()
Vs = Plosea = (lony — lon},rp, laty — laty,q,) (6)
Vv, = PLI,\{eftﬁ = (lon;;V — lonfere, lat;}’ — latlese) (7)

Here, vector S represents the direction from « to 8. Vector Vl and 72 represent the directions from «a to
the left and right adjacent trajectory points of the sub-trajectory, respectively. Vector T represents the vessel’s

movement from its previous position to its subsequent position. Vectors 73: and 74) represent the directions
from the vessel’s previous position to points @ and £, respectively.
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When cross, - cross, < 0 and cross; - cross, < 0, it indicates that the vessel has passed through the

cross-section:

— -
cross; =V x§ =

cross, =V, XS

crossy; =T X V3 =

— —
cross, =T XV,
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Fig. 2 Vector cross product method for detecting vessel passage through selected cross-sections
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After determining whether vessels pass through virtual cross-sections, we developed a vessel traffic
flow dataset by calculating vessel arrival times at cross-sections, referencing previous research methods [35].
The final dataset contains 10,326 vessel traffic flow records. As shown in Figure 3, we conducted probability
density analysis on the vessel flow data to visualize its macro characteristics. The analysis reveals that the
number of vessels passing through the cross-section within 15-minute intervals in the Nantong section of the
Yangtze River typically ranges from 0 to 20 vessels. This pattern aligns with the navigational characteristics
of the Yangtze River.

3. Modelling

This section presents a GL-STFormer model framework for multi-cross-section vessel traffic flow
prediction in inland waterways. As shown in Figure 4, the framework consists of three steps:

1. Experimental data preparation. The framework references AIS data preprocessing methods
proposed in previous studies to enhance vessel trajectory quality. Subsequently, vessel trajectory density is
visualized through heat maps, and cross-sections are selected perpendicular to waterways in high-density
areas. The number of vessels passing through all cross-sections is calculated using vector cross-
productmethod.

2. CEEMDAN decomposition of vessel traffic flow data. To reduce the volatility and complexity of
raw data, the CEEMDAN decomposition algorithm is employed to decompose the original data into multiple
Intrinsic Mode Functions (IMFs). Min-max normalization is applied to facilitate rapid model convergence.

3. Deep learning model for vessel traffic flow prediction. The GL-STFormer model is developed to
accurately predict vessel traffic flow by learning complex spatiotemporal dependencies. In the temporal
dimension, the model integrates GRU and self-attention mechanisms to capture evolutionary patterns. In the
spatial dimension, the Transformer architecture is employed to dynamically extract and fuse global and local
spatial information. Furthermore, the Whale Optimization Algorithm (WOA) is applied to optimize the
model’s hyperparameters.

Step I data preparation Step I CEEMDAN decomposition of vessel traffic flow data
Original data
AIS Data
Original ship traffic flow
Data processing N CEEMDAN .
and selection of 2 Min Max
cross-sections € Normalization
e /w%ﬂ@
Step III Using deep learning for predicting vessel traffic flow Input:M,BxN,F
Hyperparameter ‘ ; ; o b
optimization - >h't71 Reset Gate fate Gate | h
—{ 6rRU o GRU }-eee~{ GRU }- .
Whale optimization \ l
algorithm(WOA) :> Self-attention \ X .
Output:N,BxM,F | Data with temporal features \ Tt
Optimal RC Spatial Position \
hyperparameter EB_® Encoding \ f 3.
1

" x|
e Spatial Transformer }4—
Data with spatiotemporal Output B PNF
features
Fully
Connected
Timestep Spatial topology

Fig. 4 Research framework

Traffic flow

3.1 Inland waterway traffic network

In road traffic, sensors are typically installed at accident-prone locations or congested areas. However,
inland waterways lack dedicated traffic monitoring infrastructure. Previous studies placed cross-sections
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aligned with bridges or perpendicular to channels. Areas with high vessel density present complex navigation
environments and increased safety risks, making them priority locations for studying traffic flow patterns and
conducting predictions.

In this study’s inland waterway network construction, we selected cross-sections perpendicular to
channels at locations with dense vessel trajectories. As shown in Figure 5, the vessel trajectory heat map,
generated from preprocessed AIS data, clearly indicates vessel activity levels in the waterway. We selected
ten virtual cross-sections in areas with relatively dense trajectories. These virtual cross-sections serve as
equivalents to road traffic sensors, recording vessel counts at specific locations. Table 1 lists the control point
coordinates of these ten virtual cross-sections.

