Research on temperature distribution in container ship with Type-B LNG fuel tank based on CFD and analytical method
Volume
75
Issue number
3
Article number
75302
Submitted
06.01.2024.
Accepted
04.04.2024.
Authors
Jinfeng Liu1,2, Guoqing Feng1*, Jiaying Wang2 , Tianwei Wu2 , Chen Xu1 and Kai Yang1
1 College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
2 Hudong-Zhonghua Shipbuilding (Group) CO., Ltd., Shanghai 200129, China
3 China Classification Society Harbin Branch, Harbin 150070, China
Corresponding author email
Abstract
The liquefied natural gas (LNG) fuel tank in a large container ship is loaded with liquid LNG at an ultra-low temperature (-163°C), there is a significant temperature difference in the cargo hold area where the entire fuel tank is located, which will have an important impact on the steel grade design and structural safety of the cargo tank in container ship. This paper develops two heat transfer models using Computational Fluid Dynamics method (CFD method) and an analytical method to analyze the temperature distribution in a large container ship equipped with Type-B LNG fuel tank. These models incorporate the arrangement and heat transfer characteristics of LNG fuel tanks. The temperature field analysis is conducted under typical the environmental conditions specified in the Code for the Construction and Equipment of Ships Transporting Liquefied Gas in Bulk (IGC Code) and the United States Coast Guard Code (USCG Code), based on the CFD method and the analytical method, and the results of temperature field distribution are compared. Additionally, a parametric analysis of the hull temperature field is further carried out, the results show that the thermal conductivity of the insulation layer in LNG storage tanks and the types of the loaded liquid cargo have a limited impact on the final temperature field distribution in hull structure. However, the selection of steel grade in the local structure of the cargo hold, especially in the inner hull part, may lead to significant changes.
Keywords
Type-B LNG fuel tank, CFD method, Analytical method, Temperature field, Parametric analysis