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A B S T R A C T  

Accurate prediction of vessel traffic flow is crucial for ensuring the safety of inland 

river shipping and enhancing the efficiency of traffic operations. Inland vessel traffic 

flow typically exhibits significant complexity and spatio-temporal dynamic 

characteristics. To address these challenges, this paper proposes a Global-Local 

Spatiotemporal Transformer (GL-STFormer) deep learning model. The Complete 

Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) 

algorithm is utilized to decompose the original data into multi-feature inputs, 

effectively mitigating data non-stationarity. The model integrates Gated Recurrent 

Units (GRU) with a self-attention mechanism to extract temporal features of traffic 

patterns. The multi-head attention and local masking mechanisms of the Transformer 

model are employed to extract global and local spatial dependencies. Furthermore, the 

Whale Optimization Algorithm (WOA) is applied to optimize the model’s 

hyperparameters. This study employs real-world Automatic Identification System 

(AIS) data from the Nantong waters of the Yangtze River for experimental validation. 

The results show that the proposed method significantly outperforms various baseline 

models in inland vessel traffic flow prediction. This study provides scientific support 

for precise traffic prediction and offers novel insights for the intelligent development 

of dynamic waterway traffic management.

1. Introduction 

Inland waterway transportation is a vital component of modern integrated transportation systems, which 

can promote regional economic development and optimize global logistics networks [1-2]. With the 

continuous growth of vessel transportation, high-density inland waterways face dual challenges in navigation 

efficiency and safety management [3-6]. The Yangtze River, as a backbone channel of Chinese inland 

transportation network, directly impacts material circulation in its economic belt. However, the highly uneven 

spatial-temporal distribution of vessel traffic leads to significant congestion risks at key nodes. Dynamic 

changes in hydrological environments and frequent emergencies further increase navigation risk [7-9]. Thus, 

developing effective vessel traffic flow prediction models, which can enable intelligent waterway resource 
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scheduling and enhance inland waterway system stability has practical values. Moreover, the widespread 

application of Automatic Identification System (AIS) provides high-resolution, high-frequency traffic 

information [10-11]. The AIS data records dynamic information of each vessel, including position, speed, and 

heading [12-13], which can support vessel traffic flow modeling and prediction. And the patterns including 

vessel movement periodicity, peak traffic trends, and abnormal flow fluctuations during specific time periods 

can be further identified. 

In recent years, vessel traffic flow prediction has emerged as a significant branch of traffic flow 

prediction, which has gained widespread attention. As a time series prediction study, researchers have shifted 

their focus from temporal features to spatio-temporal characteristics through various modeling methods. Early 

research on vessel traffic flow prediction focused primarily on traditional statistical models. These models 

were based on linear time series modeling. Examples include Autoregressive (AR) models, Autoregressive 

Integrated Moving Average (ARIMA) models [14], and Kalman filtering [15]. These methods assume that 

historical data patterns can be predicted through linear combinations, which show limitations in handling non-

linear dynamic patterns. In addition to traditional statistical models, machine learning and deep learning 

methods are widely used [16]. Traditional machine learning methods such as Support Vector Machine (SVM) 

[17], and Random Forest (RF) [18] were early applications. These methods have achieved certain effectiveness 

in capturing temporal patterns of traffic variations. However, when facing high-dimensional data or long-term 

prediction tasks, these methods demonstrate inherent limitations due to their restricted parameter space in 

modeling complex network traffic [19]. Deep learning technology has shown significant advantages in 

temporal feature analysis due to its powerful feature extraction capabilities. Recurrent Neural Networks 

(RNN) and their variants are widely used. RNNs model temporal dependencies through recurrent structures 

and hidden state updates. However, standard RNNs perform poorly in modeling long-term dependencies due 

to the vanishing gradient problem [20]. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) 

networks were introduced to address this issue [21-23]. They use gating mechanisms to achieve dynamic 

balance between long-term and short-term features. Several notable studies have been conducted in this field. 

For instance, Zhang et al. [24] proposed a BP neural network based on particle swarm optimization algorithm 

to predict vessel traffic flow in port areas. Dong et al. [25] developed a short-term vessel traffic flow prediction 

model that combines LSTM network with Dung Beetle Optimizer (DBO) algorithm. Chang et al. [26] 

proposed a combined CNN and Bi-GRU model for vessel traffic prediction in Qingdao Port’s main channel. 

However, modeling methods based solely on temporal features have limitations, such as ignoring of 

spatial distribution characteristics and potential interactions between different waterways. To capture the 

spatial features, researchers have turned to Graph Neural Networks (GNN). GNNs model spatial information 

through node-edge structures. They combine with time series prediction models to capture spatio-temporal 

features. These methods typically use adjacency matrices to describe spatial relationships between regions 

through physical waterway connections. Several researchers have made significant contributions in this area. 

For instance, Man et al. [27] proposed a spatiotemporal vessel traffic flow prediction model that combines the 

graph attention mechanism and bidirectional long short-term memory network to extract spatiotemporal 

features of vessel traffic patterns. Liang et al. [28] developed a spatio-temporal multi-graph convolutional 

network (STMGCN) that used distance graphs, interaction graphs, and correlation graphs to capture spatial 

information in inland waterways, significantly improving prediction accuracy. Ma et al. [29] introduced a 

Spatial-Temporal Attention Graph Convolution Network (STAGCN) model, which used an attention 

mechanism to compute dynamic adjacency matrices combined with graph convolution networks to capture 

Ship Time Headway (STH) patterns across different water areas. Lie et al. [30] proposed a semi-dynamic 

spatio-temporal graph neural network (SDSTGNN) model, using pre-defined adjacency matrices and adaptive 

matrices to construct semi-dynamic adjacency matrices, which enhanced the ability to capture spatial 

information. In summary, existing research methods have effectively integrated both temporal and spatial 

information, addressing to some extent the limitations associated with focusing solely on temporal features. 

However, several critical challenges remain: 

1. Traditional single-model methods can only consider either temporal or spatial features. This leads to 

reduced prediction accuracy for spatio-temporal vessel traffic flow data. 
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2. Fully extracting spatial information from inland waterway networks remains challenging. Existing 

methods struggle to capture both global and local spatial information. 

3. The complex characteristics of multi-waterway vessel flow data are often difficult to analyze 

effectively. 

To address these issues, this paper proposes the Global-Local Spatiotemporal Transformer (GL-

STFormer) model. It integrates three core modules: The Complete Ensemble Empirical Mode Decomposition 

with Adaptive Noise (CEEMDAN) for signal decomposition, GRU and Self-Attention for temporal feature 

extraction, and Transformer for spatial feature extraction. Considering the inherent non-stationarity and non-

linearity of vessel traffic flow, the CEEMDAN algorithm serves as the initial component [31]. Compared with 

EMD [32] and EEMD [33], CEEMDAN effectively mitigates mode mixing and reduces reconstruction errors 

through adaptive noise strategies. It decomposes complex raw signals into simplified components, providing 

high-quality inputs for the deep learning network. For spatial modeling, the Transformer architecture is 

utilized. While the Transformer model has become a research hotspot in time series prediction due to its 

outstanding performance in Natural Language Processing (NLP) tasks [34], its self-attention mechanism is 

also inherently suitable for capturing spatial dependencies. Specifically, the weight matrix of the multi-head 

attention mechanism functions as a dynamic adjacency matrix to extract influence weights for each node. By 

integrating temporal and spatial features, the GL-STFormer model constructs a comprehensive short-term 

vessel traffic flow prediction framework. It can accurately simulate dynamic changes in traffic flow and 

significantly improve prediction accuracy, which may promote the efficiency of decision-making processes. 