32.0901°N

31.9049°N

120.2340°E

Table 1 Control point coordinates of ten virtual cross-sections

120.6727°E

Fig. 5 Construction of inland waterway traffic network with virtual cross-sections at high vessel trajectory density locations

Cross — sections Endpoint Longitude E(°) Latitude N(°)

Nod N{ 120.261389 31.947778
ocer NP 120.270000 31.929722
NG 120.276111 31.955556

Node, 5
N, 120.288333 31.937222
N 120.339167 31.996944

Node; b
N 120.370556 31.959722
N2 120.363056 32.011389

Node, b
Ny 120.388333 31.984167
N& 120.382222 32.023333

Nodes b
Ne 120.408333 31.997500
NE 120.398889 32.035278

Nodeg b
N¢ 120.425833 32.010556
Nod NZ 120.429722 32.055000
0ae; NP 120.459167 32.018889
Node N§ 120.528056 32.042778
8 NP 120.507222 32.008889
Ng 120.570556 32.026111

Nodey 5
Ng 120.557222 31.992778

a
Nodey Nlbo 120.653611 32.011389
Ny 120.659167 31.981667

Considering the closed and interconnected nature of inland waterways, we defined an inland traffic
network based on waterway geographical structures and relative positions between cross-sections. Each cross-
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section represents a node. The adjacency matrix element A;; is set to 1 if nodes N; and N; are connected in
graph , and 0 otherwise, as shown in equation (12):
A = {1, if N; connceted to Nj,i #j
b 0, otherwise

(12)
Here, N; and N; represent the i-th and j-th nodes in the undirected graph, respectively.

3.2 Complete ensemble empirical mode decomposition with adaptive noise

Original vessel traffic flow signals exhibit nonlinear and non-stationary characteristics. Consequently,
the CEEMDAN algorithm is employed to decompose the original data. As illustrated in Figure 6, CEEMDAN
transforms the complex original signal into multiple IMFs. These IMFs possess simplified patterns that are
effectively learned by deep learning models. By utilizing adaptive noise strategies and iterative optimization,
CEEMDAN generates precise and stable components. This mechanism reduces error accumulation caused by
noise introduction and improves decomposition resolution.

The steps for implementing CEEMDAN is as follows:

Step 1: The original vessel traffic signal is denoted as x(t).To perform decomposition, we first add noise
to the signal. A Gaussian white noise n(V(t) is generated and added to the original signal to form a new signal
x' A (t):

x' D) = x(t) + ayn@(t) (13)
where a4 is the noise intensity factor. n®(¢) is the i-th generated Gaussian white noise with mean 0 and
variance ¢2. This operation is repeated m times to obtain m noise signals x' @ (t).

Step 2: For each noise-added signal x'@D(t), the Empirical Mode Decomposition (EMD) method is used
to obtain the first IMF component IM Fl(l) (t) and residual rl(l)(t):

1w -
IMF,(¢) = E,z IME? (1) (14)
=1
r(t) = x(t) — IMF,(t) (15)

where 71 (t) is the residual signal after removing the first IMF.

Step 3: New noise n((t) is added to the residual signal r; (t) to generate a new noise signal rl' (i)(t) .
EMD is performed on each new noise signal r1' ® (t) to obtain the second IMF component IM Fz(i)(t) and
residual rz(i) (t):

r D) = r.(t) + a,nO(0) (16)
1% i
IMF,(t) = EZ IME® (1) (17)
=1
r,(t) =11 (t) — IMF,(t) (18)

Step 4: The above steps are repeated to extract more IMF components. For each new residual 7 (t) ,

noise is continually added to generate new noise signals rk'(i) (t) . EMD is then performed again to extract the
(k+1)-th IMF component from the new noise signal:

T () = Te(®) + @eenO(2) (19)
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1% l-
IMF,41(t) = EZ IMED () (20)
Te+1 () = 13 (t) — IMFye 11 (0) (21)

This process continues until reaching the maximum iteration number K:
K
2(t) = Z IMF(t) + 7 (£) 22)
j=1

IMF;(t) represents the j-th Intrinsic Mode Function (IMF). rg(t) is the final residual, typically

representing the low-frequency trend or residual components in the signal. X(t) is the vessel traffic flow signal
after CEEMDAN decomposition.

Fig. 6 IMF components after CEEMDAN decomposition of vessel traffic flow data (partial data from cross-section 1)

3.3 Vessel traffic flow prediction based on deep learning method

3.3.1 GRU

Traditional recurrent neural networks can process sequential tasks but often suffer from severe gradient
vanishing when handling long-term dependencies. Compared to traditional RNNs, GRU introduces a gating
mechanism that effectively mitigates the vanishing gradient problem while simplifying the network structure
and reducing computational complexity while maintaining performance.

h't h'£+l

GRU

N
Xp—1 Xt+1

Fig. 7 Gated Recurrent Unit structure

GRU inherits LSTM’s ability to capture both long-term and short-term dependencies while improving
computational efficiency by merging gate mechanisms. This makes it widely applicable in time series

9
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prediction scenarios, such as traffic flow, stock prices, and temperature forecasting tasks [36-38]. When
processing time series tasks, GRU controls information flow through its gating mechanism based on input
data and network hidden states. It selectively retains important information while filtering redundant data to
generate high-quality temporal features for subsequent tasks.

As shown in Figure 7, GRU’s core working mechanism includes two gates: Update Gate and Reset Gate,
along with a hidden state representation. These two gates effectively capture dynamic temporal relationships
by controlling the fusion of current and historical information. The specific calculation process of GRU is as
follows:

Update Gate: The update gate determines the weight ratio between the previous hidden state h;_; and
current input x, in generating the new hidden state:

zr = o(Wyxy + Uzhy_q + by) (23)

Here, z, is the update gate value controlling the influence of historical information on current output;
W,,U,, b, are learnable model parameters; o is the sigmoid activation function.

Reset Gate: The reset gate determines whether to ignore certain parts of the previous hidden state:
re = o(Wexy + Uphe—y + by) (24)

Here, 1; is the reset gate value adjusting the dependency strength between current input and historical
information; W,., U,., b, are learnable model parameters.

Candidate Hidden State: The candidate hidden state is jointly generated by the current input and the
reset gate-adjusted previous hidden state:

flt = tanh (tht + T't O (Uhh't—l) + bh) (25)

The tanh activation function limits the output value range, and (O represents element-wise
multiplication. The final hidden state is regulated by the update gate controlling information interaction
between the candidate hidden state and previous hidden state:

he =2, Ohi1 +(1—2) O flt (26)

In this paper, the new unit state h; is employed as both the output of the GRU structure and the input of
the self-attention layer.

3.3.2 Self-attention

However, the GRU model can only process data sequentially along the time series, making it difficult
to capture nonlinear or irregular interactions between time steps. In such scenarios, relying solely on GRU
makes it challenging to obtain ideal temporal feature representations.

To address these issues, the Self-attention mechanism was introduced as a complementary approach
[39]. The attention mechanism is inspired by how the human brain processes information. It achieves
information processing by selectively allocating computational resources. Similar to how humans focus on
specific tasks while ignoring surrounding distractions, this mechanism highlights important information while
weakening or filtering out secondary information. This enables precise capture and processing of key
information [40]. Therefore, we introduce the output of the GRU model H; = (hq, hy, hs, ..., h;) into the self-
attention mechanism, which can dynamically adjust the information weights of different time steps and
significantly enhance the modeling capability for long-range interaction relationships [41]. Figure 8 illustrates
the internal mechanism of self-attention.

10
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( R

Fig. 8 Self-attention mechanism

The self-attention mechanism generates weight matrices based on input sequences to focus on important
time steps while weakening secondary information. The specific process includes the following steps, with
formulas:

Q = HW,, K = H W,V = HW, 27)

_ ekt

Vdk
where Q € RM*% K € RM*%k 7 € RM* and QKT represents the dot product of query vectors and key

vectors for different sequence positions, resulting in a similarity matrix. The scaling factor /d} prevents dot
product values from becoming too large in high dimensions, which could cause gradient vanishing or unstable
updates:

aij (28)

€xp (aij)
Y, exp (ay)

ai; = softmax(aij) = (29)
The attention weight matrix is obtained by normalizing @;; through the softmax function, ensuring

weights sum to 1 across time steps. This weight matrix represents the information dependency relationships
between each input sequence position and other positions:

M
T; = Z a;V;, T € RM*d (30)
j=1

Here, T; represents the output feature at time step i; V; represents the feature at time step j in the value
matrix; weight value a;; reflects the importance of time step j to time step i. Finally, the output matrix T
preserves the feature information from the input sequence while enhancing the importance of key time steps,
enabling the model to generate more expressive temporal features.