The main contributions of this paper are: 

1. Use the Transformer model to capture both global and local spatial features of inland vessel traffic 

flow. 

2. Propose a GL-STFormer deep learning model to explore the complex dynamic patterns of vessel 

traffic flow in both temporal and spatial dimensions. 

3. Compared with baseline models, the GL-STFormer shows better performance. 

The structure of this paper is as follows: Section 2 describes the vessel traffic data collection process. 

Section 3 explains the model framework in detail. Section 4 discusses experimental data settings and result 

analysis. Section 5 summarizes the research findings and looks at future research directions. 

2. Problem analysis and data processing 

2.1 Problem description 

Vessel traffic flow prediction is an important part of intelligent transportation systems. In waterway 

transportation, the inland traffic network can be represented as an undirected graph G = (V, E, A), where 𝑉 =
(𝑉1, 𝑉2, . . . , 𝑉𝑁) is the set of 𝑁 nodes, E is the set of 𝑀 edges, and 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix of the 

graph. The historical vessel traffic data at each node can be represented as 𝑋 = (𝑋𝑡−𝑀+1, 𝑋𝑡−𝑀+2, . . . , 𝑋𝑡) ∈
𝑅𝑀×𝑁, where 𝑀 is the number of historical time steps of vessel traffic data. The predicted future vessel traffic 

data is represented as 𝑋̂ = (𝑋𝑡+1, 𝑋𝑡+2, . . . , 𝑋𝑡+𝑃) ∈ 𝑅𝑃×𝑁, where 𝑃 represents the number of future time steps. 

𝑋𝑡 represents the vessel traffic data at time 𝑡 for the 𝑁 nodes. Therefore, the vessel traffic flow prediction 

problem can be expressed as the following equation: 

(𝑋𝑡+1, 𝑋𝑡+2, . . . , 𝑋𝑡+𝑃) = 𝑓(𝑋𝑡−𝑀+1, 𝑋𝑡−𝑀+2, . . . , 𝑋𝑡) (1) 

where 𝑓 is the prediction model used in this study. Figure 1 illustrates the overall process from training to 

final prediction of the model. 
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Fig. 1  Training, validation, and testing process for vessel traffic flow prediction using deep learning 

2.2 Cross-sectional vessel traffic data collection 

This section examines all vessels passing through cross-sections to mitigate missing values during 

periods of low vessel traffic in the channel. The cross-section is established with two endpoints denoted as 𝛼 

and 𝛽 . The mathematical representation of the cross-section is 𝑉𝑖𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑁 = (𝑙𝑜𝑛𝛼
𝑁 , 𝑙𝑜𝑛𝛽

𝑁 , 𝑙𝑎𝑡𝛼
𝑁 , 𝑙𝑎𝑡𝛽

𝑁) , 

where 𝑁 denotes the finite set of cross-sections. A vessel’s passage through the cross-section is validated by 

the intersection of its sub-trajectory with the cross-section. The sub-trajectory comprises two consecutive 

trajectory points that are nearest to the cross-section. The methodology involves initially organizing the data 

according to vessel MMSI and temporal sequence, followed by an analysis of all trajectory points for each 

vessel. In the case where a vessel traverses from the left to the right side of a cross-section, its position at the 

previous time step is denoted as 𝑃𝑖,𝑙𝑒𝑓𝑡
𝑁  with coordinates (𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡

𝑁 , 𝑙𝑎𝑡𝑖,𝑙𝑒𝑓𝑡
𝑁 ), while its subsequent position is 

represented as 𝑃𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁  with coordinates (𝑙𝑜𝑛𝑖,𝑟𝑖𝑔ℎ𝑡

𝑁 , 𝑙𝑎𝑡𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 ). The variable 𝑖 denotes the 𝑖-th trajectory point. 

In two-dimensional plane geometry, the sign of the vector cross product indicates the relative directional 

relationship between two vectors. This mathematical property enables the determination of relative positions 

between points and line segments. As illustrated in Figure 2, vector cross products are employed to determine 

whether vessel trajectory points lie on opposite sides of the virtual cross-section and whether cross-section 

control points are situated on opposite sides of the vessel trajectory. The mathematical formulation is 

expressed as follows: 

𝑆 = 𝛼𝛽⃗⃗⃗⃗⃗⃗ = (𝑙𝑜𝑛𝛽
𝑁 − 𝑙𝑜𝑛𝛼

𝑁 , 𝑙𝑎𝑡𝛽
𝑁 − 𝑙𝑎𝑡𝛼

𝑁) (2) 

𝑉1
⃗⃗ ⃗⃗ = 𝛼𝑃𝑖,𝑙𝑒𝑓𝑡

𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡
𝑁 − 𝑙𝑜𝑛𝛼

𝑁 , 𝑙𝑎𝑡𝑖,𝑙𝑒𝑓𝑡
𝑁 − 𝑙𝑎𝑡𝛼

𝑁) (3) 

𝑉2
⃗⃗ ⃗⃗ = 𝛼𝑃𝑖,𝑟𝑖𝑔ℎ𝑡

𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑙𝑜𝑛𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑜𝑛𝛼

𝑁 , 𝑙𝑎𝑡𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑎𝑡𝛼

𝑁) (4) 

𝑇⃗⃗ = 𝑃𝑖,𝑙𝑒𝑓𝑡
𝑁 𝑃𝑖,𝑟𝑖𝑔ℎ𝑡

𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (𝑙𝑜𝑛𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡

𝑁 , 𝑙𝑎𝑡𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑎𝑡𝑖,𝑙𝑒𝑓𝑡

𝑁 ) (5) 

𝑉3
⃗⃗ ⃗⃗ = 𝑃𝑖,𝑙𝑒𝑓𝑡

𝑁 𝛼⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑙𝑜𝑛𝛼
𝑁 − 𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡

𝑁 , 𝑙𝑎𝑡𝛼
𝑁 − 𝑙𝑎𝑡𝑖,𝑙𝑒𝑓𝑡

𝑁 ) (6) 

𝑉4
⃗⃗ ⃗⃗ = 𝑃𝑖,𝑙𝑒𝑓𝑡

𝑁 𝛽⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑙𝑜𝑛𝛽
𝑁 − 𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡

𝑁 , 𝑙𝑎𝑡𝛽
𝑁 − 𝑙𝑎𝑡𝑖,𝑙𝑒𝑓𝑡

𝑁 ) (7) 

Here, vector 𝑆 represents the direction from 𝛼 to 𝛽. Vector 𝑉1
⃗⃗ ⃗⃗  and 𝑉2

⃗⃗ ⃗⃗  represent the directions from 𝛼 to 

the left and right adjacent trajectory points of the sub-trajectory, respectively. Vector 𝑇⃗⃗ represents the vessel’s 

movement from its previous position to its subsequent position. Vectors 𝑉3
⃗⃗ ⃗⃗  and 𝑉4

⃗⃗ ⃗⃗  represent the directions 

from the vessel’s previous position to points 𝛼 and 𝛽, respectively. 
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When cross1 ⋅ cross2 < 0 and cross3 ⋅ cross4 < 0, it indicates that the vessel has passed through the 

cross-section: 