3.3.3 Transformer

In the preceding temporal extraction layer, GRU and self-attention mechanisms were employed to
capture time-series variations. However, exclusive reliance on temporal features ignores inter-nodal
dependencies, thereby limiting prediction accuracy. Therefore, the comprehensive extraction of spatial
features is critical. Existing Graph Neural Networks face specific limitations. For instance, Graph

11
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Convolutional Networks (GCN) [42] are restricted by static topological assumptions, while Graph Attention

Networks (GAT) [43] primarily focus on local neighbors and often overlook long-range global dependencies.
Output

Feed Global& Local
Forward

Spatial Information

Extraction

Global Spatial .
NX| Information e
Extraction

Attention

Feed
Forward
r’[ LayerNorm l
T
Masked-Multi-
HeadAttention

Multi-Head
Attention
Spatial Position @—69 Adjacency 69—® Spatial Position
matrix

Encoding Input Input Encoding

[ LayerNorm r

Fig. 9 Transformer model architecture

To overcome these constraints,, this study adopts the Transformer model as the spatial feature extraction
module [44], as shown in Figure 9. Unlike traditional graph-based methods, the encoder-decoder architecture
of the Transformer offers distinct advantages. The encoder utilizes multi-head self-attention mechanism to
capture global dependencies within the traffic network, whereas the decoder employs masked multi-head
attention mechanism to refine local spatial features. Subsequently, the cross-attention mechanism integrates
these features to extract global-local spatial correlations. Consequently, this architecture enables the
simultaneous extraction of global spatial correlations across the network and local interactions between
adjacent nodes.

3.3.4 Position Encoding

The core self-attention mechanism of Transformer is essentially a fully connected structure. Since this
mechanism processes data solely based on content relationships between elements without explicitly capturing
positional information in the input sequence, Transformer cannot perceive the arrangement order of input
sequence elements without additional mechanisms. Since data signals correspond to cross-sections with
specific physical locations in geographical space, and this positional information is crucial for establishing
spatial dependencies between cross-sections, incorporating position encoding to explicitly add this positional
information is vital for model construction.

To effectively mark spatial positional relationships between nodes, Transformer introduces sinusoidal
position embeddings to record positional information of time series data, with the formula:

PE (pos.2i) = sin (pos/100002/4) (31)
PE(pos2i+1) = C0s (pos/100002/4) (32)

where pos represents the position in the sequence, i represents the sequence index, and d represents the
dimension of sequence features [45]. The output T from the temporal feature extraction layer is combined
with positional encodings to form X = T + PE, where X € RN*H*M pp g RNXHXM
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3.3.5 Global spatial feature extraction

Inland waterway traffic networks entail potential long-range dependencies, where geographically distant
nodes may maintain strong correlations due to spatiotemporal traffic propagation effects. To capture these
global characteristics, the Transformer encoder module employs the multi-head self-attention mechanism.
Unlike GCN which rely on static adjacency matrices to aggregate local information, the Encoder dynamically
computes attention weights between all node pairs based on real-time input features. This fully connected
attention structure allows the model to extract global dependencies across the entire waterway topology,

thereby providing a holistic spatial representation that complements local physical connections.

Using the position-encoded feature tensor X € RM*HXN new global spatial feature vector ¢ € RM*Hg*N

is obtained through the following calculations:

FFN(X) = WzReLU(Wlx + bl) + bz (33)
where W,, W,, by, b, are learnable parameters;
X—H
LN(x)=T-]/+,B (34)
where p is the mean, o is the standard deviation, y and £ are learnable scaling coefficients and offset values:
Q= Xxwlh K7 = xw? V7 = Xw? (35)
I(KNT
A‘l:q = softmax (M> (36)
Vdk
head; = Attention(Q/,K?,V,?) = A7V? (37
MutilheadAttention(Q,K,V) = Concat(head,, -, head,)W° (38)
¢ = LN(X + MutilheadAttention(Q,K,V)) (39)
@ =LN({ +FFN({)) (40)

: : : H o, .
where W', W2, W € RN*%, W0 € R@XN are linear transformation matrices. dj = —, dj is the feature

dimension of each head, /4 is the number of attention heads, A;.q represents the weight matrix between the i-th
node and other nodes, where these weights indicate the strength of dependency relationships between nodes.
The final output ¢ , processed through multi-head self-attention mechanism, residual connections,
normalization layers, and fully connected layers, constitutes the total output of the encoder. This output
contains node representations that incorporate fused global spatial features, where contextual information from
other nodes is further integrated based on the nodes’ inherent features, thereby forming global spatial
characteristics.

3.3.6 Global-local spatial feature extraction

The spatial distribution of vessel traffic flow is governed by the topological structure of waterways. To
integrate these physical constraints while retaining the global context, the Decoder module is designed to
extract local features and fuse them with global representations.