𝑐𝑟𝑜𝑠𝑠1 = 𝑉⃗⃗1 × 𝑆 = |
𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡

𝑁 − 𝑙𝑜𝑛𝛼
𝑁 𝑙𝑎𝑡𝑖,𝑙𝑒𝑓𝑡

𝑁 − 𝑙𝑎𝑡𝛼
𝑁

𝑙𝑜𝑛𝛽
𝑁 − 𝑙𝑜𝑛𝛼

𝑁 𝑙𝑎𝑡𝛽
𝑁 − 𝑙𝑎𝑡𝛼

𝑁 | (8) 

𝑐𝑟𝑜𝑠𝑠2 = 𝑉2
⃗⃗ ⃗⃗ × 𝑆 = |

𝑙𝑜𝑛𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑜𝑛𝛼

𝑁 𝑙𝑎𝑡𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑎𝑡𝛼

𝑁

𝑙𝑜𝑛𝛽
𝑁 − 𝑙𝑜𝑛𝛼

𝑁 𝑙𝑎𝑡𝛽
𝑁 − 𝑙𝑎𝑡𝛼

𝑁 | (9) 

𝑐𝑟𝑜𝑠𝑠3 = 𝑇⃗⃗ × 𝑉3
⃗⃗ ⃗⃗ = |

𝑙𝑜𝑛𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡

𝑁 𝑙𝑎𝑡𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑎𝑡𝑖,left

𝑁

𝑙𝑜𝑛𝛼
𝑁 − 𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡

𝑁 𝑙𝑎𝑡𝛼
𝑁 − 𝑙𝑎𝑡𝑖,𝑙𝑒𝑓𝑡

𝑁 | (10) 

𝑐𝑟𝑜𝑠𝑠4 = 𝑇⃗⃗ × 𝑉4
⃗⃗ ⃗⃗ = |

𝑙𝑜𝑛𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡

𝑁 𝑙𝑎𝑡𝑖,𝑟𝑖𝑔ℎ𝑡
𝑁 − 𝑙𝑎𝑡𝑖,𝑙𝑒𝑓𝑡

𝑁

𝑙𝑜𝑛𝛽
𝑁 − 𝑙𝑜𝑛𝑖,𝑙𝑒𝑓𝑡

𝑁 𝑙𝑎𝑡𝛽
𝑁 − 𝑙𝑎𝑡𝑖,𝑙𝑒𝑓𝑡

𝑁 | (11) 

 

Fig. 2  Vector cross product method for detecting vessel passage through selected cross-sections 

 
（a）section4                             （b）section 6 

 
（c）section 8                             （d）section 10 

Fig. 3  Distribution of vessel traffic flow data 
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After determining whether vessels pass through virtual cross-sections, we developed a vessel traffic 

flow dataset by calculating vessel arrival times at cross-sections, referencing previous research methods [35]. 

The final dataset contains 10,326 vessel traffic flow records. As shown in Figure 3, we conducted probability 

density analysis on the vessel flow data to visualize its macro characteristics. The analysis reveals that the 

number of vessels passing through the cross-section within 15-minute intervals in the Nantong section of the 

Yangtze River typically ranges from 0 to 20 vessels. This pattern aligns with the navigational characteristics 

of the Yangtze River. 

3. Modelling 

This section presents a GL-STFormer model framework for multi-cross-section vessel traffic flow 

prediction in inland waterways. As shown in Figure 4, the framework consists of three steps: 

1. Experimental data preparation. The framework references AIS data preprocessing methods 

proposed in previous studies to enhance vessel trajectory quality. Subsequently, vessel trajectory density is 

visualized through heat maps, and cross-sections are selected perpendicular to waterways in high-density 

areas. The number of vessels passing through all cross-sections is calculated using vector cross-

productmethod. 

2. CEEMDAN decomposition of vessel traffic flow data. To reduce the volatility and complexity of 

raw data, the CEEMDAN decomposition algorithm is employed to decompose the original data into multiple 

Intrinsic Mode Functions (IMFs). Min-max normalization is applied to facilitate rapid model convergence. 

3. Deep learning model for vessel traffic flow prediction. The GL-STFormer model is developed to 

accurately predict vessel traffic flow by learning complex spatiotemporal dependencies. In the temporal 

dimension, the model integrates GRU and self-attention mechanisms to capture evolutionary patterns. In the 

spatial dimension, the Transformer architecture is employed to dynamically extract and fuse global and local 

spatial information. Furthermore, the Whale Optimization Algorithm (WOA) is applied to optimize the 

model’s hyperparameters. 
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Fig. 4  Research framework 

3.1 Inland waterway traffic network 

In road traffic, sensors are typically installed at accident-prone locations or congested areas. However, 

inland waterways lack dedicated traffic monitoring infrastructure. Previous studies placed cross-sections 
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aligned with bridges or perpendicular to channels. Areas with high vessel density present complex navigation 

environments and increased safety risks, making them priority locations for studying traffic flow patterns and 

conducting predictions. 

In this study’s inland waterway network construction, we selected cross-sections perpendicular to 

channels at locations with dense vessel trajectories. As shown in Figure 5, the vessel trajectory heat map, 

generated from preprocessed AIS data, clearly indicates vessel activity levels in the waterway. We selected 

ten virtual cross-sections in areas with relatively dense trajectories. These virtual cross-sections serve as 

equivalents to road traffic sensors, recording vessel counts at specific locations. Table 1 lists the control point 

coordinates of these ten virtual cross-sections. 
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Fig. 5  Construction of inland waterway traffic network with virtual cross-sections at high vessel trajectory density locations 

Table 1  Control point coordinates of ten virtual cross-sections 

𝐶𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 Endpoint Longitude E(°) Latitude N(°) 

𝑁𝑜𝑑𝑒1 
𝑁1

𝑎 120.261389 31.947778 

𝑁1
𝑏 120.270000 31.929722 

𝑁𝑜𝑑𝑒2 
𝑁2

𝑎 120.276111 31.955556 

𝑁2
𝑏 120.288333 31.937222 

𝑁𝑜𝑑𝑒3 
𝑁3

𝑎 120.339167 31.996944 

𝑁3
𝑏 120.370556 31.959722 

𝑁𝑜𝑑𝑒4 
𝑁4

𝑎 120.363056 32.011389 

𝑁4
𝑏 120.388333 31.984167 

𝑁𝑜𝑑𝑒5 
𝑁5

𝑎 120.382222 32.023333 

𝑁5
𝑏 120.408333 31.997500 

𝑁𝑜𝑑𝑒6 
𝑁6

𝑎 120.398889 32.035278 

𝑁6
𝑏 120.425833 32.010556 

𝑁𝑜𝑑𝑒7 
𝑁7

𝑎 120.429722 32.055000 

𝑁7
𝑏 120.459167 32.018889 

𝑁𝑜𝑑𝑒8 
𝑁8

𝑎 120.528056 32.042778 

𝑁8
𝑏 120.507222 32.008889 

𝑁𝑜𝑑𝑒9 
𝑁9

𝑎 120.570556 32.026111 

𝑁9
𝑏 120.557222 31.992778 

𝑁𝑜𝑑𝑒10 
𝑁10

𝑎  120.653611 32.011389 

𝑁10
𝑏  120.659167 31.981667 

Considering the closed and interconnected nature of inland waterways, we defined an inland traffic 

network based on waterway geographical structures and relative positions between cross-sections. Each cross-
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section represents a node. The adjacency matrix element 𝐴𝑖𝑗 is set to 1 if nodes 𝑁𝑖 and 𝑁𝑗 are connected in 

graph  , and 0 otherwise, as shown in equation (12): 

𝐴𝑖𝑗 = {
1, 𝑖𝑓𝑁𝑖 𝑐𝑜𝑛𝑛𝑐𝑒𝑡𝑒𝑑 𝑡𝑜 𝑁𝑗 , 𝑖 ≠ 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 

Here, 𝑁𝑖 and 𝑁𝑗 represent the 𝑖-th and 𝑗-th nodes in the undirected graph, respectively. 

3.2 Complete ensemble empirical mode decomposition with adaptive noise 

Original vessel traffic flow signals exhibit nonlinear and non-stationary characteristics. Consequently, 

the CEEMDAN algorithm is employed to decompose the original data. As illustrated in Figure 6, CEEMDAN 

transforms the complex original signal into multiple IMFs. These IMFs possess simplified patterns that are 

effectively learned by deep learning models. By utilizing adaptive noise strategies and iterative optimization, 

CEEMDAN generates precise and stable components. This mechanism reduces error accumulation caused by 

noise introduction and improves decomposition resolution. 

The steps for implementing CEEMDAN is as follows: 

Step 1: The original vessel traffic signal is denoted as 𝑥(𝑡).To perform decomposition, we first add noise 

to the signal. A Gaussian white noise 𝑛(𝑖)(𝑡) is generated and added to the original signal to form a new signal 

𝑥′(𝑖)(𝑡): 

𝑥′(𝑖)(𝑡) = 𝑥(𝑡) + 𝛼1𝑛(𝑖)(𝑡) (13) 

where 𝛼1 is the noise intensity factor. 𝑛(𝑖)(𝑡) is the 𝑖-th generated Gaussian white noise with mean 0 and 

variance 𝜎𝑛
2. This operation is repeated 𝑚 times to obtain 𝑚 noise signals 𝑥′(𝑖)(𝑡). 

Step 2: For each noise-added signal 𝑥′(𝑖)(𝑡), the Empirical Mode Decomposition (EMD) method is used 

to obtain the first 𝐼𝑀𝐹 component 𝐼𝑀𝐹1
(𝑖)

(𝑡) and residual 𝑟1
(𝑖)

(𝑡): 

𝐼𝑀𝐹1(𝑡) =
1

𝑚
∑  

𝑚

𝑖=1

𝐼𝑀𝐹1
(𝑖)

(𝑡) (14) 

𝑟1(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹1(𝑡) (15) 

where 𝑟1(𝑡) is the residual signal after removing the first IMF. 

Step 3: New noise 𝑛(𝑖)(𝑡) is added to the residual signal 𝑟1(𝑡) to generate a new noise signal 𝑟1
′(𝑖)

(𝑡) . 

EMD is performed on each new noise signal 𝑟1
′(𝑖)

(𝑡) to obtain the second 𝐼𝑀𝐹 component 𝐼𝑀𝐹2
(𝑖)

(𝑡) and 

residual 𝑟2
(𝑖)

(𝑡): 

𝑟1
′(𝑖)

(𝑡) = 𝑟1(𝑡) + 𝛼2𝑛(𝑖)(𝑡) (16) 

𝐼𝑀𝐹2(𝑡) =
1

𝑚
∑  

𝑚

𝑖=1

𝐼𝑀𝐹2
(𝑖)

(𝑡) (17) 

𝑟2(𝑡) = 𝑟1(𝑡) − 𝐼𝑀𝐹2(𝑡) (18) 

Step 4: The above steps are repeated to extract more 𝐼𝑀𝐹 components. For each new residual 𝑟𝑘(𝑡) , 

noise is continually added to generate new noise signals 𝑟𝑘
′(𝑖)

(𝑡) . EMD is then performed again to extract the 

(k+1)-th 𝐼𝑀𝐹 component from the new noise signal: 

𝑟𝑘
′(𝑖)

(𝑡) = 𝑟𝑘(𝑡) + 𝛼𝑘+1𝑛(𝑖)(𝑡) (19) 
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𝐼𝑀𝐹𝑘+1(𝑡) =
1

𝑚
∑  

𝑚

𝑖=1

𝐼𝑀𝐹𝑘+1
(𝑖)

(𝑡) (20) 

𝑟𝑘+1(𝑡) = 𝑟𝑘(𝑡) − 𝐼𝑀𝐹𝑘+1(𝑡) (21) 

This process continues until reaching the maximum iteration number K: 

𝑥̂(𝑡) = ∑  

𝐾

𝑗=1

𝐼𝑀𝐹𝑗(𝑡) + 𝑟𝐾(𝑡) (22) 

𝐼𝑀𝐹𝑗(𝑡)  represents the j-th Intrinsic Mode Function ( 𝐼𝑀𝐹 ). 𝑟𝐾(𝑡)  is the final residual, typically 

representing the low-frequency trend or residual components in the signal. 𝑥̂(𝑡) is the vessel traffic flow signal 

after CEEMDAN decomposition. 

 

 

Fig. 6  IMF components after CEEMDAN decomposition of vessel traffic flow data (partial data from cross-section 1) 

3.3 Vessel traffic flow prediction based on deep learning method 

3.3.1 GRU 

Traditional recurrent neural networks can process sequential tasks but often suffer from severe gradient 

vanishing when handling long-term dependencies. Compared to traditional RNNs, GRU introduces a gating 

mechanism that effectively mitigates the vanishing gradient problem while simplifying the network structure 

and reducing computational complexity while maintaining performance. 

Update GateReset Gate

1- 1-1-GRU GRU

 

Fig. 7  Gated Recurrent Unit structure 

GRU inherits LSTM’s ability to capture both long-term and short-term dependencies while improving 

computational efficiency by merging gate mechanisms. This makes it widely applicable in time series 
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prediction scenarios, such as traffic flow, stock prices, and temperature forecasting tasks [36-38]. When 

processing time series tasks, GRU controls information flow through its gating mechanism based on input 

data and network hidden states. It selectively retains important information while filtering redundant data to 

generate high-quality temporal features for subsequent tasks. 

As shown in Figure 7, GRU’s core working mechanism includes two gates: Update Gate and Reset Gate, 

along with a hidden state representation. These two gates effectively capture dynamic temporal relationships 

by controlling the fusion of current and historical information. The specific calculation process of GRU is as 

follows: 

Update Gate: The update gate determines the weight ratio between the previous hidden state ℎ𝑡−1 and 

current input 𝑥𝑡 in generating the new hidden state: 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (23) 

Here, 𝑧𝑡 is the update gate value controlling the influence of historical information on current output; 

𝑊𝑧 , U𝑧 , 𝑏𝑧 are learnable model parameters; 𝜎 is the sigmoid activation function. 

Reset Gate: The reset gate determines whether to ignore certain parts of the previous hidden state: 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (24) 

Here, 𝑟𝑡 is the reset gate value adjusting the dependency strength between current input and historical 

information; 𝑊𝑟 , 𝑈𝑟 , 𝑏𝑟 are learnable model parameters. 

Candidate Hidden State: The candidate hidden state is jointly generated by the current input and the 

reset gate-adjusted previous hidden state: 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ (𝑊ℎ𝑥𝑡 + 𝑟𝑡 ⊙ (𝑈ℎℎ𝑡−1) + 𝑏ℎ) (25) 

The 𝑡𝑎𝑛ℎ  activation function limits the output value range, and ⊙  represents element-wise 

multiplication. The final hidden state is regulated by the update gate controlling information interaction 

between the candidate hidden state and previous hidden state: 

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ̃𝑡 (26) 

In this paper, the new unit state ℎ𝑡 is employed as both the output of the GRU structure and the input of 

the self-attention layer. 