To capture the physical connectivity, a masked multi-head self-attention mechanism is implemented. A
binary mask matrix, derived from the physical adjacency of the waterway, is imposed on the attention scores.
By assigning negative infinity to the weights of unconnected nodes, the attention mechanism is mathematically
restricted to physically adjacent neighbors. This operation enforces the extraction of explicit local spatial
features that strictly adhere to the static graph topology. The formula for masked attention score processing is
given by:

13



Q. Macetal. Brodogradnja Volume 77 Number 3 (2026) 77309

Q! = xwi Kk} = xw?, vl = xw (41)
Lo INT
LK
Al = Softmax QiKD) + mask (42)
Jd
_ . _ Qil(Kil)T l
Y; = Attention(Q;, K;, V;, mask) = Softmax T + mask | V; (43)
k
. 0, MU = 1
where mask represents the mask matrix, mask = { s
—0o, MU =0
Y = MutilheadAttention(Y1, Y5, Yn) (44)

where W*, W2, WE € R"*%k_ Al represents the attention weight matrix where the i-th node only focuses on
neighboring nodes. The final attention weights are used to weight the value vectors of neighboring nodes,
updating the local representation of nodes.

Subsequently, the integration of global and local information is achieved through multi-head cross-
attention. In this layer, the extracted local features function as Q, while the global spatial features from the
Encoder output serve as K and V. This architecture adaptively fuses global dependencies with local physical
connectivity. The calculation process is formulated as follows:

. wWQ«oWiK)T)
p; = CrossAttention(y, ¢, ¢) = softmax <l— oW (45)
74
& = LN( + MutilheadAttention(p4, p2,"** Pn)) (46)
Xs=LN(E+FFN($)) (47)

Through the fusion of multi-head attention mechanism and residual connection processing, the final
output tensor X captures both the global dependency relationships of nodes and the strong local correlations
with neighboring nodes. This ensures that the model possesses the comprehensive advantages of both global
and local information. The combination of global and local features represents a crucial approach for
improving the accuracy and robustness of spatio-temporal prediction tasks.

3.4 Hyperparameter optimization

3.4.1 Whale optimization algorithm

The WOA is a metaheuristic algorithm inspired by biological behavior [46]. The inspiration comes from
the hunting process of Humpback Whales. WOA is commonly used for multi-objective hyperparameter
optimization. The algorithm achieves global optimization by simulating three behaviors of whales: encircling
prey, spiral bubble-net attack, and random prey search [47]. WOA features a simple structure with few
parameters. It utilizes its global optimization capabilities and efficient search characteristics to automatically
explore neural network hyperparameter space. Figure 10 shows the flowchart of using WOA to find optimal
model hyperparameters.
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Initializec WOA population parameters
and determine the range of hyperparameters

Calculate the fitness of each individual in the
population and record the current optimal
individual

!

—> update cach individual position

Whale optimization
algorithm

Updating individual locations by spiral
mechanism

Updating individual locations by
search foraging mechanism

Updating individual locations by
shrinking bounding mechanism

Fig. 10 Model hyperparameter optimization algorithm framework

In GL-STFormer model hyperparameter optimization, an initial population containing N,, whales is
generated. Each whale’s position can be viewed as a vector distributed in d-dimensional parameter space:

o, @

X = (xl VX e X ), where dimension d represents the number of hyperparameters to be optimized.

The process of using WOA for hyperparameter optimization is:

Step 1: involves population initialization. In the first round, initial positions xl.(o) of population
individuals need to be randomly generated as parameter combinations. The generation rule for whale position
xi(o) follows the formula below:

(43)

L

0 U(aj, bj),If the “ j-th > hyperparameter is a consecutive value
' R(V}),if the “ j-th” hyperparameter is a discrete value

where a;, b; are upper and lower bounds of continuous hyperparameters, and V; is the candidate set of discrete
hyperparameters.

Step 2: updates the convergence factor a(t),
2t
a(t) =2 —— (49)
T
where ¢ is the current iteration number and 7T is the maximum iteration number.
Step 3: selects behavior mode.

A random number p ~ U(0,1) is generated. When p > 0.5, spiral bubble attack is selected. During
hunting, humpback whales form spiral trajectories around prey for fine-grained search of target areas. This
process can be simulated through the spiral motion formula:
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x;(t+ 1) = |x*(t) — x;(¢)| - eP* - cos (2ml) + x*(¢t) (50)
where |x*(t) — x;(t)| represents the distance from whale to target point, b is a shape control coefficient
(constant), and [ represents random factor | ~ U(—1,1) for generating different trajectories.

When p < 0.5, encircling or random prey search is selected. Dynamic coefficients A(t) and C(t) are
calculated:

A(t) = 2a(t)r; —a(t) (51)

e = 2r, (52)
where 74,7, ~ U(0,1);

When |A(t)| < 1, whales perform encircling hunting behavior toward the current best solution x*,
dynamically adjusting current position x;(t) to approach the target. The formula shows:

xi(t+1)=x"(t) —A®) - |C(®) - x"(t) — x; ()] (33)
where x*(t) is the global optimal solution found in iteration t.