3.3.2 Self-attention 

However, the GRU model can only process data sequentially along the time series, making it difficult 

to capture nonlinear or irregular interactions between time steps. In such scenarios, relying solely on GRU 

makes it challenging to obtain ideal temporal feature representations. 

To address these issues, the Self-attention mechanism was introduced as a complementary approach 

[39]. The attention mechanism is inspired by how the human brain processes information. It achieves 

information processing by selectively allocating computational resources. Similar to how humans focus on 

specific tasks while ignoring surrounding distractions, this mechanism highlights important information while 

weakening or filtering out secondary information. This enables precise capture and processing of key 

information [40]. Therefore, we introduce the output of the GRU model 𝐻𝑡 = (ℎ1, ℎ2, ℎ3, … , ℎ𝑡) into the self-

attention mechanism, which can dynamically adjust the information weights of different time steps and 

significantly enhance the modeling capability for long-range interaction relationships [41]. Figure 8 illustrates 

the internal mechanism of self-attention. 
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Fig. 8  Self-attention mechanism 

The self-attention mechanism generates weight matrices based on input sequences to focus on important 

time steps while weakening secondary information. The specific process includes the following steps, with 

formulas: 

𝑄 = 𝐻𝑡𝑊𝑞, 𝐾 = 𝐻𝑡𝑊𝑘, 𝑉 = 𝐻𝑡𝑊𝜈 (27) 

𝛼𝑖𝑗 =
𝑄𝐾𝑇

√𝑑𝑘

 (28) 

where 𝑄 ∈ 𝑅𝑀×𝑑𝑘 , 𝐾 ∈ 𝑅𝑀×𝑑𝑘 , 𝑉 ∈ 𝑅𝑀×𝑑𝑘   and 𝑄𝐾𝑇  represents the dot product of query vectors and key 

vectors for different sequence positions, resulting in a similarity matrix. The scaling factor √𝑑𝑘 prevents dot 

product values from becoming too large in high dimensions, which could cause gradient vanishing or unstable 

updates: 

𝛼̂𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼𝑖𝑗) =
exp (𝛼𝑖𝑗)

∑  𝑀
𝑗=1 exp (𝛼𝑖𝑗)

 (29) 

The attention weight matrix is obtained by normalizing 𝛼𝑖𝑗  through the softmax function, ensuring 

weights sum to 1 across time steps. This weight matrix represents the information dependency relationships 

between each input sequence position and other positions: 

𝑇𝑖 = ∑  

𝑀

𝑗=1

𝛼̂𝑖𝑗𝑉𝑗, 𝑇 ∈ 𝑅𝑀×𝑑𝜈 (30) 

Here, 𝑇𝑖 represents the output feature at time step 𝑖; 𝑉𝑗 represents the feature at time step 𝑗 in the value 

matrix; weight value 𝛼𝑖𝑗  reflects the importance of time step 𝑗 to time step 𝑖. Finally, the output matrix 𝑇 

preserves the feature information from the input sequence while enhancing the importance of key time steps, 

enabling the model to generate more expressive temporal features. 

3.3.3 Transformer 

In the preceding temporal extraction layer, GRU and self-attention mechanisms were employed to 

capture time-series variations. However, exclusive reliance on temporal features ignores inter-nodal 

dependencies, thereby limiting prediction accuracy. Therefore, the comprehensive extraction of spatial 

features is critical. Existing Graph Neural Networks face specific limitations. For instance, Graph 
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Convolutional Networks (GCN) [42] are restricted by static topological assumptions, while Graph Attention 

Networks (GAT) [43] primarily focus on local neighbors and often overlook long-range global dependencies. 
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Fig. 9  Transformer model architecture 

To overcome these constraints,, this study adopts the Transformer model as the spatial feature extraction 

module [44], as shown in Figure 9. Unlike traditional graph-based methods, the encoder-decoder architecture 

of the Transformer offers distinct advantages. The encoder utilizes multi-head self-attention mechanism to 

capture global dependencies within the traffic network, whereas the decoder employs masked multi-head 

attention mechanism to refine local spatial features. Subsequently, the cross-attention mechanism integrates 

these features to extract global-local spatial correlations. Consequently, this architecture enables the 

simultaneous extraction of global spatial correlations across the network and local interactions between 

adjacent nodes. 

3.3.4 Position Encoding 

The core self-attention mechanism of Transformer is essentially a fully connected structure. Since this 

mechanism processes data solely based on content relationships between elements without explicitly capturing 

positional information in the input sequence, Transformer cannot perceive the arrangement order of input 

sequence elements without additional mechanisms. Since data signals correspond to cross-sections with 

specific physical locations in geographical space, and this positional information is crucial for establishing 

spatial dependencies between cross-sections, incorporating position encoding to explicitly add this positional 

information is vital for model construction. 

To effectively mark spatial positional relationships between nodes, Transformer introduces sinusoidal 

position embeddings to record positional information of time series data, with the formula: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (𝑝𝑜𝑠/100002𝑖/𝑑) (31) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (𝑝𝑜𝑠/100002𝑖/𝑑) (32) 

where 𝑝𝑜𝑠  represents the position in the sequence, 𝑖  represents the sequence index, and 𝑑  represents the 

dimension of sequence features [45]. The output 𝑇 from the temporal feature extraction layer is combined 

with positional encodings to form 𝑋 = 𝑇 + 𝑃𝐸, where 𝑋 ∈ 𝑅𝑁×𝐻×𝑀, 𝑃𝐸 ∈ 𝑅𝑁×𝐻×𝑀. 
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3.3.5 Global spatial feature extraction 

Inland waterway traffic networks entail potential long-range dependencies, where geographically distant 

nodes may maintain strong correlations due to spatiotemporal traffic propagation effects. To capture these 

global characteristics, the Transformer encoder module employs the multi-head self-attention mechanism. 

Unlike GCN which rely on static adjacency matrices to aggregate local information, the Encoder dynamically 

computes attention weights between all node pairs based on real-time input features. This fully connected 

attention structure allows the model to extract global dependencies across the entire waterway topology, 

thereby providing a holistic spatial representation that complements local physical connections. 

Using the position-encoded feature tensor 𝑋 ∈ R𝑀×𝐻×𝑁, new global spatial feature vector 𝜑 ∈ 𝑅𝑀×𝐻g×𝑁 

is obtained through the following calculations: 

𝐹𝐹𝑁(𝑥) = 𝑊2𝑅𝑒𝐿𝑈(𝑊1𝑥 + 𝑏1) + 𝑏2 (33) 

where 𝑊1, 𝑊2, 𝑏1, 𝑏2 are learnable parameters; 

𝐿𝑁(𝑥) =
𝑥 − 𝜇

𝜎
⋅ 𝛾 + 𝛽 (34) 

where 𝜇 is the mean, 𝜎 is the standard deviation, 𝛾 and 𝛽 are learnable scaling coefficients and offset values: 

𝑄𝑖
𝑔

= 𝑋𝑊𝑖
1, 𝐾𝑖

𝑔
= 𝑋𝑊𝑖

2, 𝑉𝑖
𝑔

= 𝑋𝑊𝑖
3 (35) 