To avoid local optima when |A(t)| = 1, other solutions in the population are randomly selected for
exploration. The random search behavior formula shows:

xi(t + 1) = Xrand — A(t) ) IC(t) *Xrand — xi(t)l (54)

where x,.4,,4 represents the position of a randomly selected whale from the population.

3.4.2 Model evaluation metrics

Three commonly used evaluation metrics in regression tasks are employed to scientifically assess the
feasibility and accuracy of the model. These metrics are Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Coefficient of Determination (R?). Their definitions are as follows:

n

1
MAE = ;Z |yprediction - yreall (55)
k=1
D= (y diction — Y 1)2
RMSE = k=1 prediction rea (56)
n

2
R2=1_ Z;clzl (yprediction - yreal)

‘ reatl (57)
k=1 (yprediction - yreal)

where n represents the number of data points, ¥4 represents historical traffic flow data, and ypreqiction
represents predicted traffic volume data. Lower values of RMSE and MAE indicate better prediction
performance of the model. A higher R? value indicates better model fitting, thus higher prediction accuracy.

4. Experiments

4.1 Data description

This section validates the feasibility and performance of the proposed prediction framework using real
AIS data. Data transmission may experience loss or errors, causing historical vessel trajectories to deviate
from actual conditions. Direct use of raw AIS data for prediction would result in significant errors. Therefore,
we reference previous AIS data preprocessing methods to improve vessel trajectory quality [48]. The
processed AIS data issued to collect historical vessel flow data at selected cross-sections of the Nantong
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section of the Yangtze River. Data is collected from September 30, 2021 to December 31, 2021, with a
temporal granularity of 15 minutes. CEEMDAN decomposed the vessel traffic flow into 8 IMF components.
The dataset was divided into three parts: 70% for training, 20% for validation, and 10% for testing. A sliding
window approach was used to generate time series datasets. A sliding window approach is employed to
construct the time-series dataset. To achieve prediction horizons of 15, 30, and 60 minutes, the model adopts
a multi-step prediction strategy, directly outputting the vessel traffic flow for the corresponding future
timestamps.

4.2 Hyperparameter optimization using WOA

In deep learning-based vessel traffic flow prediction for the Nantong section of the Yangtze River, model
performance heavily depends on hyperparameter selection. Traditional manual parameter tuning relies too
much on experience and requires extensive trials. It is time-consuming, labor-intensive, subjective, and prone
to local optima. Therefore, this paper employs the previously introduced WOA to find optimal model
hyperparameters.

The hyperparameters selected for optimization include: learning rate, dropout rate, batch size, input
time steps, temporal and spatial feature dimensions, the number of GRU layers, the number of Transformer
encoder/decoder layers, and the number of attention heads.

In the optimization process, the population size is set to 40, representing 40 candidate hyperparameter
combinations. Each combination was trained for 100 epochs with 10 iterations. The final output results are
shown in Table 2.

Table 2 Optimal model hyperparameters obtained by WOA

Hyperparameters Set range Optimal result
Learning rate [0.0001,0.01] 0.00091
Dropout rate [0,0.5] 0.10409
Temporal feature dimensions [32, 64, 128, 256] 128
Spatial feature dimensions [24, 48, 96, 192] 48
Batch size [16, 32, 64, 128] 32
Input time steps [8, 14] 12
GRU layers [1,2,3,4] 2
Transformer encoder/decoder layers [1,2,3,4]
Attention heads [2,4,6,8] 8

—8— MAE RMSE  —d- R? -~ MAE RMSE =k R —8— MAE RMSE  —k- R°

ared (%)
red (%)

R-Squar

Prediction Error (MAE / RMSE)

p&
' R-Squ

Prediction Error (MAE / RMSE)
Prediction Error (MAE / RMSE)

.
P =
-k
e
0o /
- N
.,
os{ &

16 2 64 128 256 24 a8 96 192 288 16 32 64
Batch Size Spatial Dimensions Temporal Dimensions

128 256

Fig. 11 (a) Effect of different batch sizes on model performance, (b) Effect of different spatial dimensions on model performance,
(c) Effect of different temporal dimensions on model performance

To validate the effectiveness of the hyperparameter combination identified by the WOA, a sensitivity
analysis was conducted by varying batch sizes, temporal dimensions, and spatial dimensions to evaluate
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prediction performance. As illustrated in Figure 11, the optimal performance across all metrics is achieved
with the parameters determined by WOA. These results confirm the validity of the selected hyperparameter
combination.