𝐴𝑖
𝑔

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖

𝑔
(𝐾𝑖

𝑔
)𝑇

√𝑑𝑘

) (36) 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖
𝑔

, 𝐾𝑖
𝑔

, 𝑉𝑖
𝑔

) = 𝐴𝑖
𝑔

𝑉𝑖
𝑔

 (37) 

𝑀𝑢𝑡𝑖𝑙ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,⋅⋅⋅, ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (38) 

𝜁 = 𝐿𝑁(𝑋 + 𝑀𝑢𝑡𝑖𝑙ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)) (39) 

𝜑 = 𝐿𝑁(𝜁 + 𝐹𝐹𝑁(𝜁)) (40) 

where 𝑊𝑖
1, 𝑊𝑖

2, 𝑊𝑖
3 ∈ 𝑅𝑁×𝑑𝑘 , 𝑊𝑂 ∈ 𝑅(ℎ×𝑑𝑘)×𝑁 are linear transformation matrices. 𝑑𝑘 =

𝐻

ℎ
, 𝑑𝑘 is the feature 

dimension of each head, h is the number of attention heads, 𝐴𝑖
𝑔

 represents the weight matrix between the i-th 

node and other nodes, where these weights indicate the strength of dependency relationships between nodes. 

The final output 𝜑 , processed through multi-head self-attention mechanism, residual connections, 

normalization layers, and fully connected layers, constitutes the total output of the encoder. This output 

contains node representations that incorporate fused global spatial features, where contextual information from 

other nodes is further integrated based on the nodes’ inherent features, thereby forming global spatial 

characteristics. 

3.3.6 Global-local spatial feature extraction 

The spatial distribution of vessel traffic flow is governed by the topological structure of waterways. To 

integrate these physical constraints while retaining the global context, the Decoder module is designed to 

extract local features and fuse them with global representations. 

To capture the physical connectivity, a masked multi-head self-attention mechanism is implemented. A 

binary mask matrix, derived from the physical adjacency of the waterway, is imposed on the attention scores. 

By assigning negative infinity to the weights of unconnected nodes, the attention mechanism is mathematically 

restricted to physically adjacent neighbors. This operation enforces the extraction of explicit local spatial 

features that strictly adhere to the static graph topology. The formula for masked attention score processing is 

given by: 
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𝑄𝑖
𝑙 = 𝑋𝑊𝑖

4, 𝐾𝑖
𝑙 = 𝑋𝑊𝑖

5, 𝑉𝑖
𝑙 = 𝑋𝑊𝑖

6 (41) 

𝐴𝑖
𝑙 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝑖
𝑙(𝐾𝑖

𝑙)𝑇

√𝑑𝑘

+ 𝑚𝑎𝑠𝑘) (42) 

𝜓𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖, 𝑉𝑖, 𝑚𝑎𝑠𝑘) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖

𝑙(𝐾𝑖
𝑙)𝑇

√𝑑𝑘

+ 𝑚𝑎𝑠𝑘) 𝑉𝑖
𝑙 (43) 

where mask represents the mask matrix, 𝑚𝑎𝑠𝑘 = {
    0,     𝑀𝑖𝑗 = 1

−∞,     𝑀𝑖𝑗 = 0
, 

𝜓 = 𝑀𝑢𝑡𝑖𝑙ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝜓1, 𝜓2,⋅⋅⋅ 𝜓𝑛) (44) 

where 𝑊𝑖
4, 𝑊𝑖

5, 𝑊𝑖
6 ∈ 𝑅𝐻×𝑑𝑘 . 𝐴𝑖

𝑙  represents the attention weight matrix where the i-th node only focuses on 

neighboring nodes. The final attention weights are used to weight the value vectors of neighboring nodes, 

updating the local representation of nodes. 

Subsequently, the integration of global and local information is achieved through multi-head cross-

attention. In this layer, the extracted local features function as Q, while the global spatial features from the 

Encoder output serve as K and V. This architecture adaptively fuses global dependencies with local physical 

connectivity. The calculation process is formulated as follows: 

𝜌𝑖 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝜓, 𝜑, 𝜑) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝜓𝑊𝑖

𝑄(𝜑𝑊𝑖
𝐾)⊤

√𝑑𝑘

) 𝜑𝑊𝑖
𝑉 (45) 

𝜉 = 𝐿𝑁(𝜓 + 𝑀𝑢𝑡𝑖𝑙ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝜌1, 𝜌2,⋅⋅⋅ 𝜌𝑛)) (46) 

𝑋𝑠 = 𝐿𝑁(𝜉 + 𝐹𝐹𝑁(𝜉)) (47) 

Through the fusion of multi-head attention mechanism and residual connection processing, the final 

output tensor 𝑋𝑠 captures both the global dependency relationships of nodes and the strong local correlations 

with neighboring nodes. This ensures that the model possesses the comprehensive advantages of both global 

and local information. The combination of global and local features represents a crucial approach for 

improving the accuracy and robustness of spatio-temporal prediction tasks. 

3.4 Hyperparameter optimization 

3.4.1 Whale optimization algorithm 

The WOA is a metaheuristic algorithm inspired by biological behavior [46]. The inspiration comes from 

the hunting process of Humpback Whales. WOA is commonly used for multi-objective hyperparameter 

optimization. The algorithm achieves global optimization by simulating three behaviors of whales: encircling 

prey, spiral bubble-net attack, and random prey search [47]. WOA features a simple structure with few 

parameters. It utilizes its global optimization capabilities and efficient search characteristics to automatically 

explore neural network hyperparameter space. Figure 10 shows the flowchart of using WOA to find optimal 

model hyperparameters. 
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Fig. 10  Model hyperparameter optimization algorithm framework 

In GL-STFormer model hyperparameter optimization, an initial population containing 𝑁𝑤  whales is 

generated. Each whale’s position can be viewed as a vector distributed in d-dimensional parameter space: 

𝑥𝑖 = (𝑥𝑖
(1)

, 𝑥𝑖
(2)

, … , 𝑥𝑖
(𝑑)

), where dimension d represents the number of hyperparameters to be optimized. 

The process of using WOA for hyperparameter optimization is: 

Step 1: involves population initialization. In the first round, initial positions 𝑥𝑖
(0)

 of population 

individuals need to be randomly generated as parameter combinations. The generation rule for whale position 

𝑥𝑖
(0)

 follows the formula below: 

𝑥𝑖
(𝑗)

∼ {
𝑈(𝑎𝑗 , 𝑏𝑗),If the “ j-th ” hyperparameter is a consecutive value

𝑅(𝑉𝑗),if the “ j-th” hyperparameter is a discrete value
 (48) 

where 𝑎𝑗 , 𝑏𝑗 are upper and lower bounds of continuous hyperparameters, and 𝑉𝑗 is the candidate set of discrete 

hyperparameters. 

Step 2: updates the convergence factor 𝒂(𝒕), 

𝑎(𝑡) = 2 −
2𝑡

𝑇
 (49) 

where t is the current iteration number and T is the maximum iteration number. 

Step 3: selects behavior mode. 

A random number 𝜌 ∼ 𝑈(0,1) is generated. When 𝜌 ≥ 0.5, spiral bubble attack is selected. During 

hunting, humpback whales form spiral trajectories around prey for fine-grained search of target areas. This 

process can be simulated through the spiral motion formula: 
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𝑥𝑖(𝑡 + 1) = |𝑥∗(𝑡) − 𝑥𝑖(𝑡)| ⋅ 𝑒𝑏𝑙 ⋅ cos (2𝜋𝑙) + 𝑥∗(𝑡) (50) 

where |𝑥∗(𝑡) − 𝑥𝑖(𝑡)|  represents the distance from whale to target point, 𝑏  is a shape control coefficient 

(constant), and 𝑙 represents random factor 𝑙 ∼ 𝑈(−1,1) for generating different trajectories. 