4.3 Experimental setup

All experiments in this chapter were conducted in the same experimental environment, as shown in
Table 3. MAE was used as the model’s loss function, with parameters continuously updated through
backpropagation for model training. The Adam optimizer was used to assist the loss function in approaching
global minimum. This reduced the loss value in both training and validation sets. Through multiple
optimization experiments, the optimal model parameters from the validation set were saved and used to output
final prediction results on the test set.

Table 3 Experimental facilities

Device Name Configuration/Version
GPU Intel Core 15-13490F (2.5 GHz)
Graphics card NVIDIA GeForce GTX 1660
SUPER
Memory 32 GB RAM
Operating system Windows11 64
Python version Python 3.10
Pytorch version Pytorch 2.1

4.4 Experimental result

The final experiment was conducted using the optimal hyperparameters determined by the WOA.
Figure 12 shows the training and validation losses. The model gradually stabilized after 50 epochs without
overfitting or underfitting.

Training and Validation Loss

o 10 20 30 40 60 70 a0 90 100

Epoch
Fig. 12 Model training and validation loss curves

Figure 13 presents the multi-step prediction results of GL-STFormer on the test set. As shown in Figure
13(a), the predicted values fit well with the ground truth for the 15-minute horizon. As illustrated in Figures
13(b) and 13(c), the prediction deviation increases as the horizon extends to 30 and 60 minutes. Despite the
performance decline in long-term forecasting, the evolutionary trends of vessel traffic flow are captured. These
results validate the effectiveness of GL-STFormer in multi-step scenarios.
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(c) 60-minute prediction
Fig. 13 Visualization of multi-step vessel flow prediction results on the test set

To intuitively observe the spatial feature capturing ability of GL-STFormer, we randomly selected a test
sample. We visualized its global and local spatial attention weight matrices at a specific time step, as shown
in Figurel4. The left panel displays the global spatial attention matrix extracted by the encoder. The right
panel shows the local spatial attention matrix extracted by the decoder. By assigning different attention
weights, these matrices adaptively adjust the importance of the input information. Therefore, the GL-
STFormer model can effectively capture complex spatial dependencies among the data.
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Fig. 14 Visualization of global and local spatial attention weight matrices of the GL-STFormer model
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4.5 Comparative experiment

To rigorously evaluate the effectiveness and accuracy of the proposed model, comparative experiments
were conducted against a variety of classical machine learning and deep learning models. These baselines
include Support Vector Regression (SVR), Autoregressive Integrated Moving Average (ARIMA), GCN,
GRU, LSTM, Bi-LSTM, Spatial-Temporal Graph Convolutional Network (STGCN), and LSTM-GAT. It is
noteworthy that both STGCN and LSTM-GAT were integrated with the CEEMDAN decomposition algorithm
to ensure a consistent experimental basis. To guarantee a fair evaluation, default parameters from the original
implementations were adopted for all baseline methods.

As presented in Table 4, the baseline models demonstrate limited capability in capturing the complex
nonlinear patterns of vessel traffic flow. In contrast, the proposed GL-STFormer exhibits superior predictive
performance, validating the effectiveness of the model. Specifically, GL-STFormer achieves lower prediction
errors compared to both STGCN and LSTM-GAT. This performance disparity can be attributed to the
differences in their spatial modeling mechanisms. STGCN relies on a pre-defined static adjacency matrix to
extract spatial features, which limits its ability to capture time-varying spatial dependencies. Furthermore,
although LSTM-GAT incorporates a dynamic attention mechanism, it primarily focuses on aggregating
information from connected neighbors, thereby capturing only local spatial correlations. In contrast, the
Transformer architecture in GL-STFormer utilizes the encoder-decoder structure to simultaneously capture
and fuse both global and local spatial dependencies. This capability allows the model to learn long-range
interaction features beyond physical connectivity constraints, thereby achieving superior results in the
experiments.

Table 4 Comparison of prediction accuracy of different models (unit: vessels)

15min 30min 60min

Model MAE | RMSE | R? MAE | RMSE | R? MAE | RMSE | R2?
ARIMA 1.978 | 2.591 1 0.196 | 1.998 | 2.632 | 0.170 | 2.138 | 2.817 | 0.049
SVR 2.057 | 2.626 | 0.174 | 2.084 | 2.661 | 0.152 | 2.108 | 2.692 | 0.132
GCN 1.912 | 2.489 [0.258 [ 1.920 | 2.506 [ 0.248 | 1.981 | 2.576 | 0.205
GRU 1.867 | 2.445 [0.283 [ 1.905 | 2.483 [0.262 | 1.916 | 2.521 | 0.237
LSTM 1.871 | 2.450 | 0.281 | 1.882 | 2.487 [0.259 [ 1.909 | 2.534 [ 0.230
Bi-LSTM 1.868 | 2.451 1 0.280 | 1.907 | 2.488 |1 0.258 | 1.914 | 2.518 | 0.240
STGCN 1.406 | 1.840 | 0.594 | 1.523 | 2.001 [0.520 [ 1.605 | 2.117 [ 0.463
LSTM-GAT 0.831 | 1.232 | 0.818 | 1.095 | 1.528 [ 0.720 [ 1.327 | 1.781 [ 0.620
GL-STFormer 0.766 | 1.167 | 0.836 | 1.021 | 1.466 | 0.742 [ 1.268 | 1.742 | 0.637