When 𝜌 < 0.5, encircling or random prey search is selected. Dynamic coefficients 𝐴(𝑡) and 𝐶(𝑡) are 

calculated: 

𝐴(𝑡) = 2𝑎(𝑡)𝑟1 − 𝑎(𝑡) (51) 

𝐶(𝑡) = 2𝑟2 (52) 

where 𝑟1, 𝑟2 ∼ 𝑈(0,1); 

When |𝐴(𝑡)| < 1, whales perform encircling hunting behavior toward the current best solution 𝑥∗ , 

dynamically adjusting current position 𝑥𝑖(𝑡) to approach the target. The formula shows: 

𝑥𝑖(𝑡 + 1) = 𝑥∗(𝑡) − 𝐴(𝑡) ⋅ |𝐶(𝑡) ⋅ 𝑥∗(𝑡) − 𝑥𝑖(𝑡)| (53) 

where 𝑥∗(𝑡) is the global optimal solution found in iteration 𝑡. 

To avoid local optima when |𝐴(𝑡)| ≥ 1, other solutions in the population are randomly selected for 

exploration. The random search behavior formula shows: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑟𝑎𝑛𝑑 − 𝐴(𝑡) ⋅ |𝐶(𝑡) ⋅ 𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖(𝑡)| (54) 

where 𝑥𝑟𝑎𝑛𝑑 represents the position of a randomly selected whale from the population. 

3.4.2 Model evaluation metrics 

Three commonly used evaluation metrics in regression tasks are employed to scientifically assess the 

feasibility and accuracy of the model. These metrics are Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE), and Coefficient of Determination (R²). Their definitions are as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑  

𝑛

𝑘=1

|𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑦𝑟𝑒𝑎𝑙| (55) 

𝑅𝑀𝑆𝐸 = √∑  𝑛
𝑘=1 (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑦𝑟𝑒𝑎𝑙)

2

𝑛
 (56) 

𝑅2 = 1 −
∑  𝑛

𝑘=1 (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑦𝑟𝑒𝑎𝑙)
2

∑  𝑛
𝑘=1 (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑦̅𝑟𝑒𝑎𝑙)

2 (57) 

where 𝑛 represents the number of data points, 𝑦𝑟𝑒𝑎𝑙  represents historical traffic flow data, and 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

represents predicted traffic volume data. Lower values of 𝑅𝑀𝑆𝐸  and 𝑀𝐴𝐸  indicate better prediction 

performance of the model. A higher 𝑅2 value indicates better model fitting, thus higher prediction accuracy. 

4. Experiments 

4.1 Data description 

This section validates the feasibility and performance of the proposed prediction framework using real 

AIS data. Data transmission may experience loss or errors, causing historical vessel trajectories to deviate 

from actual conditions. Direct use of raw AIS data for prediction would result in significant errors. Therefore, 

we reference previous AIS data preprocessing methods to improve vessel trajectory quality [48]. The 

processed AIS data issued to collect historical vessel flow data at selected cross-sections of the Nantong 
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section of the Yangtze River. Data is collected from September 30, 2021 to December 31, 2021, with a 

temporal granularity of 15 minutes. CEEMDAN decomposed the vessel traffic flow into 8 IMF components. 

The dataset was divided into three parts: 70% for training, 20% for validation, and 10% for testing. A sliding 

window approach was used to generate time series datasets. A sliding window approach is employed to 

construct the time-series dataset. To achieve prediction horizons of 15, 30, and 60 minutes, the model adopts 

a multi-step prediction strategy, directly outputting the vessel traffic flow for the corresponding future 

timestamps. 

4.2 Hyperparameter optimization using WOA 

In deep learning-based vessel traffic flow prediction for the Nantong section of the Yangtze River, model 

performance heavily depends on hyperparameter selection. Traditional manual parameter tuning relies too 

much on experience and requires extensive trials. It is time-consuming, labor-intensive, subjective, and prone 

to local optima. Therefore, this paper employs the previously introduced WOA to find optimal model 

hyperparameters. 

The hyperparameters selected for optimization include:  learning rate, dropout rate, batch size, input 

time steps, temporal and spatial feature dimensions, the number of GRU layers, the number of Transformer 

encoder/decoder layers, and the number of attention heads. 

In the optimization process, the population size is set to 40, representing 40 candidate hyperparameter 

combinations. Each combination was trained for 100 epochs with 10 iterations. The final output results are 

shown in Table 2. 

Table 2  Optimal model hyperparameters obtained by WOA 

Hyperparameters Set range Optimal result 

Learning rate [0.0001,0.01] 0.00091 

Dropout rate [0,0.5] 0.10409 

Temporal feature dimensions [32, 64, 128, 256] 128 

Spatial feature dimensions [24, 48, 96, 192] 48 

Batch size [16, 32, 64, 128] 32 

Input time steps [8, 14] 12 

GRU layers [1, 2, 3, 4] 2 

Transformer encoder/decoder layers [1, 2, 3, 4] 1 

Attention heads [2, 4, 6, 8] 8 

 

   

Fig. 11  (a) Effect of different batch sizes on model performance, (b) Effect of different spatial dimensions on model performance, 

(c) Effect of different temporal dimensions on model performance 

To validate the effectiveness of the hyperparameter combination identified by the WOA, a sensitivity 

analysis was conducted by varying batch sizes, temporal dimensions, and spatial dimensions to evaluate 
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prediction performance. As illustrated in Figure 11, the optimal performance across all metrics is achieved 

with the parameters determined by WOA. These results confirm the validity of the selected hyperparameter 

combination. 

4.3 Experimental setup 

All experiments in this chapter were conducted in the same experimental environment, as shown in 

Table 3. MAE was used as the model’s loss function, with parameters continuously updated through 

backpropagation for model training. The Adam optimizer was used to assist the loss function in approaching 

global minimum. This reduced the loss value in both training and validation sets. Through multiple 

optimization experiments, the optimal model parameters from the validation set were saved and used to output 

final prediction results on the test set. 

Table 3  Experimental facilities 

Device Name Configuration/Version 

GPU Intel Core i5-13490F (2.5 GHz) 

Graphics card 
NVIDIA GeForce GTX 1660 

SUPER 

Memory 32 GB RAM 

Operating system Windows11 64 

Python version Python 3.10 

Pytorch version Pytorch 2.1 

4.4 Experimental result 

The final experiment was conducted using the optimal hyperparameters determined by the WOA.  

Figure 12 shows the training and validation losses. The model gradually stabilized after 50 epochs without 

overfitting or underfitting. 

 

Fig. 12  Model training and validation loss curves 

Figure 13 presents the multi-step prediction results of GL-STFormer on the test set. As shown in Figure 

13(a), the predicted values fit well with the ground truth for the 15-minute horizon. As illustrated in Figures 

13(b) and 13(c), the prediction deviation increases as the horizon extends to 30 and 60 minutes. Despite the 

performance decline in long-term forecasting, the evolutionary trends of vessel traffic flow are captured. These 

results validate the effectiveness of GL-STFormer in multi-step scenarios. 
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(a) 15-minute prediction (b) 30-minute prediction 

 

(c) 60-minute prediction 

Fig. 13  Visualization of multi-step vessel flow prediction results on the test set 

To intuitively observe the spatial feature capturing ability of GL-STFormer, we randomly selected a test 

sample. We visualized its global and local spatial attention weight matrices at a specific time step, as shown 

in Figure14. The left panel displays the global spatial attention matrix extracted by the encoder. The right 

panel shows the local spatial attention matrix extracted by the decoder. By assigning different attention 

weights, these matrices adaptively adjust the importance of the input information. Therefore, the GL-

STFormer model can effectively capture complex spatial dependencies among the data. 