4.6 Ablation experiment

To verify the contribution of different components to vessel traffic flow prediction, we conducted
ablation studies by removing certain modules. Four ablation versions were constructed: w/o
CEEMDAN(removes the signal decomposition module), w/o GRU(removes the GRU layer), w/o Self-
attention(removes the self-attention mechanism), and w/o Transformer(removes the spatial modeling module).
The models were quantitatively evaluated using MAE, RMSE, and R2. The results are shown in Table 5.

The ablation study results are presented in Table 5. Notably, after removing the CEEMDAN module,
the model accuracy dropped sharply. Specifically, for the 15-minute horizon, the MAE increased from 0.766
to 1.816. This indicates that using the original data directly into the model without decomposition leads to
inferior prediction performance. This is due to the multi-scale non-stationarity and complex fluctuation
characteristics of the raw data. Furthermore, performance degradation is observed in variants without the GRU
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and Transformer modules. This validates the necessity of temporal and spatial feature extraction. Overall, the
proposed model can effectively capture the spatiotemporal characteristics of vessel traffic flow data.

Table 5 Comparison of ablation model prediction accuracy (unit: vessels)

Model 15min 30min 60min
ode MAE RMSE R? MAE RMSE R? MAE RMSE R2
w/0
CEEMDAN 1.816 2.396 0.313 1.831 2.417 0.301 1.848 2.460 0.276
w/o GRU 1.489 1.945 0.547 1.618 2.122 0.461 1.715 2.252 0.393
wio S.elf- 0.796 1.178 0.823 1.053 1.487 0.733 1.290 1.762 0.622
attention
w/o 0.928 1.326 0.789 1.187 1.605 0.691 1.449 1.932 0.553
Transformer
GL- 0.766 1.167 0.836 1.021 1.466 0.742 1.268 1.742 0.637
STFormer

To verify the effectiveness of the CEEMDAN decomposition module, this study compares it with two
classical algorithms: EMD and EEMD. The results are illustrated in Figure 15. The CEEMDAN-based model
achieves superior performance across all metrics compared to the other decomposition methods. In contrast,
EMD yields larger errors due to mode mixing. While EEMD improves the goodness of fit relative to EMD,
its overall prediction accuracy remains inferior to the proposed CEEMDAN approach. These results indicate
that CEEMDAN possesses significant advantages in extracting features from complex vessel traffic flow.

I MAE [0 RMSE I R*(%)

1.6 100

Prediction Error (MAE / RMSE)

EMD EEMD CEEMDAN

Fig. 15 Performance comparison of different signal decomposition strategies.

5. Conclusions

The study developed a spatiotemporal prediction model based on signal decomposition and hybrid deep
learning to address complex inland vessel traffic flow prediction. The model framework integrates
CEEMDAN, GRU, self-attention mechanism, Transformer, and WOA. Initially, the CEEMDAN algorithm
decomposes the original vessel flow sequence into multiple IMFs, significantly reducing data complexity.
During feature extraction, GRU networks capture long-term dependencies in flow sequences, while self-
attention mechanism enhances feature weights of key time steps. Additionally, combining inland traffic
networks, the Transformer encoder-decoder architecture establishes cross-waterway spatial dependencies,
achieving collaborative perception between local channels and global networks through multi-head attention
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mechanism. To overcome hyperparameter sensitivity, the WOA globally optimizes model hyperparameters to
output final predictions using optimal parameters.

Training was conducted using real historical AIS data from the Yangtze River. Experimental results
demonstrate that the proposed model outperforms traditional baseline models in MAE, RMSE, and R?,
validating its effectiveness and superiority in capturing complex spatiotemporal correlations.

Future research could explore model performance over longer prediction horizons. Furthermore,
integrating multiple data types including AIS, meteorological data, and vessel motion data could provide more
detailed learning information, enhancing the robustness of deep learning methods and improving modeling
capabilities for complex waterway traffic characteristics. These extensions could enable the model to play a
greater role in improving inland shipping safety and transport efficiency, while opening new pathways for
intelligent shipping and maritime traffic management systems development.
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