 

Fig. 14  Visualization of global and local spatial attention weight matrices of the GL-STFormer model 
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4.5 Comparative experiment 

To rigorously evaluate the effectiveness and accuracy of the proposed model, comparative experiments 

were conducted against a variety of classical machine learning and deep learning models. These baselines 

include Support Vector Regression (SVR), Autoregressive Integrated Moving Average (ARIMA), GCN, 

GRU, LSTM, Bi-LSTM, Spatial-Temporal Graph Convolutional Network (STGCN), and LSTM-GAT. It is 

noteworthy that both STGCN and LSTM-GAT were integrated with the CEEMDAN decomposition algorithm 

to ensure a consistent experimental basis. To guarantee a fair evaluation, default parameters from the original 

implementations were adopted for all baseline methods.  

As presented in Table 4, the baseline models demonstrate limited capability in capturing the complex 

nonlinear patterns of vessel traffic flow. In contrast, the proposed GL-STFormer exhibits superior predictive 

performance, validating the effectiveness of the model. Specifically, GL-STFormer achieves lower prediction 

errors compared to both STGCN and LSTM-GAT. This performance disparity can be attributed to the 

differences in their spatial modeling mechanisms. STGCN relies on a pre-defined static adjacency matrix to 

extract spatial features, which limits its ability to capture time-varying spatial dependencies. Furthermore, 

although LSTM-GAT incorporates a dynamic attention mechanism, it primarily focuses on aggregating 

information from connected neighbors, thereby capturing only local spatial correlations. In contrast, the 

Transformer architecture in GL-STFormer utilizes the encoder-decoder structure to simultaneously capture 

and fuse both global and local spatial dependencies. This capability allows the model to learn long-range 

interaction features beyond physical connectivity constraints, thereby achieving superior results in the 

experiments. 

Table 4  Comparison of prediction accuracy of different models (unit: vessels) 

Model 
15min 30min 60min 

MAE RMSE R² MAE RMSE R² MAE RMSE R² 

ARIMA 1.978 2.591 0.196 1.998 2.632 0.170 2.138 2.817 0.049 

SVR 2.057 2.626 0.174 2.084 2.661 0.152 2.108 2.692 0.132 

GCN 1.912 2.489 0.258 1.920 2.506 0.248 1.981 2.576 0.205 

GRU 1.867 2.445 0.283 1.905 2.483 0.262 1.916 2.521 0.237 

LSTM 1.871 2.450 0.281 1.882 2.487 0.259 1.909 2.534 0.230 

Bi-LSTM 1.868 2.451 0.280 1.907 2.488 0.258 1.914 2.518 0.240 

STGCN 1.406 1.840 0.594 1.523 2.001 0.520 1.605 2.117 0.463 

LSTM-GAT 0.831 1.232 0.818 1.095 1.528 0.720 1.327 1.781 0.620 

GL-STFormer 0.766 1.167 0.836 1.021 1.466 0.742 1.268 1.742 0.637 

4.6 Ablation experiment 

To verify the contribution of different components to vessel traffic flow prediction, we conducted 

ablation studies by removing certain modules. Four ablation versions were constructed: w/o 

CEEMDAN(removes the signal decomposition module), w/o GRU(removes the GRU layer), w/o Self-

attention(removes the self-attention mechanism), and w/o Transformer(removes the spatial modeling module). 

The models were quantitatively evaluated using MAE, RMSE, and R². The results are shown in Table 5. 

The ablation study results are presented in Table 5. Notably, after removing the CEEMDAN module, 

the model accuracy dropped sharply. Specifically, for the 15-minute horizon, the MAE increased from 0.766 

to 1.816. This indicates that using the original data directly into the model without decomposition leads to 

inferior prediction performance. This is due to the multi-scale non-stationarity and complex fluctuation 

characteristics of the raw data. Furthermore, performance degradation is observed in variants without the GRU 
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and Transformer modules. This validates the necessity of temporal and spatial feature extraction. Overall, the 

proposed model can effectively capture the spatiotemporal characteristics of vessel traffic flow data. 

Table 5  Comparison of ablation model prediction accuracy (unit: vessels) 

Model 
15min 30min 60min 

MAE RMSE R² MAE RMSE R² MAE RMSE R² 

w/o 

CEEMDAN 
1.816 2.396 0.313 1.831 2.417 0.301 1.848 2.460 0.276 

w/o GRU 1.489 1.945 0.547 1.618 2.122 0.461 1.715 2.252 0.393 

w/o Self-

attention 
0.796 1.178 0.823 1.053 1.487 0.733 1.290 1.762 0.622 

w/o 

Transformer 
0.928 1.326 0.789 1.187 1.605 0.691 1.449 1.932 0.553 

GL-

STFormer 
0.766 1.167 0.836 1.021 1.466 0.742 1.268 1.742 0.637 

To verify the effectiveness of the CEEMDAN decomposition module, this study compares it with two 

classical algorithms: EMD and EEMD. The results are illustrated in Figure 15. The CEEMDAN-based model 

achieves superior performance across all metrics compared to the other decomposition methods. In contrast, 

EMD yields larger errors due to mode mixing. While EEMD improves the goodness of fit relative to EMD, 

its overall prediction accuracy remains inferior to the proposed CEEMDAN approach. These results indicate 

that CEEMDAN possesses significant advantages in extracting features from complex vessel traffic flow. 

 

Fig. 15  Performance comparison of different signal decomposition strategies. 

5. Conclusions 

The study developed a spatiotemporal prediction model based on signal decomposition and hybrid deep 

learning to address complex inland vessel traffic flow prediction. The model framework integrates 

CEEMDAN, GRU, self-attention mechanism, Transformer, and WOA. Initially, the CEEMDAN algorithm 

decomposes the original vessel flow sequence into multiple IMFs, significantly reducing data complexity. 

During feature extraction, GRU networks capture long-term dependencies in flow sequences, while self-

attention mechanism enhances feature weights of key time steps. Additionally, combining inland traffic 

networks, the Transformer encoder-decoder architecture establishes cross-waterway spatial dependencies, 

achieving collaborative perception between local channels and global networks through multi-head attention 
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mechanism. To overcome hyperparameter sensitivity, the WOA globally optimizes model hyperparameters to 

output final predictions using optimal parameters. 

Training was conducted using real historical AIS data from the Yangtze River. Experimental results 

demonstrate that the proposed model outperforms traditional baseline models in MAE, RMSE, and R², 

validating its effectiveness and superiority in capturing complex spatiotemporal correlations. 

Future research could explore model performance over longer prediction horizons. Furthermore, 

integrating multiple data types including AIS, meteorological data, and vessel motion data could provide more 

detailed learning information, enhancing the robustness of deep learning methods and improving modeling 

capabilities for complex waterway traffic characteristics. These extensions could enable the model to play a 

greater role in improving inland shipping safety and transport efficiency, while opening new pathways for 

intelligent shipping and maritime traffic management systems development. 
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